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Bekannte Beispiele

Die Regeln

E → T | E + T , T → F | T ∗ F , F → a | (E)

erzeugen die korrekt geklammerten arithmetischen Ausdrücke.

Die Regeln

S → ab | aSb

erzeugen die einfache Klammersprache

L = {anbn| n ≥ 1} .

Hans U. Simon, Ruhr–Universität Bochum, Germany TI WS 2007/2008
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Kontextfreie Regeln und Rekursion

Die Variablen in kontextfreien Regeln repräsentieren rekursiv definierbare

Konzepte. Zum Beipiel:

• Lies Regel E → T | E + T wie folgt: Ein Expression ist ein Term oder die

Summe aus einem Expression und einem Term.

• Lies Regel S → ab | aSb wie folgt: ein Mitglied der einfachen Klammer-

sprache hat die Form ab oder ist ein von a und b eingeklammertes Mitglied

der einfachen Klammersprache.

Hans U. Simon, Ruhr–Universität Bochum, Germany TI WS 2007/2008
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Kontextfreie Regeln und Programmiersprachen

Programmiersprachen enthalten

• eine Vielzahl rekursiv definierbarer Konzepte

• und diverse Klammerstrukturen

Betrachte zum Beispiel folgendes Fragment einer kontextfreien Grammatik für

MODULA:

〈Anw〉 → 〈While–Anw〉 | 〈If–Anw〉

〈While–Anw〉 → WHILE 〈Bedingung〉 DO 〈Anw〉 END

〈If–Anw〉 → IF 〈Bedingung〉 THEN 〈Anw〉 END

〈Bedingung〉 → · · ·

Erläuterungen dazu in der Vorlesung!

Hans U. Simon, Ruhr–Universität Bochum, Germany TI WS 2007/2008
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Chomsky Normalform (CNF)

Definition: Eine kontextfreie Grammatik ist in Chomsky Normalform, wenn

sie nur Regeln der Form

A → BC , A → a mit A, B, C ∈ V, a ∈ Σ

besitzt.

Effekt: Binäre Syntaxbäume !

Hans U. Simon, Ruhr–Universität Bochum, Germany TI WS 2007/2008
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Transformation in Chomsky Normalform

Satz: Jede kontextfreie Grammatik G mit ε /∈ L(G) kann in eine äquivalente

kontextfreie Grammatik G′ in Chomsky Normalform transformiert werden.

Der Beweis erfolgt in 4 Phasen, die folgendes erreichen:

1. Nur Regeln der Form A → a dürfen überhaupt auf der rechten Seite ein

Zeichen aus Σ verwenden. Die Grammatik heißt dann separiert.

2. Die rechte Seite einer Regel hat maximal die Länge 2.

3. Es gibt keine ε–Regeln mehr.

4. Es gibt keine
”
Kettenregeln“ (der Form A → B) mehr.

Danach ist die Grammatik in Chomsky Normalform.

Hans U. Simon, Ruhr–Universität Bochum, Germany TI WS 2007/2008
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Ziel 1: Separierte Grammatik

• Führe für jedes Terminalzeichen a eine neue Variable Xa ein sowie die

neuen Regeln Xa → a.

(Jedes Terminalzeichen bekommt eine
”
große Schwester“ in V .)

• Bei einer Regel, deren rechte Seite nicht nur aus einem Terminalzeichen

bzw. einem String über V besteht, wird jedes Terminalzeichen a durch

seine
”
große Schwester“ Xa ∈ V ersetzt.

Danach ist die Grammatik separiert (ohne dass die Sprache abgeändert wurde).

Hans U. Simon, Ruhr–Universität Bochum, Germany TI WS 2007/2008
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Ziel 2: Verkürzung rechter Seiten von Regeln

Ersetze eine Regel R der Form

A → B1B2 · · ·Bk, k ≥ 3

unter Verwendung neuer Variablen R1, . . . , Rk−2 durch das Regelsystem

A → B1R1, R1 → B2R2, · · · , Rk−3 → Bk−2Rk−2, Rk−2 → Bk−1Bk .

Danach hat jede rechte Seite einer Regel maximal die Länge 2 (ohne dass die

Sprache abgeändert wurde).

Hans U. Simon, Ruhr–Universität Bochum, Germany TI WS 2007/2008
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Ziel 3: Elimination von ε–Regeln

• Bestimme nach folgendem Schema die Menge Vε aller Variablen, aus denen

ε ableitbar ist:

1. Nimm anfangs in Vε alle Variablen A auf, zu denen eine Regel der Form

A → ε existiert.

2. Solange noch Regeln der Form B → CD mit C, D ∈ Vε, B /∈ Vε

bzw. B → C mit C ∈ Vε, B /∈ Vε existieren, nimm auch B in Vε auf.

• Für jede Regel der Form A → BC mache folgendes:

– Falls B ∈ Vε, dann kreiere die zusätzliche Regel A → C.

– Falls C ∈ Vε, dann kreiere die zusätzliche Regel A → B.

• Eliminiere alle ε–Regeln.

Danach enthält die Grammatik keine ε–Regeln mehr (ohne das die Sprache

abgeändert wurde).

Hans U. Simon, Ruhr–Universität Bochum, Germany TI WS 2007/2008
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Ziel 4: Elimination von Kettenregeln

• Betrachte die
”
Kettenregel–Relation“ K bestehend aus allen Paaren (A, B)

zu denen eine Kettenregel A → B existiert und berechne ihre transitive

Hülle K+.

• Eliminiere alle Kettenregeln.

• Falls (A, C) ∈ K+, dann kreiere für jede C–Regel C → β die zusätzliche

Regel A → β.

A
”
erbt“ gewissermaßen alle rechten Seiten von C.

Danach enthält die Grammatik keine Kettenregeln mehr. Durch den Trick mit

der
”
Vererbung“ rechter Seiten wurden die Kettenregeln überflüssig gemacht.

Die Sprache wird durch die beschriebenen Transformationsschritte nicht

abgeändert.

Hans U. Simon, Ruhr–Universität Bochum, Germany TI WS 2007/2008
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Details zur Berechnung der transitiven Hülle

Bemerkungen:

• (A, C) ∈ K+ gdw A und C sind durch eine
”
Kette von Kettenregeln“ der

Form

A → B1 → B2 → · · · → Bk−1 → Bk → C

(inklusive des Grenzfalles A → C) miteinander verbunden.

• Berechnung von K+ entspricht algorithmisch der Berechnung der transiti-

ven Hülle in dem
”
Kettenregel–Hilfsgraphen“ (Algorithmus von Warshall).

Hans U. Simon, Ruhr–Universität Bochum, Germany TI WS 2007/2008
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Beispiel

Die kontextfreie Grammatik mit den Regeln

S → aOb , O → P | OO | aOb , P → x |E , E → ε

wird in Chomsky Normalform gebracht wie folgt:

1. Mit Hilfe der neuen Variablen A, B (die
”
großen Schwestern“ von a, b)

erhalten wir die separierte Grammatik

S → AOB , O → P |OO |AOB , P → x |E , E → ε , A → a , B → b .

2. Mit Hilfe der neuen Variablen S ′, O′ vermeiden wir zu lange rechte Seiten,

indem die Regeln S → AOB bzw. O → AOB ersetzt werden durch

S → AS′ , S′ → OB bzw. O → AO′ , O′ → OB .

Hans U. Simon, Ruhr–Universität Bochum, Germany TI WS 2007/2008
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Beispiel (fortgesetzt)

Zwischenergebnis nach Phase 2:

S → AS′ , S′ → OB , O → P | OO | AO′ , O′ → OB

P → x |E , E → ε , A → a , B → b

3. Vε = {E, P, O}. Die Technik zur Elimination von ε–Regeln führt zu

S → AS′ , S′ → OB | B , O → P | OO | AO′ , O′ → OB | B ,

P → x | E , A → a , B → b .

Dabei wurde die überflüssige Regel O → O weggelassen.

4. Es gilt K+ = {(S′, B), (O, P ), (O, O), (O′, B), (P, E), (O, E)}. Die Technik

zur Elimination von Kettenregeln führt zu

S → AS′ , S′ → OB | b , O → OO | AO′ | x , O′ → OB | b ,

P → x , A → a , B → b .

Hans U. Simon, Ruhr–Universität Bochum, Germany TI WS 2007/2008
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Greibach Normalform (GNF)

Definition: Eine kontextfreie Grammatik ist in Greibach Normalform, wenn

sie nur Regeln der Form

A → aB1 · · ·Bk , A → a mit k ≥ 1, A, B1, . . . , Bk ∈ V, a ∈ Σ

besitzt (einzelnes Terminalzeichen gefolgt von einem String aus Variablen).

Bemerkung:

• Die Einschränkung auf k = 1 würde die regulären Grammatiken liefern.

• Greibach Normalform führt später zu Kellerautomaten, die in
”
Realzeit“

arbeiten (in jedem Schritt ein Eingabesymbol verarbeiten).

Hans U. Simon, Ruhr–Universität Bochum, Germany TI WS 2007/2008
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Transformation in Greibach Normalform

Satz: Jede kontextfreie Grammatik G mit ε /∈ L(G) kann in eine äquivalente

kontextfreie Grammatik G′ in Greibach Normalform transformiert werden.

Der Beweis geht oBdA davon aus, dass G separiert ist und keine ε–Regeln

besitzt (was zum Beispiel bei Chomsky Normalform der Fall ist). Er besteht

aus vier Teilen:

1. Technik zur Vermeidung von
”
Linksrekursion“

2. Erzwingen einer
”
Monotonie–Eigenschaft“ unter Verwendung von Hilfsva-

riablen

3. Transformation in Greibach–Normalform abgesehen von B–Regeln für eine

Hilfsvariable B

4. Transformation der B–Regeln in Greibach Normalform für jede Hilfsvaria-

ble B

Hans U. Simon, Ruhr–Universität Bochum, Germany TI WS 2007/2008
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Eine Invarianzbedingung

Im Beweis wird das Regelsystem P dynamisch modifiziert werden. Dabei wird

es jedoch stets nur Regeln enthalten, deren rechte Seiten

• zu V + gehören (String aus Variablen)

• oder der GNF genügen (einzelnes Terminalzeichen gefolgt von einem String

aus Variablen).

Bemerkungen:

1. Anfangs ist dies der Fall, da wir von einer separierten kontextfreien

Grammatik ohne ε–Regeln ausgehen.

2. Dass die Eigenschaft erhalten bleibt, könnte im Prinzip induktiv gezeigt

werden.

Es foglt eine Beschreibung der vier Beweisteile.

Hans U. Simon, Ruhr–Universität Bochum, Germany TI WS 2007/2008
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Vermeidung von Linksrekursion

Die A–Regeln

A →

linksrekursiv
︷ ︸︸ ︷

Aα1 | · · · | Aαk | β1 | · · · | βl mit αi 6= ε

erzeugen gerade die durch folgenden regulären Ausdruck beschreibbaren

Satzformen:

(β1| · · · |βl) · (α1| · · · |αk)∗

Diese Satzformen lassen sich genau so gut (ohne Linksrekursion) erzeugen

durch

A → β1 | · · · | βl | β1B | · · · | βlB

B → α1 | · · · | αk | α1B | · · · | αkB

B ist dabei eine neue Variable.

Hans U. Simon, Ruhr–Universität Bochum, Germany TI WS 2007/2008
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Erzwingen einer Monotonie–Eigenschaft

Ziel:

Für V = {A1, . . . , Am} und Regeln der Form Ai → Ajα erzwinge, dass i < j.

Dies leistet folgende
”
Bootstrapping“–Methode:

FOR i := 1 TO m DO

FOR j := 1 TO i − 1 DO

FOR all Ai → Ajα ∈ P DO

Seien Aj → β1| · · · |βk alle Aj–Regeln

Streiche Ai → Ajα aus P

Füge Ai → β1α| · · · |βkα hinzu

ENDFOR

ENDFOR

Vermeide linksrekursive Regeln der Form Ai → Aiα (sofern vorhanden)

mit der besprochenen Technik unter Einsatz der Hilfsvariable Bi

ENDFOR

Hans U. Simon, Ruhr–Universität Bochum, Germany TI WS 2007/2008
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Greibach Normalform für Ai–Regeln

Die Monotonie–Eigenschaft impliziert, dass die rechten Seiten der Am–

Regeln mit einem Terminalzeichen beginnen. Folgende Methode erreicht diese

Eigenschaft iterativ auch für die Variablen Am−1, . . . , A1:

FOR i := m − 1 DOWNTO 1 DO

FOR j := i + 1 TO m DO

FOR all Ai → Ajα ∈ P DO

Seien Aj → β1| · · · |βk alle Aj–Regeln

Streiche Ai → Ajα aus P

Füge Ai → β1α| · · · |βkα hinzu

ENDFOR

ENDFOR

ENDFOR

Hans U. Simon, Ruhr–Universität Bochum, Germany TI WS 2007/2008
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Greibach Normalform für Bi–Regeln

Die rechte Seite einer Bi–Regel beginnt

• mit einem Terminalzeichen (gut)

• oder einer Variable Aj (weniger gut)

Da alle Aj–Regeln bereits der Greibach–Normalform genügen, ist die folgende

Maßnahme nun ausreichend:

FOR i := 1 TO m DO

FOR j := 1 TO m DO

FOR all Bi → Ajα ∈ P DO

Seien Aj → β1| · · · |βk alle Aj–Regeln

Streiche Bi → Ajα aus P

Füge Bi → β1α| · · · |βkα hinzu

ENDFOR

ENDFOR

ENDFOR

Hans U. Simon, Ruhr–Universität Bochum, Germany TI WS 2007/2008
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Beispiel

Aufgabe: Bringe die durch

A1 → A2A3 , A2 → A3A1 | b , A3 → A1A2 | a

gegebene Grammatik in Greibach Normalform.

Beim Erzwingen der Monotonie–Eigenschaft müsssen nur die A3–Regeln

modifiziert werden. Es entstehen folgende Zwischenergebnisse:

(1) A3 → A2A3A2 | a

(2) A3 → A3A1A3A2 | bA3A2 | a

(3) A3 → bA3A2 | a | bA3A2B3 | aB3

(3) B3 → A1A3A2 | A1A3A2B3

Beim Übergang von (2) nach (3) wurde die Technik zur Vermeidung von

Linksrekursion eingesetzt.

Hans U. Simon, Ruhr–Universität Bochum, Germany TI WS 2007/2008
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Beispiel (fortgesetzt)

A1 → A2A3

A2 → A3A1 | b

A3 → bA3A2 | a | bA3A2B3 | aB3

B3 → A1A3A2 | A1A3A2B3

hat bereits A3–Regeln in GNF. Die Technik zur Vererbung dieser Eigenschaft

auf die Variablen A2, A1 liefert:

A3 → bA3A2 | a | bA3A2B3 | aB3

A2 → bA3A2A1 | aA1 | bA3A2B3A1 | aB3A1 | b

A1 → bA3A2A1A3 | aA1A3 | bA3A2B3A1A3 | aB3A1A3 | bA3

B3 → A1A3A2 | A1A3A2B3

Hans U. Simon, Ruhr–Universität Bochum, Germany TI WS 2007/2008
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Beispiel (fortgesetzt)

A3 → bA3A2 | a | bA3A2B3 | aB3

A2 → bA3A2A1 | aA1 | bA3A2B3A1 | aB3A1 | b

A1 → bA3A2A1A3 | aA1A3 | bA3A2B3A1A3 | aB3A1A3 | bA3

B3 → A1A3A2 | A1A3A2B3

hat bereits Ai–Regeln in GNF. Die Technik zur Vererbung dieser Eigenschaft

auf die Bi–Regeln liefert dieselben Ai–Regeln und die folgenden B3–Regeln:

B3 → bA3A2A1A3A3A2 | aA1A3A3A2 | bA3A2B3A1A3A3A2

| aB3A1A3A3A2 | bA3A3A2

| bA3A2A1A3A3A2B3 | aA1A3A3A2B3 | bA3A2B3A1A3A3A2B3

| aB3A1A3A3A2B3 | bA3A3A2B3

Hans U. Simon, Ruhr–Universität Bochum, Germany TI WS 2007/2008
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Das Pumping–Lemma (uvwxy–Theorem)

Satz: Für jede kontextfreie Sprache L ⊆ Σ∗ gilt:

∃n ≥ 1,

∀z ∈ L mit |z| ≥ n,

∃u, v, w, x, y ∈ Σ∗ mit z = uvwxy, 1 ≤ |vx| ≤ |vwx| ≤ n,

∀i ≥ 0 :

uviwxiy ∈ L

.

Es folgt:

- der formale Beweis

- plus eine Veranschaulichung

Hans U. Simon, Ruhr–Universität Bochum, Germany TI WS 2007/2008
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• Benutze eine kontextfreie Grammatik G für L\{ε} in Chomsky Normalform

und wähle k := |V | (Anzahl der Variablen) und n := 2k.

• Zu einem Wort z = a1 · · · as ∈ L mit ai ∈ Σ und s ≥ n betrachte den

Syntaxbaum T mit Beschriftung z und den binären Teilbaum T ′, der von

den inneren Knoten von T induziert wird.

• Da T ′ (wie auch T ) s ≥ 2k Blätter hat, folgt h := (Höhe von T ′) ≥ k.

• Betrachte einen Pfad P der Länge h ≥ k (also mit h + 1 ≥ k + 1 Knoten)

in T ′. Gemäß Schubfachprinzip sind zwei der k + 1 letzten Knoten von P

mit derselben Variable, sagen wir A, markiert.

• Die Ableitung von z aus dem Startsymbol S hat demnach die folgende

Form:

S ⇒∗
G

zyklischer Teil
︷ ︸︸ ︷

uAy ⇒∗
G uvAxy ⇒∗

G uvwxy = z

für geeignet gewählte Wörter u, v, w, x, y mit 1 ≤ |vx| ≤ |vwx| ≤ n.

• Durch i–fache Iteration (oder Weglassen) des zyklischen Ableitungsteils

sehen wir, dass uviwxiy ∈ L für alle i ≥ 0.

Hans U. Simon, Ruhr–Universität Bochum, Germany TI WS 2007/2008
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A

A

u                              v                     w                 x                 y
Baum T mit Beschriftung   z =  uvwxy

T’

Pfad  P

Hans U. Simon, Ruhr–Universität Bochum, Germany TI WS 2007/2008
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Anwendung: Nachweis der Nichtkontextfreiheit

Folgerung: Falls für eine Sprache L ⊆ Σ∗ die Bedingung

∀n ≥ 1,

∃z ∈ L mit |z| ≥ n,

∀u, v, w, x, y ∈ Σ∗ mit z = uvwxy, 1 ≤ |vx| ≤ |vwx| ≤ n,

∃i ≥ 0 :

uviwxiy /∈ L

erfüllt ist, dann ist L nicht kontextfrei.

Hans U. Simon, Ruhr–Universität Bochum, Germany TI WS 2007/2008
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Beispiel für eine nicht–kontexfreie Sprache

Die folgende Sprache L ⊆ {a, b}∗ ist nicht kontexfrei:

L = {ambmcm| m ≥ 1}

Begründung:

1. Zu beliebig vorgegebenem n ≥ 1 wähle z = anbncn.

Offensichtlich gilt z ∈ L und |z| ≥ n.

2. Zu beliebig vorgegebener Zerlegung z = uvwxy mit 1 ≤ |vx| ≤ |vwx| ≤ n

wähle i = 0. Beachte, dass vx wegen |vwx| ≤ n das Zeichen a oder das

Zeichen c nicht enthält.

Nun gilt

z′ = uv0wx0y = uwy /∈ L ,

da die notwendige Bedingung

|z′|a = |z′|b = |z′|c

nicht erfüllt sein kann.

Hans U. Simon, Ruhr–Universität Bochum, Germany TI WS 2007/2008
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Der Fall unärer Sprachen

Vereinfachte Form des Pumping Lemmas: Für jede kontextfreie Sprache

L ⊆ {0}∗ gilt:

∃n ≥ 1,

∀m ≥ n mit 0m ∈ L

∃1 ≤ l ≤ n

∀i ≥ 0 :

0m−l0il ∈ L

.

denn: Für die Zerlegung 0m = uvwxy aus dem Pumping Lemma wähle

l := |vx| so dass vx = 0l.

Hans U. Simon, Ruhr–Universität Bochum, Germany TI WS 2007/2008
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Der Fall unärer Sprachen (fortgesetzt)

Satz: Jede kontextfreie Sprache über einem einelementigen Alphabet ist sogar

regulär.

Folgerung: Die folgenden Sprachen sind nicht kontextfrei:

L = {0p| p ist Primzahl}

L = {0m| m ist Quadratzahl}

Hans U. Simon, Ruhr–Universität Bochum, Germany TI WS 2007/2008
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Beweis des Satzes

• Wähle n als die betreffende Konstante aus dem Pumping Lemma.

• l ≥ 1 heißt
”
Pumpindex“ gdw ∃m ≥ n, ∀i ≥ 0 : 0m−l0il ∈ L.

• I⊆ {1, . . . , n} bezeichne die Menge aller Pumpindizes.

• Die Zahl q := n!≥ n ist dann ein Vielfaches aller Pumpindizes.

• r heißt
”
Pumprest“ gdw ∃m ≥ q : 0m ∈ L und r = m mod q.

mr bezeichne das kleinste m mit dieser Eigenschaft.

• R⊆ {0, . . . , q − 1} bezeichne die Menge aller Pumpreste.

• Die Sprache

L′ :=

endlich
︷ ︸︸ ︷

{x ∈ L| |x| < q}∪
⋃

r∈R

0mr (0q)∗

︷ ︸︸ ︷

{0mr+iq| i ≥ 0}

ist regulär und es gilt L′ = L.

Hans U. Simon, Ruhr–Universität Bochum, Germany TI WS 2007/2008
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Der CYK–Algorithmus

Das spezielle Wortproblem für eine kontextfreie Sprache L (mit ε /∈ L):

Eingabe: w = a1 · · · an mit ai ∈ Σ

Frage: w ∈ L ?

Der Algorithmus von Cocke, Younger und Kasami benutzt eine kontextfreie

Grammatik G = (V, Σ, P, S) in Chomsky Normalform für L und die Methode

des dynamischen Programmierens zur Berechnung einer Tabelle T :

1. Für 1 ≤ i, j ≤ n berechne

T [i, j] := {A ∈ V | A⇒∗
Gaiai+1 · · · ai+j−1} .

2. Akzeptiere w gdw S ∈ T [1, n].

Wegen

S ∈ T [1, n] gdw S⇒∗
Ga1a2 · · ·an = w

akzeptiert der Algorithmus exakt die Eingaben aus L.

Hans U. Simon, Ruhr–Universität Bochum, Germany TI WS 2007/2008
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Berechnung der Tabelle

• Das Teilwort

wi,j := aiai+1 · · · ai+j−1

ist das ab Position i beginnende Teilwort von w der Länge j.

• T [i, j] soll die Menge aller Variablen sein, aus denen das Teilwort wi,j

ableitbar ist.

• Die Ableitung eines Teilwortes ai der Länge 1 aus einer Variablen A ist

nur über eine Regel der Form A → ai möglich ist.

• Die Ableitung eines Teilwortes wi,j = ai · · · ai+j−1 für j ≥ 2 hat wegen der

binären Syntaxbäume eine spezielle Form (s. folgende Illustration).

Hans U. Simon, Ruhr–Universität Bochum, Germany TI WS 2007/2008
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Berechnung der Tabelle (fortgesetzt)

A

B C

a        .  .  .           a           a          .  .  .         ai i+k-1 i+k i+j-1

w w
i,k i+k,j-k

Abbildung 1: Syntaxbaum zur Ableitung A⇒∗
Gwi,j .
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Berechnung der Tabelle (fortgesetzt)

Tabelle T kann spaltenweise nach folgendem Schema berechnet werden:

T [i, 1] = {X ∈ V | X → ai ∈ P}

T [i, j] = {X ∈ V | ∃1 ≤ k ≤ j − 1, ∃X → BC ∈ P :

B⇒∗
Gwi,k , C⇒∗

Gwi+k,j−k}

= {X ∈ V | ∃1 ≤ k ≤ j − 1, ∃X → BC ∈ P :

B ∈ T [i, k] , C ∈ T [i + k, j − k]}

berechnet werden.

Beachte, dass die Tabelleneinträge T [i, k] und T [i + k, j − k] zum Zeitpunkt

der Berechnung von T [i, j] schon bekannt sind.
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Beispiel

Die Sprache L = {anbncm| n, m ≥ 1} wird durch folgende kontextfreie Gram-

matik mit Startvariable S generiert:

S → AB , A → ab | aAb , B → c | cB

Umformen in Chomsky Normalform ergibt:

S → AB , A → CD | CF , B → c | EB , C → a , D → b , E → c , F → AD
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Beispiel (fortgesetzt)

S → AB , A → CD | CF , B → c | EB , C → a , D → b , E → c , F → AD

Eingabe aaabbbcc führt zu folgender Tabelle:

i↓|j → 1 2 3 4 5 6 7 8

a C A S S

a C A F -

a C A F - -

b D - - -

b D - - - -

b D - - - - -

c E,B B - - - - - -

c E,B - - - - - - -
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Statischer versus dynamischer Speicher

Statischer Speicher: ein im
”
Programm“ festgelegter Speicherblock kon-

stanter Größe; kann nicht dynamisch (zur Laufzeit) und damit auch nicht

in Abhängigkeit von der Länge der Eingabe wachsen.

Dynamischer Speicher: kann dynamisch (zur Laufzeit) wachsen und daher

auch von der Länge der Eingabe abhängig sein.

• Endliche Automaten verfügen (in Form ihrer Zustandsmenge) nur über

einen statischen Speicher.

• Ihre beschränkte Potenz (zum Beispiel die Unfähigkeit Sprachen wie

{anbn| n ≥ 1} zu erkennen) ist diesem Umstand geschuldet.
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Kellerspeicher

Eine eingeschränkte aber durchaus wirkungsvolle Form des dynamischen

Speichers ist der Kellerspeicher (auch einfach
”
Keller“ genannt);

• In einem Keller können Symbole
”
gestapelt“ werden.

• Nur oben auf dem Stapel darf ein Symbol draufgelegt (Schreib– bzw. Push–

Operation) oder entfernt werden (Lösch– bzw. Pop–Operation).

• Der Stapel darf dynamisch (theoretisch unbegrenzt) wachsen.
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Ein Lob der
”
Hochstapelei“

Das Erkennen der nicht–regulären Sprache

{anbn| n ≥ 1}

ist unter Verwendung eines Kellerspeichers babyleicht:

Push–Phase: Solange a’s gelesen werden, lege diese auf den Stapel

Pop–Phase: Beim Lesen des ersten b’s schalte von der Push– auf die Pop–

Phase um: pro gelesenem b entferne von dem Stapel ein a.

Akzeptieren/Verwerfen: Akzeptiere gdw die Eingabe die Form a+b+ hat

(was mit der
”
endlichen Kontrolle“ so nebenbei getestet wird) und der

Stapel nach Verarbeitung der Eingabe leer ist.

Hans U. Simon, Ruhr–Universität Bochum, Germany TI WS 2007/2008



Kontextfreie Sprachen Slide 41'

&

$

%

Beispiel

Bei Eingabe

aaaabbbb

verändert sich der Stapel wie folgt:

Eingabe a a a a b b b b

a

a a a

a a a a a

Stapel a a a a a a a
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Kellerautomat (informelle Definition)

Ein (nichtdeterministischer) Kellerautomat (englisch: pushdown automaton),

kurz PDA ist ein um einen Kellerspeicher erweiterter NFA.

Die formale Definition wird zudem folgende technische Details berücksichtigen:

• Neben dem Eingabealphabet gibt es ein (zum Eingabealphabet nicht

notwendig disjunktes) Kelleralphabet (inklusive einem
”
untersten Keller-

zeichen“).

• Ein PDA darf
”
ε–Transitionen“ vollziehen, in denen kein weiteres Einga-

besymbol verarbeitet wird.

• Es gibt nur einen Startzustand (wegen der ε–Transitionen kein echtes

”
handicap“).

• Die Eingabe wird
”
mit leerem Keller“ (wie in dem eben gezeigten illustrie-

renden Beipiel) akzeptiert. (Endzustände sind daher überflüssig.)
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Kellerautomat (formale Definition)

Pe(U) bezeichnet die Menge aller endlichen Teilmengen einer (evtl. unendli-

chen) Menge U .

Ein PDA M besteht aus den folgenden Komponenten:

• Z, die Zustandsmenge (eine endliche Menge)

• Σ, das Eingabealphabet (ebenfalls endlich)

• Γ, das Kelleralphabet (ebenfalls endlich)

• δ : Z × (Σ ∪ {ε}) × Γ → Pe(Z × Γ∗), die Überführungsfunktion

• z0 ∈ Z, der Startzustand

• # ∈ Γ, das unterste Kellerzeichen

Konvention: Wir werden des öfteren (ohne dies explizit immer wieder zu

erwähnen und hauptsächlich zur Vermeidung lästiger Fallunterscheidungen)

mit a ein Element von Σ ∪ {ε} bezeichnen.
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Konventionen

• Der String B1 · · ·Bk wird im Grenzfall k = 0 mit dem leeren Wort

identifiziert.

• Der Kellerinhalt wird als String notiert, wobei das
”
links“ im String

”
oben“

im Keller bedeutet.

Beachte, dass die Ersetzung von A durch B1 · · ·Bk im Keller die folgenden

Grenzfälle mit einschließt:

Pop–Operation Im Falle k = 0 wird A aus dem Keller entfernt.

Ersetzung Im Falle k = 1 wird A durch B1 ersetzt.

Falls k ≥ 1 ist im Anschluss B1 das oberste Kellersymbol.
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Arbeitsweise des PDA

• Anfangs befindet sich M im Startzustand z0 und der Keller enthält nur

das unterste Kellersymbol #.

• Falls (z′, B1 · · ·Bk) ∈ δ(z, ε, A), dann darf M im Zustand z und bei

oberstem Kellersymbol A eine ε–Transition vollziehen, wobei ein Wechsel

auf den Zustand z′ erfolgt und im Keller das oberste Symbol A durch

B1 · · ·Bk ersetzt wird.

• Falls (z′, B1 · · ·Bk) ∈ δ(z, a, A) mit a ∈ Σ, dann darf M im Zustand z, bei

oberstem Kellersymbol A und beim Lesen des Eingabesymbols a auf den

Zustand z′ wechseln und im Keller das oberste Symbol A durch B1 · · ·Bk

ersetzen. Anschließend rückt der Lesekopf des Eingabebandes auf das

nächste Symbol.

• Die Eingabe wird akzeptiert gdw M durch geeignete Wahl der jeweils

möglichen Rechenschritte erreichen kann, dass der Keller nach Verarbeitung

des letzten Zeichens der Eingabe (+ evtl. weiteren ε–Transitionen) leer ist.
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Exkurs: Konfiguration (Momentaufnahme)

In eine Konfiguration für einen (evtl. nichtdeterministischen) Prozess packen

wir alle Informationen hinein, die nötig sind, um

• den Prozess zu suspendieren (temporär zu stoppen)

• und ihn später wieder weiterlaufen zu lassen.

Beispiele:

• Informationen die Betriebssysteme von laufenden Prozessen protokollieren

(s. Grundvorlesung zur Informatik oder Vorlesung über Betriebssysteme)

• Schachspiel mit Konfiguration bestehend aus der aktuellen Schachstellung

und einem Zusatzbit, welches angibt, ob WEISS oder SCHWARZ am Zug

ist (+ weitere Details wegen komplizierter Remis–Regeln)
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Konfigurationen eines PDA

Die Konfiguration eines PDA besteht aus

• dem aktuellen Zustand z ∈ Z,

• dem noch nicht verarbeiteten Teil v ∈ Σ∗ der Eingabe,

• dem aktuellen Kellerinhalt α ∈ Γ∗.

Notation: (z, v, α) ∈ Z × Σ∗ × Γ∗.

Anfangskonfiguration bei Eingabe w: (z0, w, #)

Akzeptierende Endkonfiguration: (z, ε, ε) für jedes z ∈ Z

Macht das Sinn ?? Erläutere !!
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Folgekonfigurationen

Eine
”
Rechnung“ eines PDA lässt sich als Folge von Konfigurationen beschrei-

ben.

Definition

1. (z′, v′, α′) heißt unmittelbare Folgekonfiguration von (z, v, α) gdw

(z′, v′, α′) aus (z, v, α) durch einen
”
Rechenschritt“ (einmalige Verwendung

der Überführungsfunktion) resultieren kann.

Notation: (z, v, α) ` (z′, v′, α′).

2. (z′, v′, α′) heißt Folgekonfiguration von (z, v, α) gdw (z′, v′, α′) aus (z, v, α)

durch eine (evtl. leere) Folge von Rechenschritten resultieren kann.

Notation: (z, v, α) `∗ (z′, v′, α′).

Formal ist
”
`∗” die reflexive–transitive Hülle von

”
`“.
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Sprache eines PDA

Die folgende Definition der vom PDA M erkannten Sprache N(M) entspricht

unserer Vereinbarung über das Akzeptieren mit leerem Keller:

N(M) := {w ∈ Σ∗| ∃z ∈ Z : (z0, w, #) `∗ (z, ε, ε)}

In Worten: Wort w gehört zur Sprache N(M) gdw M durch Verarbeitung

der Eingabe w aus der Anfangskonfiguration in eine akzeptierende Endkonfi-

guration gelangen kann.

Konvention: Im Folgenden schreiben wir (der besseren Lesbarkeit zuliebe)

zA
a

−→ z′x statt (z′, x) ∈ δ(z, a, A) .
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Beispiel

Die Sprache

L = {a1a2 · · · an$an · · · a2a1| ai ∈ {a, b}}

kann durch einen PDA erkannt werden, der

• in einer
”
Push–Phase“ a1, . . . , an in den Keller legt (an befindet sich dann

oben),

• beim Lesen des Trennzeichens
”
$“ von der

”
Push–“ in die

”
Pop-Phase“

umschaltet,

• in der Pop-Phase beim Lesen von ai und oberstem Kellersymbol ai

(Match!) das Symbol ai vom Keller entfernt,

• nach Abarbeitung der Eingabe und bei oberstem Kellersymbol
”
#“, das

Symbol # vom Keller entfernt (um diesen vollständig zu leeren).
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Beispiel (fortgesetzt)

Auf diese Weise werden auch Eingaben w /∈ L entlarvt. Beim Auftreten von

”
Störungen“ wie

• Eingabe w hat nicht die Form w = u$v mit u, v ∈ {a, b}∗,

• Auftreten eines
”
Mismatches“ in der Pop–Phase (gelesenes Zeichen stimmt

nicht überein mit dem obersten Kellerzeichen),

wird der Keller (zur Strafe) nicht geleert.

Beachte, dass der Fall des Mismatches die Fälle

w = u$v , |u| 6= |v|

mit einschließt.
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Beispiel (fortgesetzt)

M hat die folgenden Komponenten:

• Zustandsmenge {z0, z1}

• Eingabealphabet {a, b, $}

• Kelleralphabet {a, b, #}

• Startzustand z0

• unterstes Kellerzeichen #

Intuition:

• Während der Push–Phase ist M im Zustand z0.

• Während der Pop–Phase ist M im Zustand z1.
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Beispiel (fortgesetzt)

Die folgenden Transitionen realisieren die Push–Phase:

z0#
a

−→ z0a# , z0a
a

−→ z0aa , z0b
a

−→ z0ab

z0#
b

−→ z0b# , z0a
b

−→ z0ba , z0b
b

−→ z0 bb

Das Umschalten von Push auf Pop wird realisiert durch

z0#
$

−→ z1# , z0a
$

−→ z1a , z0b
$

−→ z1b .

Die folgenden Transitionen realisieren die Pop–Phase:

z1a
a

−→ z1ε , z1b
b

−→ z1ε , z1#
ε

−→ z1ε

Auf der Eingabe ba$ab ergibt sich die Rechnung:

(z0, ba$ab, #) ` (z0, a$ab, b#) ` (z0, $ab, ab#) `

(z1, ab, ab#) ` (z1, b, b#) ` (z1, ε, #) ` (z1, ε, ε)
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Beispiel (fortgesetzt)

Unser PDA für die Sprache

L = {a1a2 · · · an$an · · · a2a1| ai ∈ {a, b}}

ist deterministisch:

• Jede Konfiguration hat nur eine unmittelbare Folgekonfiguration.

Hans U. Simon, Ruhr–Universität Bochum, Germany TI WS 2007/2008



Kontextfreie Sprachen Slide 55'

&

$

%

Beispiel (fortgesetzt)

Die Sprache

L′ = {a1a2 · · · anan · · · a2a1| ai ∈ {a, b}}

(L abzüglich des Trennzeichens) kann von einem PDA M ′ erkannt werden, der

ein nicht–deterministischer Verwandter von M ist:

• Transitionen der Push- und Pop-Phase wie zuvor plus folgende Transitionen

zum
”
Umschalten“:

z0a
a

−→ z1ε , z0b
b

−→ z1ε , z0#
ε

−→ z1ε .

M ′ hat (sofern gelesenes Zeichen mit dem obersten Kellerzeichen überein-

stimmt) die Wahl in der Push–Phase zu verweilen oder (mit Hilfe der neuen

Transitionen) in die Pop–Phase umzuschalten. Bei Eingaben aus L′ wird die

akzeptierende Rechnung genau zum richtigen Zeitpunkt diese Umschaltung

vornehmen (Raten der Nahtstelle an der Mitte des Eingabewortes).

• Man kann zeigen, dass kein deterministischer PDA für L′ existiert.
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Von der kontextfreien Grammatik zum PDA

Satz: Jede kontextfreie Grammatik G kann in einen äqivalenten PDA M

transformiert werden.

Beweis: Gegeben G = (V, Σ, P, S), wähle die Komponenten von M wie folgt:

• Zustandsmenge {z} (ein Zustand)

• Eingabealphabet Σ

• Kelleralphabet V ∪ Σ

• Überführungsfunktion δ (durch Transitionen weiter unten spezifiziert)

• Startzustand z

• unterstes Kellerzeichen S

Intuition: Zu Eingabe w ∈ Σ∗ versucht M eine Linksableitung S⇒∗
Gw

herzustellen. Dabei soll zu jedem Zeitpunkt im Keller eine Satzform stehen, aus

welcher der noch nicht gelesene Teil der Eingabe ableitbar ist (sofern w ∈ L).

Anfangs richtig: gesamte Eingabe w noch nicht gelesen, S im Keller.

Hans U. Simon, Ruhr–Universität Bochum, Germany TI WS 2007/2008



Kontextfreie Sprachen Slide 57'

&

$

%

Beweis (fortgesetzt)

Abkürzung: CFG = Contextfree Grammar = Kontextfreie Grammatik

Überführungsfunktion δ wird nach folgendem Schema entworfen:

CFG PDA

A → α zA
ε

−→ zα (ε-Transition)

za
a

−→ zε (a-Transition für jedes a ∈ Σ)

--- In Worten ?! ---

Beobachtung am Rande: Falls G in Greibach Normalform ist, dann hat

jede Regel die Form A → α mit α = aα′, a ∈ Σ, α′ ∈ V ∗ und wir können wir

nach dem Schema

CFG PDA

A → aα′ zA
a

−→ zα′

verfahren. Der resultierende PDA (ohne ε–Transitionen!) arbeitet nichtdeter-

ministisch in Realzeit.
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Beweis (fortgesetzt)

Der PDA M ist gerade so entworfen, dass seine Rechnungen Linksableitungen

der Grammatik G entsprechen:

CFG PDA

S⇒∗
lmuα⇒∗

lmuv (z, uv, S) `∗ (z, v, α) `∗ (z, ε, ε)

--- In Worten ?! ---

Hierbei ist w = uv ∈ Σ∗ und α ist ein entweder leerer oder ein mit einer

Variablen beginnender String. Index
”
lm“ steht für

”
leftmost“ und kennzeichnet

Linksableitungsschritte.

Es folgt direkt: L(G) = N(M).

Bleibt zu zeigen, dass sich Grammatik und PDA wechselseitig nach obigem

Schema
”
simulieren“ können. Wir konzentrieren uns dabei auf die

”
Simulation“

eines Ableitungsschrittes bezüglich G durch Rechenschritte von M . (Die

umgekehrte Überlegung funktioniert aber analog.)
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Beweis (fortgesetzt)

Wir nehmen an, dass α von der Form α = Xα′ ist und in der Linksableitung

uα⇒∗
lmw = uv eine Regel der Form

X → a1 · · · akα′′

zur Anwendung kommt (mit a1 · · · ak als maximalem Präfix aus Σ∗ auf der

rechten Seite). Dann muss natürlich v von der Form

v = a1 · · · akv′

sein und es muss α′′α′⇒∗
lmv′ gelten. Der PDA simuliert diesen Ableitungs-

schritt (illustriert für k = 1) nach folgendem Schema:

CFG PDA

uα = uXα′⇒lmua1α
′′α′ (z, a1v

′, Xα′) ` (z, a1v
′, a1α

′′α′)

` (z, v′, α′′α′)
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Vom PDA zur kontextfreien Grammatik

Satz: Jeder PDA M kann in eine äquivalente kontextfreie Grammatik G

transformiert werden.

Beweisstruktur:

• Bringe M zunächst in eine
”
Normalform“ (ohne die zugehörige Sprache

abzuändern).

• Entwerfe eine kontextfreie Grammatik G, deren Linksableitungen gerade

den akzeptierenden Rechnungen von M entsprechen.
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”
Normalform“ des PDA

Transitionen der Form

zA
a

−→ z′B1 · · ·Bk mit k > 2

könnten mit Hilfe neuer Zustände z1, . . . , zk−2 simuliert werden durch die

Transitionen

zA
a

−→ z1Bk−1Bk , z1Bk−1
ε

−→ z2Bk−2Bk−1 , . . . , zk−2B2
ε

−→ z′B1B2 .

Daher können wir annehmen, dass der gegebene PDA M nur Transitionen

der Form

zA
a

−→ z′B1 · · ·Bk mit k ∈ {0, 1, 2}

verwendet.
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Entwurf einer Grammatik (Tripelkonstruktion)

Gegeben der (normalisierte) PDA M = (Z, Σ, Γ, δ, z0, #), wähle die Kompo-

nenten von G wie folgt:

• Variablenmenge V = {S} ∪ (Z × Γ × Z)

• Terminalalphabet Σ

• Produktionensystem P (durch Regeln weiter unten spezifiziert)

• Startsymbol S

Wegen der Variablen der Form (z, A, z′) ∈ Z × Γ × Z spricht man von der

”
Tripelkonstruktion“.

Intuition: Interpretiere das Tripel (z, A, z′) als
”
Wette“ auf folgendes Ereignis:

nachdem M , gestartet im Zustand z mit Kellerinhalt A, den Keller geleert hat,

befindet er sich im Zustand z′.
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• Nimm für jedes z ∈ Z die Regel S → (z0, #, z) in P auf.

• Für jede Transition von M der Form zA
a

−→ z′ε nimm die Regel

(z, A, z′) → a in P auf.

• Für jede Transition von M der Form zA
a

−→ z1B und jeden Zustand

z′ ∈ Z, nimm die Regel der Form (z, A, z′) → a(z1, B, z′) in P auf.

• Für jede Transition von M der Form zA
a

−→ z1BC und jede Wahl von

z′, z2 ∈ Z, nimm die Regel (z, A, z′) → a(z1, B, z2)(z2, C, z′) in P auf.

Die folgende Äquivalenz ist mit Induktion (nach der Länge der Rechnung von

M bzw. nach der Länge der Linksableitung) beweisbar:

(z, x, A) `∗ (z′, ε, ε) gdw (z, A, z′)⇒∗
lmx

L(G) = N(M) ergibt sich jetzt wie folgt:

w ∈ N(M) ⇔ ∃z ∈ Z : (z0, w, #) `∗ (z, ε, ε)

⇔ ∃z ∈ Z : S ⇒ (z0, #, z)⇒∗
lmw

⇔ w ∈ L(G)
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Induktionsbeweis (Skizze)

Wir beschränken uns hier auf den Induktionsschritt für die Behauptung

Wenn (z, x, A) `∗ (z′, ε, ε) dann (z, A, z′)⇒∗
lmx

und betrachten auch nur den folgenden kompliziertesten Fall:

• x = auv ist eine Zerlegung von x, die die folgende Beschreibung erleichtert.

• M ersetzt zunächst mit einer a-Transition Kellersymbol A durch BC.

• u ist das Teilwort nach dessen Verarbeitung zum ersten Male nur noch das

unterste Symbol (nämlich C) im Keller steht.

• Nach Verarbeitung des Teilwortes v ist der Keller zum ersten Male leer.
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Induktionsbeweis (fortgesetzt)

Die geschilderte Rechnung von M auf x = auv hat die Form

(z, auv, A) ` (z1, uv, BC) `∗ (z2, v, C) `∗ (z′, ε, ε)

und kann von G
”
simuliert“ werden wie folgt:

(z, A, z′)⇒lma(z1, B, z2)(z2, C, z′)⇒∗
lmau(z2, C, z′)⇒∗

lmauv

Bei den mit
”
⇒∗

lm“ gekennzeichneten Passagen der Linksableitung wurde die

Induktionsvoraussetzung eingesetzt.
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Folgerungen

1. Die Klasse der von PDAs erkennbaren Sprachen stimmt mit der Klasse der

kontextfreien Sprachen überein.

2. Jede kontextfreie Sprache kann von einem PDA erkannt werden, der nur

einen einzigen Zustand besitzt, ohne ε–Transitionen auskommt und daher

nichtdeterministisch in Realzeit arbeitet.
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Deterministische Kellerautomaten (DPDAs)

Intuitiv nennen wir einen Kellerautomaten deterministisch, wenn er über

Endzustände (statt mit leerem Keller) akzeptiert und wenn er in jeder

Konfiguration maximal eine mögliche Transition (inklusive der ε–Transitionen)

zur Verfügung hat.

Formal: Ein Kellerautomat M heißt deterministisch oder kurz DPDA gdw

gilt:

• Neben den üblichen Komponenten eines Kellerautomaten ist noch eine

Menge E ⊆ Z von Endzuständen spezifiziert.

• Für alle z ∈ Z, a ∈ Σ und A ∈ Γ gilt

|δ(z, a, A)|+ |δ(z, ε, A)| ≤ 1 .
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Deterministisch kontextfreie Sprachen

Die von einem DPDA M = (Z, Σ, Γ, δ, z0, #, E) erkannte Sprache ist dann

gegeben durch

{w ∈ Σ∗| ∃z ∈ E, ∃α ∈ Γ∗ : (z0, w, #) `∗ (z, ε, α)} .

Eine Sprache L heißt deterministisch kontexftfrei gdw ein DPDA existiert, der

L erkennt.

Bemerkung (s. Vorlesung über Compilerbau):

DPDAs ↔ LR(k)–Grammatiken
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Deterministisch kontextfreie Sprachen (fortgesetzt)

Satz: Jede reguläre Sprache ist deterministisch kontextfrei.

denn: Jeder DFA kann als DPDA aufgefasst werden, der weder von seinem

Keller noch von ε–Transitionen Gebrauch macht.

Satz (ohne Beweis): Jeder PDA, der mit leerem Keller akzeptiert, kann

in einen äquivalenten PDA transformiert werden, der mit Endzuständen

akzeptiert (und umgekehrt).

Folgerung: Jede deterministisch kontextfreie Sprache ist kontextfrei.

denn: Jeder DPDA kann als Spezialfall eines mit Endzuständen akzeptierenden

PDA angesehen werden.
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Beispiele

Die Sprache

L1 = {ambmcn| m ≥ 1, n ≥ 0}

kann von einem DPDA mit E = {z2} und den folgenden Transitionen erkannt

werden:

z0#
a

−→ z0A# , z0A
a

−→ z0aA , z0a
a

−→ z0aa Push–Phase

z0A
b

−→ z2ε , z0a
b

−→ z1ε Umschalten auf

z1A
b

−→ z2ε , z1a
b

−→ z1ε die Pop–Phase

z2#
c

−→ z2# Endroutine

Kellersymbol A repräsentiert das erste gelesene a-Zeichen. Mit Hilfe dieses

Kellersymbols kann der DPDA deterministisch erkennen, wann er in den

Endzustand z2 wechseln muss.
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Beispiele (fortgesetzt)

Die folgenden Sprachen sind deterministisch kontextfrei:

L1 = {ambmcn| m, n ≥ 1}

L2 = {anbmcm| m, n ≥ 1}

L3 = {a1 · · · an$an · · · a1| n ≥ 1, ai ∈ {a, b}}

• DPDA für L2 analog zum DPDA für L1.

• L3 erkennbar mit einer DPDA–Variante des PDA, der früher schon mal

für diese Sprache angegeben wurde.

Die Sprache

L1 ∩ L2 = {ambmcm| m ≥ 1}

ist (wie wir bereits wissen) nicht kontextfrei.

Folgerung: Weder deterministisch kontextfreie Sprachen noch kontextfreie

Sprachen sind abgeschlossen unter
”
∩“.
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Abschlusseigenschaften

Satz: Kontextfreie Sprachen sind abgeschlossen unter den Operationen
”
∪, ·, ∗“.

denn: Gehe aus von den Grammatiken

G1 = (V1, Σ, P1, S1) , G2 = (V2, Σ, P2, S2) , V1 ∩ V2 = ∅

für kontextfreie Sprachen L1, L2. Übernahme der Regeln aus P1 und P2 und

Hinzufügen der Regeln

S → S1 | S2 bzw. S → S1S2 bzw. S → ε | S1S

mit neuem Startsymbol S führt zu einer kontextfreien Grammatik für L1 ∪ L2

bzw. für L1 · L2 bzw. (L1)
∗.
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Abschlusseigenschaften (fortgesetzt)

Kontextfreie Sprachen sind nicht abgeschlossen unter den Operationen
”
∩,¬“.

denn:

• Nicht–Abgeschlossenheit unter
”
∩“ wurde bereits gezeigt.

• Mit deMorgan folgt die Nicht–Abgeschlossenheit unter
”
¬“.

Genauer: Abschluss unter
”
¬“ hätte wegen

L1 ∩ L2 = L1 ∩ L2 = L̄1 ∪ L̄2

den Abschluss unter
”
∩“ zur Folge (und ist daher unmöglich).
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Abschlusseigenschaften (fortgesetzt)

Satz: Die deterministisch kontextfreien Sprachen sind abgeschlossen unter

”
¬“, aber nicht abgeschlossen unter

”
∩,∪, ·, ∗“.

• Abschluss unter
”
¬“ ist nicht ganz einfach zu beweisen.

(Hier: ohne Beweis)

• Nicht–Abgeschlossenheit unter
”
∩“ wurde bereits gezeigt.

• Nicht–Abgeschlossenheit unter
”
∪“ folgt dann direkt mit deMorgan.

• Nicht–Abgeschlossenheit unter
”
·, ∗“ ist einfacher zu beweisen, wenn das

Konzept des
”
Homomorphismus“ ϕ : Σ∗ → Σ∗ zur Verfügung steht.

(Hier: ohne Beweis)
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Abschlusseigenschaften (fortgesetzt)

Satz: Der Durchschnitt einer (deterministisch) kontextfreien Sprache mit einer

regulären Sprache liefert wieder eine (deterministisch) kontextfreie Sprache.

Zu einem gegeben PDA M1 = (Z1, Σ, Γ1, δ1, z01, E1, #) — Akzeptieren mit

Endzuständen ! — und einem gegebenen DFA M2 = (Z2, Σ, δ2, z02, E2)

betrachte den
”
Produktautomaten“

M = (Z1 × Z2, Σ, Γ1, δ, (z01, z02), #, E1 × E2)

mit ((z′1, z
′
2), B1 · · ·Bk) ∈ δ((z1, z2), a, A) gdw

(z′1, B1 · · ·Bk) ∈ δ1(z1, a, A) und z′2 = δ2(z2, a) .

Intuition: M führt die
”
Rechnungen“ von M1 und M2 parallel aus.

Dann gilt:

• M ist ein PDA und erkennt die Sprache N(M1) ∩ T (M2).

• Wenn M1 ein DPDA ist, dann ist auch M ein DPDA.
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Das Wortproblem

Spezielles Wortproblem für eine kontextfreie Sprache L ⊆ Σ∗

Eingabe: x ∈ Σ∗

Frage: x ∈ L ?

Komplexität: lösbar in
”
kubischer“ Zeit (O(n3) Rechenschritte).

Methode: Verwende den CYK–Algorithmus: n2 Tabelleneinträge; jeder

Eintrag kann in Linearzeit (O(n) Rechenschritte) bestimmt werden.

Bemerkung: Für eine deterministisch kontextfreie Sprachen kann das Wort-

problem (unter Verwendung einer LR(k)–Grammatik) in Linearzeit gelöst

werden.
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Nützliche und nutzlose Variable

Eine Variable A ∈ V einer kontextfreien Grammatik G = (V, Σ, P, S) heißt

• generierend gdw ∃w ∈ Σ∗ : A⇒∗
Gw

(d.h., aus A kann ein Terminalstring abgeleitet werden),

• erreichbar gdw ∃α, β ∈ (V ∪ Σ)∗ : S⇒∗
GαAβ,

• nützlich gdw A generierend und erreichbar ist,

• nutzlos gdw A nicht nützlich ist.
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Säubern einer kontextfreien Grammatik

Eine kontextfreie Grammatik G heißt gesäubert gdw G keine nutzlosen

Variablen enthält.

Säubern von G (ohne die Sprache abzuändern):

1. Berechne (s. Übung) die Menge aller generierenden Variablen.

2. Entferne aus G die nicht–generierenden Variablen und die Regeln, welche

nicht-generierende Variablen verwenden.

3. Kommentar: Jetzt sind alle Variablen generierend.

4. Berechne (s. Übung) die Menge der erreichbaren Variablen.

5. Entferne aus G die nicht–erreichbaren Variablen und die Regeln, welche

nicht–erreichbare Variablen enthalten.

6. Kommentar: Jetzt sind alle Variablen generierend und erreichbar und

somit nützlich.

Bei geschickter Implementierung erfolgt Säubern in Linearzeit !
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Das
”
Leerheitsproblem“

Eingabe: kontextfreie Grammatik G.

Frage: L(G) = ∅ ?

Komplexität: Linearzeit

Methode: Nutze aus:

L(G) 6= ∅ ⇔ S ist generierend
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Das
”
Endlichkeitsproblem“

Eingabe: Kontextfreie Grammatik G

Frage: |L(G)| < ∞ ?

Komplexität: Linearzeit

Methode: • Säubere G.

• Berechne einen Digraphen D mit Knotenmenge V , der eine Kante

(A, B) enthält gwd es gibt eine Regel mit A auf der linken und B auf

der rechten Seite.

• Nutze aus:

|L(G)| = ∞ ⇔ D enthält einen Zyklus
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Ausblick: Nicht–entscheidbare Probleme

Im Kapitel über Berechenbarkeitstheorie

werden wir sehen:

Es gibt algorithmisch nicht entscheidbare Probleme.
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Beispiele für nicht–entscheidbare Probleme

Für keines der folgenden Probleme gibt es einen Entscheidungsalgorithmus:

Schnittproblem: Gegeben sind zwei kontextfreie Grammatiken (oder zwei

PDAs).

Frage: Exisitiert ein Terminalstring, der von beiden Grammatiken erzeugt

(von beiden PDAs akzeptiert) werden kann ?

Kommentar: Sogar das Schnittproblem für deterministisch kontextfreie

Sprachen (etwa gegeben durch DPDAs) ist unentscheidbar.

Äquivalenzproblem Erzeugen zwei gegebene kontextfreie Grammatiken

dieselbe Sprache?

Das Äquivalenzproblem für deterministisch kontextfreie Sprachen

— Erkennen zwei gegebene DPDAs dieselbe Sprache ? —

ist hingegen entscheidbar.

Kommentar: 1997 fand Senizergues einen Entscheidungsalgorithmus.
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Lernziele zum Level der kontextfreien Sprachen

• Kenntnis der wesentlichen Konzepte und Resultate auf dem Level der

(deterministisch) kontextfreien Sprachen besitzen und Zusammenhänge

verstehen

• Syntaxbäume und grammatische (Links-)Ableitungen angeben können

• zu einer (evtl. deterministisch) kontextfreien Sprache die passende kon-

textfreie Grammatik bzw. den passenden PDA (DPDA) angeben können

• zu einer gegebenen kontextfreien Grammatik (bzw. einem gegebenen PDA

oder DPDA) die zugehörige Sprache ableiten können

• eine kontextfreie Grammatik in Chomsky oder Greibach Normalform

transformieren können

• Nachweis der Nicht–Kontextfreiheit einer Sprache mit Hilfe des Pumping–

Lemmas (evtl. auch unter Ausnutzung von Abschlusseigenschaften) führen

können
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Lernziele (fortgesetzt)

• den CYK–Algorithmus auf Instanzen des Wortproblems anwenden können

• Rechnungen von PDAs oder DPDAs als Konfigurationsfolgen ausdrücken

können

• eine kontextfreie Grammatik in einen äquivalenten PDA transformieren

können und umgekehrt

• die besprochenen Syntheseprobleme lösen können

• die besprochenen Entscheidungsprobleme lösen können
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