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/ Endliche Automaten \

Merkmale endlicher Automaten:

e Speicher, genannt Zustandsmenge (oder auch endliche Kontrolle), hat
,konstante Grofle“ (d.h., er wichst nicht mit der Lange der Eingabe).

e LFingabewort wird zeichenweise von links nach rechts abgearbeitet.
e Pro Zeichen erfolgt ein ,,Zustandswechsel®.
e Nach Abarbeitung wird die Eingabe akzeptiert oder verworfen.

e Menge der akzeptierten Eingabeworte bildet die Sprache des Automaten.

Bezeichnungen:
DFA = Deterministic Finite Automaton
= deterministischer endlicher Automat
NFA = Nondeterministic Finite Automaton
K = nicht—-deterministischer endlicher Automat /
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Veranschaulichung

E

eine Position nach rechts.

N

L esekopf
z | aktudler Zustand

endliche
Kontrolle
Z

Eingabe-
band

Abbildung 1: DFA mit Eingabeband (in ,,Zellen“ unterteilt), Lesekopf und end-

licher Kontrolle.

Nach Verarbeitung von a; erfolgt ein Zustandswechsel und der Lesekopf riickt

/
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/ DFA (formale Definition) \
Ein DFA M besteht aus den folgenden Komponenten:

e /, die Zustandsmenge

e >, das Eingabealphabet

e §: 7 xY — Z,die Uberfithrungsfunktion

o 2y € Z, der Startzustand

o [ C Z, die Menge der Endzustiande
Arbeitsweise:

e Anfangs befindet sich M im Startzustand zj.

e Nach Verarbeitung des Zeichens a im Zustand z geht M in den Zustand

2" =0d(z,a) iiber.

e Nach Verarbeitung des letzten Zeichens der Eingabe wird diese genau dann
K akzeptiert wenn M sich in einem Endzustand befindet. /
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e ¥ ={a,b}.

o = {23}

Akzeptiere!

o 7 ={z0,21, 22,23}

e Startzustand ist zj.

)

Beispiel

20

e 0 ist gegeben durch folgende Tabelle:

21

Z2

Betrachte den DFA M mit den folgenden Komponenten:

<3

a

<21

Z2

z3

20

b

<3

20

21

)

Eingabe aaabbaaab fiithrt zur Zustandsfolge zg, z1, 22, 23, 29, 21, 22, 23, 20, 23.

@ngabe bbabb fiihrt zur Zustandsfolge zq, 23, 29, 23, 29, z1. Verwerfe! /
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Visualisierung am Zustandsgraphen \
a
-
@ >@ Schema:
1/ b i
—>© Startzustand
a |lb b||a
@ Endzustand
! b p c
—(Zz)™ »@ @—»@ Zustandswechsel
a

N

Abbildung 2: der Zustandsgraph G; zum Beispiel-DFA M.

Ptfaden im Zustandsgraphen.

Rechnungen an Eingaben wie zum Beispiel aaabbaaab oder bbabb entsprechen

Merke wohl: Da ¢ : Z x ¥ — Z den Folgezustand eindeutig festlegt, gibt es
zu jeder Eingabe w einen eindeutigen (von zg startenden) Pfad P, in Gjy.

/
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Die von einem DFA akzeptierte Sprache

Die vom DFA M akzeptierte Sprache ist gegeben durch

T(M) :={w e X*| Pfad P, durch Gj; endet in einem Endzustand} .

Scharfes Hinsehen beim Zustandsgraph liefert fiir den Beispiel-DFA:

T(M) :={{w € {a,b}*| |lw|s — |w|p =3 (mod 4)} .

~

/
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/ Die Funktion ,,delta—Hut* \

Intuition: 4 (z,w) soll der Zustand sein, in dem der DFA sich befindet, wenn

er gestartet im Zustand z das Wort w (zeichenweise) abgearbeitet hat.

Induktive Definition: Fiir alle z € Z, a € X, x € X*:
1. 0(z,¢€) := 2.
2. 0(z,az) = 6(8(%,a), ).

Auf Z x 3 stimmt & mit § iiberein:

A

0(z,a) = 6(8(2,a),e) = d(2,a)

Es gilt:
T(M) = {w € ¥*| 6(z,w) € E}

N /
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/ Elegantere Notation \

Definiere fiir z € 7 und w € X*:
z-w = 0(z,w)
Dann gilt eine Art ,,Assoziativgesetz® fiir alle z € Z, xz,y € X*:
z-(z-y)=(z-2)-y

e 2 (x-y) ist der Zustand, den der DFA erreicht, wenn er gestartet in z das

Wort zy (Konkatenation von = und y) zeichenweise abarbeitet.

e Der Ausdruck (z-z) -y liefert dasselbe Ergebnis, wobei z - x der Zwischen-
zustand ist, den der DFA nach Verarbeitung von x (aber noch vor der

Verarbeitung von y) innehat.

N /
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/ Vom DFA zur reguliren Grammatik \

Satz: Jeder DFA M = (Z,3,0, z9, F/) lésst sich in eine reguldre Grammatik
G=(V,2,P,S) mit L(G)=T(M) transformieren.

Folgerung: Jede von einem DFA akzeptierte Sprache ist regulér.

Technische Vereinfachung: Wir setzen im Beweis des Satzes zop ¢ E
(gleichbedeutend zu € ¢ T (M) voraus.

Randnotiz: Im Falle zy € E miisste die im Beweis enthaltene Konstruktion
von G um die Regel zg — ¢ erweitert werden (wobei zy evtl. auch auf der

rechten Seite von anderen Regeln vorkommen kann).

N /
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/ Vom DFA zur reguliren Grammatik (fortgesetzt) \

Konstruktiver Beweis: Setze VV := Z, S := 23 und definiere P wie folgt.
e Fiir jede Transition §(z,a) = 2z’ nimm in P die Regel z — a2z’ auf.
e Falls dabei 2z’ € I/, dann nimm zusétzlich die Regel z — a in P auf.

Fiir alle w = ay---a, € X7 (mit a; € X) sind die folgenden Aussagen
aquivalent:

1. weT(M).

2. Es gibt eine Folge zq, ..., z, von Zustidnden mit Startzustand zq, 2, € F
und z; = 0(2;-1,a;).

3. Es gibt eine Folge zg, ..., z, 1 von Variablen mit Startvariable zy und

20=GA121=Ga10229=>G " =>G01 * " Ap—12n—1=—>GA102 * * - Qp_qQn, .

!L w € L(G). /
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/ Nicht-deterministische Zustandswechsel \
Bei NFA’s kann der Zustandsgraph folgenden Ausschnitt enthalten:

Abbildung 3: Wer die Wahl hat, hat die Qual.

e [.A. existieren mehrere mogliche Zustandswechsel pro Rechenschritt (und
auch mehrere Startzustidnde).

e Zu einer Eingabe gibt es i.A. viele korrespondierende Pfade durch den
Zustandsgraphen.

e Die Eingabe gilt als akzeptiert, wenn mindestens einer der korrespon-

dierenden Pfad in einem Endzustand endet (in Analogie dazu, dass bei

\ Grammatiken eine erfolgreiche Ableitung geniigt). /
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NFA (formale Definition)

P(Z) bezeichnet die Potenzmenge von Z (Menge aller Teilmengen von 7).
Ein NFA M besteht aus den folgenden Komponenten:

Z, die Zustandsmenge

Y., das Eingabealphabet

§: 7 x ¥ — P(Z), die Uberfiihrungsfunktion
S C Z, die Menge der Startzustédnde

E C Z, die Menge der Endzustidnde

~

/
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Arbeitsweise des NFA \

e Anfangs befindet sich M (wahlweise) in einem der Startzustédnde.

e Nach Verarbeitung des Zeichens a im Zustand z kann M (wahlweise) in

einen Zustand 2z’ € §(z,a) tibergehen.

e Die Eingabe wird akzeptiert genau dann wenn M durch geeignete Wahl ei-
nes Startzustandes und durch geeignete Zustandswechsel nach Abarbeitung

der Eingabe einen Endzustand erreichen kann.

eachte: Falls §(z,a) = (), dann ergeben sich im Zustand z bei Verarbeitung

von a keine moglichen Folgezusténde.

/
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/ Die von einem NFA akzeptierte Sprache \

Der Zustandsgraph G s zu einem NFA M ist vollig analog definiert wie bei
DFAs.

Die vom NFA M akzeptierte Sprache besteht (per Definition) aus allen Wortern
w € X* mit folgender Eigenschaft:

Es existiert ein von einem Startzustand ausgehender Pfad in Gjs, dessen
Kanten (in der korrekten Reihenfolge) mit den Buchstaben von w beschriftet

sind und der in einem Endzustand endet.

N /
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Beispiel

0,1

:
b b g

Abbildung 4: NFA M gegeben durch seinen Zustandsgraphen G ;.

Scharfes Hinsehen ergibt:

T(M) ={w € {0,1}*] w =0 oder w endet mit 00}

~

/
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/ Die Funktion ,,delta—Hut* \

Intuition: Fiir eine Teilmenge Q C Z der Zustinde soll 6(Q, w) die Menge der
Zusténde sein, welche sich ausgehend von einem der Zustédnde in () erreichen

lassen, wenn w zeichenweise abgearbeitet wird.

Induktive Definition: Fiir alle Q C Z, a € X, x € X*:

1. 6(Q,¢) :=Q.
2. 5(Q,ax) == U, 0(3(2. ), 7).
Dann gilt:

T(M) = {w e | §(S,w) N E # 0}

N /
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/ Vom NFA zum DFA \

Satz: Jeder NFA M = (Z,3%,6,5, F) lasst sich in einen DFA M’ =
(Z',%,0", 29, E') mit T(M") = T(M) transformieren.

Beweis (Potenzmengenkonstruktion): Wir wihlen 7’ = P(Z), d.h., jeder
,Makrozustand“ von M’ ist eine Teilmenge der Zustinde von M. M’ soll M

in folgendem Sinn simulieren:

(%) Zu jedem Zeitpunkt der ,,Rechnung” soll M’ in dem , Makrozustand*
sein, der iibereinstimmt mit der Menge der gegenwértig von M erreichbaren

Zustande.

Formal ist hierzu zu zeigen, dass

Sl(Qa w) — S(Qv w)
fur alle ) C Z und w € X*.

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008




Reguliare Sprachen Slide 19

/ Vom NFA zum DFA (fortgesetzt) \

Hierzu definieren wir die restlichen Komponenten von M’ wie folgt:
1. zo = S. (Damit gilt (%) zu Anfang.)

2. 0'"(Q,a) = U,eqd(z,a). (Damit bleibt (x) wihrend Verarbeitung des
nichsten Zeichens richtig).

3. '={QCZ| QNE #0}.
Formal lasst sich aus den ersten beiden Bedingungen induktiv folgern:
0'(Qw) = 0(Q,w) .
Aus der Wahl von E' folgt dann, dass T'(M") =T (M).

N /
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/ Beispiel \

0,1

:

vom Startzustand
aus nicht erreich-
bare Komponente

NFA M

Zustand zur
leeren Menge

0,1

\ simulierender DFA M’ /
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/ Die ,,kombinatorische Explosion* ...

Potenzmengen-

~

NFA

\Frage: Gibt es effizientere Simulationen ? Antwort: i.A. Nein !

konstruktion

© o 0 o 0
o o
o 0
o o O o ©
5 0
o o
0 0
% o
o o} o o
0 0
0
© OO o o 0©
0
§ o ©° 9
ol ° 5 o o
© 00 o 0°%0 45 %0
o o o
o ©
o o ©O o
Op o © oO e
o
o ©o O O
o O 0 0 O
0 o
0p©° o o o o
o 0
00" © O ©
0 0 o )
DFA

/
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Die Sprache

0,1

&

Eine Sprache mit ,,kleinem* NFA ... \

L, ={w € {0,1}*| |w| > n und das n-letzte Zeichen von w ist ,,0“}

kann von einem NFA mit n + 1 Zustanden erkannt werden:

— ()

N

0 -0 0,1 -0 0,1 ¢ 0,1 -0 0,1 -0

Abbildung 5: Ein NFA fiir Ls.

/
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/ ... die grof3e DFAs benotigt \

Angenommen es gibe einen DFA M fiir L, mit weniger als 2" Zustdnden?

Widerspruch (in 5 Schritten):

1. Dann gibt es 2 verschiedene Worter z,y € {0,1}" mit zo -z = 2z - y
(Schubfachprinzip).

2. Betrachte eine Bit-Position ¢, in der = und y sich unterscheiden.
Sagen wir: Bit ¢ von x ist 0 und Bit 2 von y ist 1.

3. Betrachte 2/ = 20" ! und ¢/ = y0"~'. Bit i von x (bzw. von y) ist das
n-letzte Bit von 2’ (bzw. von y'). Daher ist 2" € L,, und ' ¢ L,.

4. Wegen
20 (-0 =(20-2)- 0" =(20-9)- 0" =2 (y- -0

gelangt M bei den Eingaben 2’ und ¢y" zum gleichen Zustand.

\5. M macht also entweder auf Eingabe 2’ oder auf Eingabe vy’ einen Fehler./
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/ Kleines Gedachtnis, grof3e Fehler \

Beim Widerspruchsbeweis wurde ausgenutzt:

e Wenn ein DFA zwei Eingaben x, y identifiziert (im Sinne von zg-x = 29 -y),

dann kann er auch Eingaben der Form zu und yu nicht auseinander halten.

e Wenn ein DFA ein zu kleines ,,Gedéchtnis“ (= Zustandsmenge) hat, dann

identifiziert er evtl. Eingaben, die er besser unterscheiden kénnen sollte.

N /
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/ Vom NFA zum DFA: Zusammenfassung \

e Jeder NFA mit n Zustdnden ldsst sich in einen dquivalenten DFA mit 2"

Zustanden transformieren.

e Es gibt Sprachen L,, n > 1, die von einem NFA mit n + 1 Zustinden
erkannt werden koénnen, aber nicht von einem DFA mit weniger als 2"

Zustianden.

Andererseits kann man zeigen, dass L, von einem DFA mit 2" Zusténden

erkannt werden kann (s. Ubung).

N /
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/ Von der reguliren Grammatik zum NFA

Satz: Jede regulire Grammatik G = (V, %, P, S) ldsst sich in einen NFA
M = (Z,%,6,5", FE) mit T(M) = L(G) transformieren.

Zusammen mit den fritheren Ergebnissen erhalten wir den Zirkelschluss

DFA — regulare Grammatik — NFA — DFA .

Es ergibt sich die

NFAs oder reguldre Grammatiken repréasentiert werden.

N

Folgerung: Die Klasse der reguldren Sprachen kann wahlweise durch DFAs,

~

/
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/Konstruktiver Beweis: Wihle die Komponenten von M wie folgt: \
e / =V U{X}und 5" ={S}.

e Falls S — ¢ ¢ P, dann setze F = { X }; andernfalls £ = {5, X }.

e Fiir jede Regel der Form A — aB in P nimm B in §(A, a) auf.

e Fiir jede Regel der Form A — a in P nimm X in §(A4,a) auf.
Fiir alle w = a1---a, € X7 (mit a; € X) sind die folgenden Aussagen
aquivalent:

1. we L(G).

2. Es gibt eine Folge A4,..., A, _1 von Variablen mit
S=ca1A1=gai1a2As=>G - =qaias - Gp_1An_1=>Ga102 - Qp_10y .
3. Es gibt eine Folge von Zustidnden Aq,..., A,,_1 mit
Ay €6(5,a1), As € 6(A1,a2),..., An_1 €6(An_2,an_1, X €0(An_1,a,) .

\ZL.wET(M). /
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Kennen Sie den Unterschied

zwischen Zeichen und Bezeichnetem

~

/
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/ Reguliare Ausdriicke \

Induktive Definition der ,,Syntax‘ regulidrer Ausdriicke:
1. 0, € und a fiir jedes a € ¥ sind regulidre Ausdriicke.

2. Wenn « und ( regulédre Ausdriicke sind, dann sind auch « - 3, («|3) und

(a)* regulére Ausdriicke.

Konkatenationszeichen ,,-“ dart auch weggelassen werden.

L(«) bezeichne die durch den reguléren Ausdruck a reprisentierte Sprache im

Sinne der folgenden Definition.
Induktive Definition der ,,Semantik® reguléirer Ausdriicke:
1. L(0) = 0; L(e) = {e}; L(a) = {a}.
2. L(a- B) = L(e) - L(B); L((a]B)) = L(a) U L(B); L(()*) = L(cx)".

44

D,e,a,-,* haben also die offensichtliche Interpretation; Zeichen ,,|“ wird als

Qereinigung ,U“ interpretiert. /
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/ Beispiele \

Die uns schon bekannte Sprache

{fw € {0,1}"| w = 0 oder w endet mit 00}
ist mit reguldren Ausdriicken ,,traumhaft elegant*“ beschreibbar:
(0[(0]1)*00) .
Jede endliche Sprache ist durch einen reguldren Ausdruck beschreibbar. Denn:

1. Jedes einzelne Wort ergibt sich aus Konkatenation seiner (endlich vielen)

Zeichen.
2. Jede endliche Sprache ist eine Vereinigung ihrer (endlich vielen) Worter.

3. Konkatenation und Vereinigung sind Operatoren, die reguldren Ausdriicken

zur Verfiigung stehen.

N /
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Ankiindigung

Strukturelle Induktion kommt wieder zum Einsatz !

~

/
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/ Von reguliren Ausdriicken zu NFAs \

Satz: Jeder regulire Ausdruck v kann in einen NFA M mit T'(M) = L(v)

transformiert werden.

Beweis: (Induktion nach der Struktur regulédrer Ausdriicke)

/1 zeigen:

1. Zu den einfachen regulidren Ausdriicken ‘0, e, a mit a € ¥ finden wir jeweils

einen passenden NFA.

2. Aus passenden NFAs M; und M, fiir reguldre Ausdriicke o und 8 kénnen
wir jeweils einen passenden NFA fiir («|3), a- 6 und («)* zusammenbasteln

(ein ,,Syntheseproblem*).

N /
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Passende NFAs fiir einfache regulire Ausdriicke \

Endlich mal eine babyleichte Aufgabe:

N

(@)

2@, -O

(b)

-O——0

(©)

Abbildung 6: (a) ein NFA fiir () (b) ein NFA fiir {¢} (c) ein NFA fiir {a}

/
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/ Syntheseproblem bei den Operationen U, - \
Grundidee in folgender Abbildung;:

M 1
o2
)
+O OO e O
M 1 M 2
M als Serienschaltung
M, vonM, ,M,

M als Parallel schaltung
vonM, ,M,

(@

N

(b)

Abbildung 7: (a) ein NFA fir T(M;) UT(Ms) (b) ein NFA fir T'(M;) - T'(Mo)

/
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/ Losung des Syntheseproblems fiir ,, Vereinigung* \

Voraussetzung: T (M) = L(«), T(My) = L(B); M; = (Z;, 3,04, 55, E;).
Synthese eines Automaten M fiir L(«) U L(():
M = {21UZQ,E,5, SlUSQ,El UEQ}

01(z,a) falls z € Z3
do(z,a) falls z € Z

d(z,a)

N /
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/ Losung des Syntheseproblems fiir ,,Konkatenation® \

Synthese eines Automaten M = (Z,3,06, S, F) fur L(«) - L(J3):

Z = Zl U Z2
01(21,a) falls 61 (z1,a) N E; = (
6(z1,a) =
01(z1,a) U Sy falls 61(z1,a) N Ey # ()
0(z2,a) = 03(22,a)
o S1 falls e & T' (M)
| S1USy falls e € T(My)
E = EQ

N /
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/ Syntheseproblem bei der Operation x
Grundidee in folgender Abbildung;:

// \\ M
/ \ /
T \ /

B ég@

M
(M erweitert um Ruckkopplungen)

\ Abbildung 8: ein NFA M’ fiir T(M)*

~

/
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/ Losung des Syntheseproblems fiir Operation x \

Voraussetzung: T'(M) = L(«); M = (Z,%,0,5, E).

Synthese eines Automaten M’ = (7’3", 5" E’) fir L(a)* fiir den Fall
eecT(M):

7! = 7
, | sy fallsé(z,a)nE=10
0 (z,a) =
6(z,a)US falls §(z,a)NE #£
S =8
E = FE

Falls ¢ ¢ T'(M), dann wird dariiberhinaus ein neuer Zustand zy in die Mengen
Z, S und F aufgenommen.

N /
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/ Von DFAs zu reguliaren Ausdriicken \

Satz: Jeder DFA M = {{z1,...,2,},%,0,21, F) kann in einen reguldren
Ausdruck v mit L(v) = T (M) transformiert werden.

Beweisidee: Verwende ,,Hilfssprachen®, die sich

e mit Hilfe der Operationen U, -, * aus einzelnen Zeichen zusammenbasteln

lassen,

e so dass T(M) sich als Vereinigung (geeignet ausgewdahlter) Hilfssprachen
darstellen lasst.

N /
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/ Umsetzung der Beweisidee \

die Hilfssprachen

Rf, ; sei die Menge aller Worter z € X" mit:

1. M gestartet in z; ist nach Abarbeitung von x im Zustand z;.

2. Dabei werden nur Zwischenzusténde aus {z1,..., 25} angenommen.

Beachte: Im Falle k = 0 sind keine Zwischenzustinde erlaubt (Ubergang von

z; nach z; durch maximal einen Zustandswechsel).

N /
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/ Umsetzung der Beweisidee (fortgesetzt) \
Die Hilfssprachen haben die gewiinschten Eigenschaften:
T(M) = | R,
jiz;€E
R). = {aeXU{e}| d(zi,a) =2}
Ry = RiTURG- (B Byl

Die letzte Gleichung gilt aus folgendem Grund:
Wenn M gestartet in z; nach Verarbeitung von x im Zustand z; ist und dabeil

nur Zwischenzustédnde aus {z1, ..., 2x} angenommen hat, so gilt
entweder wurden nur Zwischenzusténde aus {21, ..., zx_1} angenommen

oder Zwischenzustand z; wurde iteriert (mindestens einmal) angenom-

men (wobei die von zj verschiedenen Zwischenzustinde wiederum aus

K {21,...,2k_1} stammen). /
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/ Das Pumping—Lemma (uvw—Theorem) \

Satz: Fiir jede reguldre Sprache L C X* gilt:

dn > 1,

Vx € L mit |x| > n,

Ju, v, w € X* mit x = wvw, 1 < |v| < |uv| < n,
Vi >0

wv'w € L

N /
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/ Beweis

Benutze einen DFA M = (Z,%, 6, 29, E), der L erkennt, und wéhle n := |Z].

Zu einem Wort * = a1 ---as € L mit a; € > und s > n betrachte den
resultierenden ,,Berechnungspfad“ P im Zustandsgraphen G;:

;) a1 ) ao aAs—1 ¢ a / .
2p —> 2] — - — 2, 1 — 2z, wobel z, = zpund 2z, € E .

Es muss zwei Indizes 0 < j < k <n mit 2; = z; geben (Schubfachprinzip).
Berechnugspfad P enthélt daher den Zyklus

) Aj+1 / aj4-2 ak—1 / aij

/

J

lassen) werden kann, hat die Zerlegung r = uvw mit
u:al...aj ; v:aj+1...ak ; w:ak+1...as

die gewiinschten Eigenschaften 1 < |v| < |uv| < n und

\ Vi>0:uw'we L .

~

Da der Zyklus im Berechnungspfad P iteriert durchlaufen (oder auch wegge-

/
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/ Anwendung: Nachweis der Nichtregularitit \

Folgerung: Falls fiir eine Sprache L C ».* die Bedingung

Vn > 1,

Jr € L mit |z| > n,

Vu,v,w € ¥* mit x = vow, 1 < |v| < |uv| < n,
d0 >0 :

uv'w & L

erfiillt ist, dann ist L nicht regulér.

N /
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/ Beispiele fiir nicht—regulire Sprachen \

Die folgende Sprache L C {a,b}* ist nicht regulér:

L={a"b"| m>1}

Begriindung:

1. Zu beliebig vorgegebenem n > 1 wahle x = a™b".
Offensichtlich gilt € L und |x| > n.

2. Zu beliebig vorgegebener Zerlegung = = wvw mit 1 < |v| < |luv| < n

wihle ¢ = 0. Beachte, dass uv das Zeichen b nicht enthélt (wegen |uv| < n).

Nun gilt

ww =uww=a""?" ¢ L |

da |uw|, < |uwlp.

N /
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/ Beispiele fiir nicht—reguléire Sprachen (fortgesetzt) \
Die folgende Sprache L C {0}* ist nicht regulér:

L ={0™| m ist eine Quadratzahl}

Begriindung:

1. Zu beliebig vorgegebenem n > 1 wahle x = 0.
Offensichtlich gilt € L und |x| > n.

2. Zu beliebig vorgegebener Zerlegung = = wvw mit 1 < |v| < |luv| < n
wahle 1 = 2.

Nun gilt
ww = 0" Yl ¢ L,

da n? + |v| wegen
n®<n®+ v <n*+n<n®+2n+1=(n+1)

\keine Quadratzahl ist. /
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/ Beispiele fiir nicht—reguléire Sprachen (fortgesetzt) \

Die folgende Sprache L C {0}* ist nicht regulér:

L = {0P| p ist eine Primzahl}

Begriindung:

1. Zu beliebig vorgegebenem n > 1 wihle x = 0P fiir eine Primzahl p > n + 2.
Offensichtlich gilt € L und |x| > n.

2. Zu beliebig vorgegebener Zerlegung = = wvw mit 1 < |v| < |luv| < n

wahle ¢ = |uw|. Beachte, dass |[uw| =p—|v| > (n+2) —n = 2.

Nun gilt
wuv Wl = oluwl(vl+1) ¢ L

da |uw|(|v] 4+ 1) offensichtlich keine Primzahl ist.

N /
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/ Zweil Relationen auf Wortern \
Definition: M sei ein DFA mit Startzustand zg.

cRyygdw 29 -2 =20y .

intuitiv: M ,identifiziert* die Worter £ und y: nach Verarbeitung von x

erreicht er den gleichen Zustand wie nach Verarbeitung von .

Definition (Nerode—Relation) L C ¥* sei eine formale Sprache.
tRryygdw VweX :zwelL s ywel) .

intuitiv: ein DFA diirfte x und y identifizieren, ohne dass sich daraus Fehler

beim Fortsetzen der Rechnung ableiten lassen.

N /
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N

Eigenschaften dieser Relationen

Bemerkungen

1. Beide Relationen sind Aquivalenzrelationen,

d.h., sie sind reflexiv, symmetrisch und transitiv.

2. Dariiberhinaus gilt:

cRyy — xvR)yyv

xRy — xvRpyv

~

/
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R

N

Exkurs: Index, Verfeinerung, Vergroberung

. R1, R seien Aquivalenzrelationen.
e Index von R = Anzahl der Aquivalenzklassen von R (evtl. co).

e R; heifit Verfeinerung von Rs (und Ry Vergroberung von Rp) gdw
aR1b = aRsb.

~

In diesem Fall zerfiillt jede Aquivalenzklasse von Ry in Aquivalenzklassen

von R und somit gilt:

Index von Ry < Index von R; .

/
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/ Der Satz von Myhill und Nerode \

Satz: L ist reguldr gdw R hat einen endlichen Index.

Der Beweis zerfallt in zwei Teile.

N /
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/ 1. Beweisrichtung \

Lemma: Wenn L regular ist, dann hat Ry einen endlichen Index.

Beweis in 5 Teilschritten:

e Wihle einen DFA M, der L erkennt (und nur Zusténde besitzt, die vom
Startzustand zp aus erreichbar sind).

e Index von Ry, = |Z].

e 2p-x=2zy — VMweXf:zwel<sywel).
Ansonsten wiirde M auf einer der Eingaben xz und yz einen Fehler

machen.

e R; ist Vergroberung von Rj;:

tRyy = 202 =20y — VweX:zwesywel) = zRLy

\o Index von Ry, < Index von Ry = |Z] < oc. /
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/ 2. Beweisrichtung \

Lemma: Wenn R einen endlichen Index hat, dann ist L regulér.

Fiir ein Wort z bezeichne [z] die zugehorige Aquivalenzklasse bez. Ry .
Bei endlichem Index von Rj, sagen wir Index k, gibt es k Aquivalenzklassen,

sagen wir [x1],..., [Tk
Beweis erfolgt durch Angabe eines DFA (Nerode-Automat) M = (Z, 3,9, zo, F):
1. Z =A{lz1],...,|zr]}.
2. zp = [e].
3. BE={[z]| x € L}.
4. )(|z],a) = |zal.
Das Problem der Wohldefiniertheit wird an der Tafel diskutiert!

o M gestartet in Zustand [g] ist nach Verarbeitung eines Wortes = (geméf3

der Definition von §) im Zustand |z].

Ko Aus der Definition von E folgt nun T'(M) = L. /
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Betrachte die Sprache

Beispiel

L ={x €{0,1}"| z endet mit 00} .

Ry hat 3 Aquivalenzklassen:

N

le] = {z| x endet nicht mit 0}
0] = {z| = endet mit 0 aber nicht mit 00}
[00] = {x| x endet mit 00}
Der Nerode-Automat mit Zustdnden zy = [g],21 =

durch folgenden Zustandsgraphen gegeben:

~

0], z2 = [00] ist dann

Hans U. Simon, Ruhr-Universitdt Bochum, Germany
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/ Minimierung eines gegebenen DFA \

Eingabe: DFA M = (Z, 3,9, 29, ), bei dem jeder Zustand vom Startzustand
aus erreichbar ist

Ausgabe: Minimalautomat My zu M:
der DFA mit moglichst wenigen Zusténden, der die gleiche Sprache wie M

erkennt

Methode: Verschmelzung dquivalenter Zusténde (Details folgen)

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008




Reguliare Sprachen Slide 56

/ Aquivalente und iniquivalente Zustinde \

Zwei Zustande zq, zo € Z heiflen dquivalent gdw

VweX: iz - weFE&z-wek .

Somit sind 21, zo indquivalent gdw
Jw e ¥ 1 z1-w e Fund 25 - w ¢ E oder umgekehrt .

Wir nennen w dann ein ,,separierendes Wort® fiir zq, 2s.

Intuition
Genau dann wenn z; ~ 29 konnen z; und 25 zu einem Zustand ,,verschmolzen®
werden, ohne die Sprache T'(M) abzuéndern (Details an der Tafel).

Beobachtungen:

e Falls z; € F und 2z, ¢ E (oder umgekehrt), dann sind 21, 2o indquivalent.

e Falls 2, z5 indquivalent sind, und z] = 21 - a, 25 = 25 - a fiir ein a € X, dann

K sind auch z1, 29 indquivalent. /
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/ Resultierende Minimierungsprozedur \

Markierung aller Paare indquivalenter Zustdnde kann wie folgt geschehen:

Initialisierung: Markiere alle Paare (z1,22) mit 21 € F und 25 ¢ E (oder
umgekehrt).

Iteration: Solange ein unmarkiertes Paar (21, 22), ein a € ¥ und ein markiertes
Paar (21, z5) mit 2| = 21-a, z5 = z5-a existieren, markiere (21, z2) ebenfalls.

Aquivalente Zustandspaare sind gerade die unmarkierten Paare.
Berechnung des Minimalautomaten:

e Transformiere GGj; zu einem ,,groberen® Zustandsgraphen, bei welchem
jede Aquivalenzklasse von Knoten durch einen einzigen ,,Superknoten®
reprasentiert ist.

e Eine mit a markierte Kante von z nach z’ wird dann zu einer mit a

markierten Kante von [z] nach [2'].

Ko Startknoten ist nun [zp], Endknoten sind die Superknoten [z] mit z € /
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/ Beispiel \

Links der DFA M, rechts der Minimalautomat M:

0) 0
—(z)——)—— / o1 —>/Q\zl 7}

0 T )
& - 1
2 1=1{2 2)

[2,] ={7 .23}

Die folgende Tabelle gibt die markierten Paare indquivalenter Knoten an:

2o | z1 | 29 | 23 || separierendes Wort

21 X 0
29 * 0
z3 | * * 0 (jeweils)

\ RN RENE: € /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008




Reguliare Sprachen Slide 59

/ Abschlusseigenschaften \

Satz: Die Klasse der reguliren Sprachen ist abgeschlossen unter den Operatio-

nen U, -, %, 1, (.
Bewels:

e Abschluss unter U.-, x ist offensichtlich:

Reguldre Sprachen sind durch regulédre Ausdriicke reprisentierbar.

e Abschluss unter — ist einfach nachzuweisen:
Falls T(M) = L mit DFA M = (Z,%, 6, 29, E) so folgt T(M) = L mit DFA
M = (Z,3%,0,20, Z \ E).

e Abschluss unter N ergibt sich jetzt mit ,,de Morgan*:

I1NLy=L1NLy=1LiULs

N /
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/ Der ,,Produktautomat* \

Produktautomat liefert einen alternativen Beweis fiir den Abschluss unter

Vereinigung und Durchschnitt.

Znu gegeben DFAs M1 = (Zl,Z,(Sl,zOl,El) und M2 = (ZQ,E,52,ZOQ,E2)
betrachte den DFA

M = (Zl X 2272757 (2017Z02)7E)
mit
5((217'22)70’) — (51('2170’)752(2270’)) :

Intuition: M fiihrt die ,,Rechnungen® von M; und M, parallel aus.
e Mit £ = FE; x Es folgt T(M) =T (M) NT(Ms).
o Mit F = (El X ZQ) U (Z1 X EQ) fOlgt T(M) = T(Ml) U T(MQ)

N /
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/ Das Wortproblem \

Spezielles Wortproblem fiir eine regulédre Sprache L C »*

Eingabe: x € X.*
Frage: v € L 7
Komplexitit: 16sbar in Realzeit (n = |x| Rechenschritte)

Methode: Benutze einen DFA M mit T(M) = L. Gestartet auf Eingabe x

liefert er die Antwort in |z| ,,Rechenschritten®.

N /
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/ Das ,,Leerheitsproblem* \

Eingabe: DFA M gegeben durch seinen Zustandsgraphen G,
Frage: T'(M) =107
Komplexitéit: losbar in Linearzeit

Methode: Verwende eine Graphexplorationstechnik (wie DFS oder BFS):

T(M) # () < von zq ist ein Zustand aus E erreichbar

Bemerkung: Eine analoge Methode ist auch bei gegebenem NFA verwendbar.

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008




Reguliare Sprachen Slide 63

/ Das ,,Endlichkeitsproblem® \

Eingabe: DFA M gegeben durch seinen Zustandsgraphen G,
Frage: |T'(M)| < oo 7
Komplexitéit: losbar in Linearzeit

Methode: Verwende eine Graphexplorationstechnik (wie DFS oder BFS):

e Markiere alle Zustinde, die von zy aus erreichbar sind und von denen
ausgehend sich ein Zustand aus E erreichen ldsst. Es bezeichne G'; von

markierten Knoten induzierten Untergraphen von Gj,.

e Nutze aus:

T(M)| = 0o & G, enthilt einen Zyklus

Bemerkung: Eine analoge Methode ist auch bei gegebenem NFA verwendbar.

N /

Hans U. Simon, Ruhr-Universitdt Bochum, Germany TI WS 2007/2008




Reguliare Sprachen Slide 64

/ Das ,,Schnittproblem*

Eingabe: DFAs M, Ms gegeben durch ihre Zustandsgraphen Gy, , Gy,
Frage: T' (M) NT(Msy) =107

Komplexitéit: l6sbar mit quadratischem Zeitaufwand

und 16se fiir M das Leerheitsproblem.

N

~

Methode: Berechne den Produktautomaten M mit T'(M) =T (My) NT (M)

Bemerkung: Eine analoge Methode ist auch bei gegebenen NFAs verwendbar.

/
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/ Das ,,Inklusionsproblem® \

Eingabe: DFAs M, Ms gegeben durch ihre Zustandsgraphen Gy, , Gy,
Frage: T' (M) CT(Ms) ?
Komplexitéit: losbar mit quadratischem Zeitaufwand

Methode: Nutze aus, dass A C B< AN B = 0.
e Berechne aus My den DFA M, mit T (Ms) = T'(Mo).
e Lose fiir M; und M5 das Schnittproblem.

N /
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/ Das ,,Aquivalenzproblem*

Eingabe: DFAs M, Ms gegeben durch ihre Zustandsgraphen Gy, , G,
Frage: T (M) =T (Ms) ?
Komplexitéit: losbar mit quadratischem Zeitaufwand

Methode: Offensichtliche Reduktion auf das Inklusionsproblem wegen

A=B< (ACBund BC A)

N

~

/
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=

Lernziele \

Kenntnis der wesentlichen Konzepte und Resultate auf dem Level der
reguldren Sprachen besitzen und Zusammenhénge verstehen

aus DFA bzw. NFA den Zustandsgraphen ablesen und umgekehrt

zu einer reguliéren Sprache einen passende(n) reguldre Grammatik, DFA,
NFA, bzw. reguldren Ausdruck angeben konnen und umgekehrt

wechselseitige Transformationen zwischen den Repréasentationsformen
(reguléire Grammatik, DFA, NFA, reguldrer Ausdruck) durchfiihren

konnen

Nachweis der Nicht—Regularitéit einer Sprache mit Hilfe des Pumping—

Lemmas fiithren konnen
Nerode—Relation zu einer Sprache bestimmen kénnen

den Minimalautomaten zu einem gegebenen DFA konstruieren konnen

zu einem gegebenen DFA die besprochenen Entscheidungsprobleme léjsen/

konnen
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