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Endliche Automaten

Merkmale endlicher Automaten:

• Speicher, genannt Zustandsmenge (oder auch endliche Kontrolle), hat

”
konstante Größe“ (d.h., er wächst nicht mit der Länge der Eingabe).

• Eingabewort wird zeichenweise von links nach rechts abgearbeitet.

• Pro Zeichen erfolgt ein
”
Zustandswechsel“.

• Nach Abarbeitung wird die Eingabe akzeptiert oder verworfen.

• Menge der akzeptierten Eingabeworte bildet die Sprache des Automaten.

Bezeichnungen:

DFA = Deterministic Finite Automaton

= deterministischer endlicher Automat

NFA = Nondeterministic Finite Automaton

= nicht–deterministischer endlicher Automat

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Veranschaulichung
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Abbildung 1: DFA mit Eingabeband (in
”
Zellen“ unterteilt), Lesekopf und end-

licher Kontrolle.

Nach Verarbeitung von ai erfolgt ein Zustandswechsel und der Lesekopf rückt

eine Position nach rechts.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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DFA (formale Definition)

Ein DFA M besteht aus den folgenden Komponenten:

• Z, die Zustandsmenge

• Σ, das Eingabealphabet

• δ : Z × Σ → Z, die Überführungsfunktion

• z0 ∈ Z, der Startzustand

• E ⊆ Z, die Menge der Endzustände

Arbeitsweise:

• Anfangs befindet sich M im Startzustand z0.

• Nach Verarbeitung des Zeichens a im Zustand z geht M in den Zustand

z′ = δ(z, a) über.

• Nach Verarbeitung des letzten Zeichens der Eingabe wird diese genau dann

akzeptiert wenn M sich in einem Endzustand befindet.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Beispiel

Betrachte den DFA M mit den folgenden Komponenten:

• Z = {z0, z1, z2, z3}.

• Σ = {a, b}.

• Startzustand ist z0.

• E = {z3}.

• δ ist gegeben durch folgende Tabelle:

δ z0 z1 z2 z3

a z1 z2 z3 z0

b z3 z0 z1 z2

Eingabe aaabbaaab führt zur Zustandsfolge z0, z1, z2, z3, z2, z1, z2, z3, z0, z3.

Akzeptiere!

Eingabe bbabb führt zur Zustandsfolge z0, z3, z2, z3, z2, z1. Verwerfe!

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Visualisierung am Zustandsgraphen

z z

z

0 1

2 Schema:

z z’
a

a

a

a b

b

b

b c

Endzustand

Startzustand

Zustandswechsel

z3

Abbildung 2: der Zustandsgraph GM zum Beispiel–DFA M .

Rechnungen an Eingaben wie zum Beispiel aaabbaaab oder bbabb entsprechen

Pfaden im Zustandsgraphen.

Merke wohl: Da δ : Z × Σ → Z den Folgezustand eindeutig festlegt, gibt es

zu jeder Eingabe w einen eindeutigen (von z0 startenden) Pfad Pw in GM .

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Die von einem DFA akzeptierte Sprache

Die vom DFA M akzeptierte Sprache ist gegeben durch

T (M) := {w ∈ Σ∗| Pfad Pw durch GM endet in einem Endzustand} .

Scharfes Hinsehen beim Zustandsgraph liefert für den Beispiel–DFA:

T (M) := {w ∈ {a, b}∗| |w|a − |w|b ≡ 3 (mod 4)} .

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Die Funktion
”
delta–Hut“

Intuition: δ̂(z, w) soll der Zustand sein, in dem der DFA sich befindet, wenn

er gestartet im Zustand z das Wort w (zeichenweise) abgearbeitet hat.

Induktive Definition: Für alle z ∈ Z, a ∈ Σ, x ∈ Σ∗:

1. δ̂(z, ε) := z.

2. δ̂(z, ax) := δ̂(δ(z, a), x).

Auf Z × Σ stimmt δ̂ mit δ überein:

δ̂(z, a) = δ̂(δ(z, a), ε) = δ(z, a)

Es gilt:

T (M) = {w ∈ Σ∗| δ̂(z0, w) ∈ E}

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Elegantere Notation

Definiere für z ∈ Z und w ∈ Σ∗:

z · w := δ̂(z, w)

Dann gilt eine Art
”
Assoziativgesetz“ für alle z ∈ Z, x, y ∈ Σ∗:

z · (x · y) = (z · x) · y

• z · (x · y) ist der Zustand, den der DFA erreicht, wenn er gestartet in z das

Wort xy (Konkatenation von x und y) zeichenweise abarbeitet.

• Der Ausdruck (z · x) · y liefert dasselbe Ergebnis, wobei z · x der Zwischen-

zustand ist, den der DFA nach Verarbeitung von x (aber noch vor der

Verarbeitung von y) innehat.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Vom DFA zur regulären Grammatik

Satz: Jeder DFA M = (Z, Σ, δ, z0, E) lässt sich in eine reguläre Grammatik

G = (V, Σ, P, S) mit L(G) = T (M) transformieren.

Folgerung: Jede von einem DFA akzeptierte Sprache ist regulär.

Technische Vereinfachung: Wir setzen im Beweis des Satzes z0 /∈ E

(gleichbedeutend zu ε /∈ T (M) voraus.

Randnotiz: Im Falle z0 ∈ E müsste die im Beweis enthaltene Konstruktion

von G um die Regel z0 → ε erweitert werden (wobei z0 evtl. auch auf der

rechten Seite von anderen Regeln vorkommen kann).

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Vom DFA zur regulären Grammatik (fortgesetzt)

Konstruktiver Beweis: Setze V := Z, S := z0 und definiere P wie folgt.

• Für jede Transition δ(z, a) = z′ nimm in P die Regel z → az′ auf.

• Falls dabei z′ ∈ E, dann nimm zusätzlich die Regel z → a in P auf.

Für alle w = a1 · · · an ∈ Σ+ (mit ai ∈ Σ) sind die folgenden Aussagen

äquivalent:

1. w ∈ T (M).

2. Es gibt eine Folge z0, . . . , zn von Zuständen mit Startzustand z0, zn ∈ E

und zi = δ(zi−1, ai).

3. Es gibt eine Folge z0, . . . , zn−1 von Variablen mit Startvariable z0 und

z0⇒Ga1z1⇒Ga1a2z2⇒G · · ·⇒Ga1 · · · an−1zn−1⇒Ga1a2 · · · an−aan .

4. w ∈ L(G).

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Nicht-deterministische Zustandswechsel

Bei NFA’s kann der Zustandsgraph folgenden Ausschnitt enthalten:

z

z’

z’’

a

a

Abbildung 3: Wer die Wahl hat, hat die Qual.

• I.A. existieren mehrere mögliche Zustandswechsel pro Rechenschritt (und

auch mehrere Startzustände).

• Zu einer Eingabe gibt es i.A. viele korrespondierende Pfade durch den

Zustandsgraphen.

• Die Eingabe gilt als akzeptiert, wenn mindestens einer der korrespon-

dierenden Pfad in einem Endzustand endet (in Analogie dazu, dass bei

Grammatiken eine erfolgreiche Ableitung genügt).

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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NFA (formale Definition)

P(Z) bezeichnet die Potenzmenge von Z (Menge aller Teilmengen von Z).

Ein NFA M besteht aus den folgenden Komponenten:

• Z, die Zustandsmenge

• Σ, das Eingabealphabet

• δ : Z × Σ → P(Z), die Überführungsfunktion

• S ⊆ Z, die Menge der Startzustände

• E ⊆ Z, die Menge der Endzustände

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Arbeitsweise des NFA

• Anfangs befindet sich M (wahlweise) in einem der Startzustände.

• Nach Verarbeitung des Zeichens a im Zustand z kann M (wahlweise) in

einen Zustand z′ ∈ δ(z, a) übergehen.

• Die Eingabe wird akzeptiert genau dann wenn M durch geeignete Wahl ei-

nes Startzustandes und durch geeignete Zustandswechsel nach Abarbeitung

der Eingabe einen Endzustand erreichen kann.

Beachte: Falls δ(z, a) = ∅, dann ergeben sich im Zustand z bei Verarbeitung

von a keine möglichen Folgezustände.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Die von einem NFA akzeptierte Sprache

Der Zustandsgraph GM zu einem NFA M ist völlig analog definiert wie bei

DFAs.

Die vom NFA M akzeptierte Sprache besteht (per Definition) aus allen Wörtern

w ∈ Σ∗ mit folgender Eigenschaft:

Es existiert ein von einem Startzustand ausgehender Pfad in GM , dessen

Kanten (in der korrekten Reihenfolge) mit den Buchstaben von w beschriftet

sind und der in einem Endzustand endet.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Beispiel

z z z

0,1

0 0
0 1 2

Abbildung 4: NFA M gegeben durch seinen Zustandsgraphen GM .

Scharfes Hinsehen ergibt:

T (M) = {w ∈ {0, 1}∗| w = 0 oder w endet mit 00}

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Die Funktion
”
delta–Hut“

Intuition: Für eine Teilmenge Q ⊆ Z der Zustände soll δ̂(Q, w) die Menge der

Zustände sein, welche sich ausgehend von einem der Zustände in Q erreichen

lassen, wenn w zeichenweise abgearbeitet wird.

Induktive Definition: Für alle Q ⊆ Z, a ∈ Σ, x ∈ Σ∗:

1. δ̂(Q, ε) := Q.

2. δ̂(Q, ax) :=
⋃

z∈Q δ̂(δ(z, a), x).

Dann gilt:

T (M) = {w ∈ Σ∗| δ̂(S, w) ∩ E 6= ∅}

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Vom NFA zum DFA

Satz: Jeder NFA M = (Z, Σ, δ, S, E) lässt sich in einen DFA M ′ =

(Z ′, Σ, δ′, z0, E
′) mit T (M ′) = T (M) transformieren.

Beweis (Potenzmengenkonstruktion): Wir wählen Z ′ = P(Z), d.h., jeder

”
Makrozustand“ von M ′ ist eine Teilmenge der Zustände von M . M ′ soll M

in folgendem Sinn simulieren:

(∗) Zu jedem Zeitpunkt der
”
Rechnung“ soll M ′ in dem

”
Makrozustand“

sein, der übereinstimmt mit der Menge der gegenwärtig von M erreichbaren

Zustände.

Formal ist hierzu zu zeigen, dass

δ̂′(Q, w) = δ̂(Q, w)

fur alle Q ⊆ Z und w ∈ Σ∗.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Vom NFA zum DFA (fortgesetzt)

Hierzu definieren wir die restlichen Komponenten von M ′ wie folgt:

1. z0 = S. (Damit gilt (∗) zu Anfang.)

2. δ′(Q, a) =
⋃

z∈Q δ(z, a). (Damit bleibt (∗) während Verarbeitung des

nächsten Zeichens richtig).

3. E′ = {Q ⊆ Z| Q ∩ E 6= ∅}.

Formal lässt sich aus den ersten beiden Bedingungen induktiv folgern:

δ̂′(Q, w) = δ̂(Q, w) .

Aus der Wahl von E′ folgt dann, dass T (M ′) = T (M).

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Beispiel

z z z

0,1

0 0
0 1 2

z z z z z z

z z z

z z z

0 1
0 2 1 2

0 1 2

0 1 2

Zustand zur
leeren Menge

0

1

0

0

1

1 0

1

0

1

1

0

0,1

0,1

NFA  M

simulierender DFA M’

vom Startzustand
aus nicht erreich-
bare Komponente

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Die
”
kombinatorische Explosion“ ...

NFA

DFA

Potenzmengen-

konstruktion

Frage: Gibt es effizientere Simulationen ? Antwort: i.A. Nein !

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008



Reguläre Sprachen Slide 22'

&

$

%

Eine Sprache mit
”
kleinem“ NFA ...

Die Sprache

Ln = {w ∈ {0, 1}∗| |w| ≥ n und das n–letzte Zeichen von w ist
”
0“}

kann von einem NFA mit n + 1 Zuständen erkannt werden:

0,1

0 0,1 0,1 0,1 0,1

Abbildung 5: Ein NFA für L5.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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... die große DFAs benötigt

Angenommen es gäbe einen DFA M für Ln mit weniger als 2n Zuständen?

Widerspruch (in 5 Schritten):

1. Dann gibt es 2 verschiedene Wörter x, y ∈ {0, 1}n mit z0 · x = z0 · y

(Schubfachprinzip).

2. Betrachte eine Bit-Position i, in der x und y sich unterscheiden.

Sagen wir: Bit i von x ist 0 und Bit i von y ist 1.

3. Betrachte x′ = x0i−1 und y′ = y0i−1. Bit i von x (bzw. von y) ist das

n-letzte Bit von x′ (bzw. von y′). Daher ist x′ ∈ Ln und y′ /∈ Ln.

4. Wegen

z0 · (x · 0i−1) = (z0 · x) · 0i−1 = (z0 · y) · 0i−1 = z0 · (y · 0i−1)

gelangt M bei den Eingaben x′ und y′ zum gleichen Zustand.

5. M macht also entweder auf Eingabe x′ oder auf Eingabe y′ einen Fehler.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Kleines Gedächtnis, große Fehler

Beim Widerspruchsbeweis wurde ausgenutzt:

• Wenn ein DFA zwei Eingaben x, y identifiziert (im Sinne von z0 ·x = z0 ·y),

dann kann er auch Eingaben der Form xu und yu nicht auseinander halten.

• Wenn ein DFA ein zu kleines
”
Gedächtnis“ (= Zustandsmenge) hat, dann

identifiziert er evtl. Eingaben, die er besser unterscheiden können sollte.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008



Reguläre Sprachen Slide 25'

&

$

%

Vom NFA zum DFA: Zusammenfassung

• Jeder NFA mit n Zuständen lässt sich in einen äquivalenten DFA mit 2n

Zuständen transformieren.

• Es gibt Sprachen Ln, n ≥ 1, die von einem NFA mit n + 1 Zuständen

erkannt werden können, aber nicht von einem DFA mit weniger als 2n

Zuständen.

Andererseits kann man zeigen, dass Ln von einem DFA mit 2n Zuständen

erkannt werden kann (s. Übung).

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Von der regulären Grammatik zum NFA

Satz: Jede reguläre Grammatik G = (V, Σ, P, S) lässt sich in einen NFA

M = (Z, Σ, δ, S′, E) mit T (M) = L(G) transformieren.

Zusammen mit den früheren Ergebnissen erhalten wir den Zirkelschluss

DFA → reguläre Grammatik → NFA → DFA .

Es ergibt sich die

Folgerung: Die Klasse der regulären Sprachen kann wahlweise durch DFAs,

NFAs oder reguläre Grammatiken repräsentiert werden.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Konstruktiver Beweis: Wähle die Komponenten von M wie folgt:

• Z = V ∪ {X} und S′ = {S}.

• Falls S → ε /∈ P , dann setze E = {X}; andernfalls E = {S, X}.

• Für jede Regel der Form A → aB in P nimm B in δ(A, a) auf.

• Für jede Regel der Form A → a in P nimm X in δ(A, a) auf.

Für alle w = a1 · · · an ∈ Σ+ (mit ai ∈ Σ) sind die folgenden Aussagen

äquivalent:

1. w ∈ L(G).

2. Es gibt eine Folge A1, . . . , An−1 von Variablen mit

S⇒Ga1A1⇒Ga1a2A2⇒G · · ·⇒Ga1a2 · · · an−1An−1⇒Ga1a2 · · · an−1an .

3. Es gibt eine Folge von Zuständen A1, . . . , An−1 mit

A1 ∈ δ(S, a1), A2 ∈ δ(A1, a2), . . . , An−1 ∈ δ(An−2, an−1, X ∈ δ(An−1, an) .

4. w ∈ T (M).

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Kennen Sie den Unterschied

zwischen Zeichen und Bezeichnetem ?

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Reguläre Ausdrücke

Induktive Definition der
”
Syntax“ regulärer Ausdrücke:

1. ∅, ε und a für jedes a ∈ Σ sind reguläre Ausdrücke.

2. Wenn α und β reguläre Ausdrücke sind, dann sind auch α · β, (α|β) und

(α)∗ reguläre Ausdrücke.

Konkatenationszeichen
”
·“ darf auch weggelassen werden.

L(α) bezeichne die durch den regulären Ausdruck α repräsentierte Sprache im

Sinne der folgenden Definition.

Induktive Definition der
”
Semantik“ regulärer Ausdrücke:

1. L(∅) = ∅; L(ε) = {ε}; L(a) = {a}.

2. L(α · β) = L(α) · L(β); L((α|β)) = L(α) ∪ L(β); L((α)∗) = L(α)∗.

∅, ε, a, ·, ∗ haben also die offensichtliche Interpretation; Zeichen
”
|“ wird als

Vereinigung
”
∪“ interpretiert.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Beispiele

Die uns schon bekannte Sprache

{w ∈ {0, 1}∗| w = 0 oder w endet mit 00}

ist mit regulären Ausdrücken
”
traumhaft elegant“ beschreibbar:

(0|(0|1)∗00) .

Jede endliche Sprache ist durch einen regulären Ausdruck beschreibbar. Denn:

1. Jedes einzelne Wort ergibt sich aus Konkatenation seiner (endlich vielen)

Zeichen.

2. Jede endliche Sprache ist eine Vereinigung ihrer (endlich vielen) Wörter.

3. Konkatenation und Vereinigung sind Operatoren, die regulären Ausdrücken

zur Verfügung stehen.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Ankündigung

Strukturelle Induktion kommt wieder zum Einsatz !

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Von regulären Ausdrücken zu NFAs

Satz: Jeder reguläre Ausdruck γ kann in einen NFA M mit T (M) = L(γ)

transformiert werden.

Beweis: (Induktion nach der Struktur regulärer Ausdrücke)

Zu zeigen:

1. Zu den einfachen regulären Ausdrücken ‘∅, ε, a mit a ∈ Σ finden wir jeweils

einen passenden NFA.

2. Aus passenden NFAs M1 und M2 für reguläre Ausdrücke α und β können

wir jeweils einen passenden NFA für (α|β), α ·β und (α)∗ zusammenbasteln

(ein
”
Syntheseproblem“).

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Passende NFAs für einfache reguläre Ausdrücke

Endlich mal eine babyleichte Aufgabe:

(a) (b)

 a

(c)

Abbildung 6: (a) ein NFA für ∅ (b) ein NFA für {ε} (c) ein NFA für {a}

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Syntheseproblem bei den Operationen ∪, ·

Grundidee in folgender Abbildung:

M

M

M M

M als Parallelschaltung

von M     M

M als Serienschaltung
von M     M

a

a

(a)

(b)

1

2

1 2

2

21

1

,

,

Abbildung 7: (a) ein NFA für T (M1) ∪ T (M2) (b) ein NFA für T (M1) · T (M2)

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Lösung des Syntheseproblems für
”
Vereinigung“

Voraussetzung: T (M1) = L(α), T (M2) = L(β); Mi = (Zi, Σ, δi, Si, Ei).

Synthese eines Automaten M für L(α) ∪ L(β):

M := {Z1 ∪ Z2, Σ, δ, S1 ∪ S2, E1 ∪ E2}

δ(z, a) :=







δ1(z, a) falls z ∈ Z1

δ2(z, a) falls z ∈ Z2

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Lösung des Syntheseproblems für
”
Konkatenation“

Synthese eines Automaten M = (Z, Σ, δ, S, E) für L(α) · L(β):

Z := Z1 ∪ Z2

δ(z1, a) :=







δ1(z1, a) falls δ1(z1, a) ∩ E1 = ∅

δ1(z1, a) ∪ S2 falls δ1(z1, a) ∩ E1 6= ∅

δ(z2, a) := δ2(z2, a)

S :=







S1 falls ε /∈ T (M1)

S1 ∪ S2 falls ε ∈ T (M1)

E := E2

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Syntheseproblem bei der Operation ∗
Grundidee in folgender Abbildung:

a

M
a

M’
(M erweitert um Ruckkopplungen)¨

Abbildung 8: ein NFA M ′ für T (M)∗
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Lösung des Syntheseproblems für Operation ∗

Voraussetzung: T (M) = L(α); M = (Z, Σ, δ, S, E).

Synthese eines Automaten M ′ = (Z ′, Σ, δ′, S′, E′) für L(α)∗ für den Fall

ε ∈ T (M):

Z ′ := Z

δ′(z, a) :=







δ(z, a) falls δ(z, a) ∩ E = ∅

δ(z, a) ∪ S falls δ(z, a) ∩ E 6= ∅

S′ := S

E′ := E

Falls ε /∈ T (M), dann wird darüberhinaus ein neuer Zustand z0 in die Mengen

Z, S und E aufgenommen.
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Reguläre Sprachen Slide 39'

&

$

%

Von DFAs zu regulären Ausdrücken

Satz: Jeder DFA M = {{z1, . . . , zn}, Σ, δ, z1, E) kann in einen regulären

Ausdruck γ mit L(γ) = T (M) transformiert werden.

Beweisidee: Verwende
”
Hilfssprachen“, die sich

• mit Hilfe der Operationen ∪, ·, ∗ aus einzelnen Zeichen zusammenbasteln

lassen,

• so dass T (M) sich als Vereinigung (geeignet ausgewählter) Hilfssprachen

darstellen lässt.
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Umsetzung der Beweisidee

die Hilfssprachen

Rk
i,j sei die Menge aller Wörter x ∈ Σ∗ mit:

1. M gestartet in zi ist nach Abarbeitung von x im Zustand zj .

2. Dabei werden nur Zwischenzustände aus {z1, . . . , zk} angenommen.

Beachte: Im Falle k = 0 sind keine Zwischenzustände erlaubt (Übergang von

zi nach zj durch maximal einen Zustandswechsel).
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Umsetzung der Beweisidee (fortgesetzt)

Die Hilfssprachen haben die gewünschten Eigenschaften:

T (M) =
⋃

j:zj∈E

Rn
1,j

R0
i,j = {a ∈ Σ ∪ {ε}| δ̂(zi, a) = zj}

Rk
i,j = Rk−1

i,j ∪ Rk−1
i,k · (Rk−1

k,k )∗ · Rk−1
k,j

Die letzte Gleichung gilt aus folgendem Grund:

Wenn M gestartet in zi nach Verarbeitung von x im Zustand zj ist und dabei

nur Zwischenzustände aus {z1, . . . , zk} angenommen hat, so gilt

entweder wurden nur Zwischenzustände aus {z1, . . . , zk−1} angenommen

oder Zwischenzustand zk wurde iteriert (mindestens einmal) angenom-

men (wobei die von zk verschiedenen Zwischenzustände wiederum aus

{z1, . . . , zk−1} stammen).
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Das Pumping–Lemma (uvw–Theorem)

Satz: Für jede reguläre Sprache L ⊆ Σ∗ gilt:

∃n ≥ 1,

∀x ∈ L mit |x| ≥ n,

∃u, v, w ∈ Σ∗ mit x = uvw, 1 ≤ |v| ≤ |uv| ≤ n,

∀i ≥ 0 :

uviw ∈ L

.
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Beweis

Benutze einen DFA M = (Z, Σ, δ, z0, E), der L erkennt, und wähle n := |Z|.

Zu einem Wort x = a1 · · · as ∈ L mit ai ∈ Σ und s ≥ n betrachte den

resultierenden
”
Berechnungspfad“ P im Zustandsgraphen GM :

z′0
a1−→ z′1

a2−→ · · ·
as−1

−→ z′s−1
as−→ z′s wobei z′0 = z0 und z′s ∈ E .

Es muss zwei Indizes 0 ≤ j < k ≤ n mit z′
j = z′k geben (Schubfachprinzip).

Berechnugspfad P enthält daher den Zyklus

z′j
aj+1

−→ z′j+1

aj+2

−→ · · ·
ak−1

−→ z′k−1
ak−→ z′k .

Da der Zyklus im Berechnungspfad P iteriert durchlaufen (oder auch wegge-

lassen) werden kann, hat die Zerlegung x = uvw mit

u = a1 · · ·aj , v = aj+1 · · · ak , w = ak+1 · · · as

die gewünschten Eigenschaften 1 ≤ |v| ≤ |uv| ≤ n und

∀i ≥ 0 : uviw ∈ L .
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Reguläre Sprachen Slide 44'

&

$

%

Anwendung: Nachweis der Nichtregularität

Folgerung: Falls für eine Sprache L ⊆ Σ∗ die Bedingung

∀n ≥ 1,

∃x ∈ L mit |x| ≥ n,

∀u, v, w ∈ Σ∗ mit x = uvw, 1 ≤ |v| ≤ |uv| ≤ n,

∃i ≥ 0 :

uviw /∈ L

erfüllt ist, dann ist L nicht regulär.
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Beispiele für nicht–reguläre Sprachen

Die folgende Sprache L ⊆ {a, b}∗ ist nicht regulär:

L = {ambm| m ≥ 1}

Begründung:

1. Zu beliebig vorgegebenem n ≥ 1 wähle x = anbn.

Offensichtlich gilt x ∈ L und |x| ≥ n.

2. Zu beliebig vorgegebener Zerlegung x = uvw mit 1 ≤ |v| ≤ |uv| ≤ n

wähle i = 0. Beachte, dass uv das Zeichen b nicht enthält (wegen |uv| ≤ n).

Nun gilt

uv0w = uw = an−|v|bn /∈ L ,

da |uw|a < |uw|b.
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Beispiele für nicht–reguläre Sprachen (fortgesetzt)

Die folgende Sprache L ⊆ {0}∗ ist nicht regulär:

L = {0m| m ist eine Quadratzahl}

Begründung:

1. Zu beliebig vorgegebenem n ≥ 1 wähle x = 0n2

.

Offensichtlich gilt x ∈ L und |x| ≥ n.

2. Zu beliebig vorgegebener Zerlegung x = uvw mit 1 ≤ |v| ≤ |uv| ≤ n

wähle i = 2.

Nun gilt

uv2w = 0n2+|v| /∈ L ,

da n2 + |v| wegen

n2 < n2 + |v| ≤ n2 + n < n2 + 2n + 1 = (n + 1)2

keine Quadratzahl ist.
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Beispiele für nicht–reguläre Sprachen (fortgesetzt)

Die folgende Sprache L ⊆ {0}∗ ist nicht regulär:

L = {0p| p ist eine Primzahl}

Begründung:

1. Zu beliebig vorgegebenem n ≥ 1 wähle x = 0p für eine Primzahl p ≥ n + 2.

Offensichtlich gilt x ∈ L und |x| ≥ n.

2. Zu beliebig vorgegebener Zerlegung x = uvw mit 1 ≤ |v| ≤ |uv| ≤ n

wähle i = |uw|. Beachte, dass |uw| = p − |v| ≥ (n + 2) − n = 2.

Nun gilt

uv|uw|w = 0|uw|(|v|+1) /∈ L ,

da |uw|(|v| + 1) offensichtlich keine Primzahl ist.
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Zwei Relationen auf Wörtern

Definition: M sei ein DFA mit Startzustand z0.

xRMy gdw z0 · x = z0 · y .

intuitiv: M
”
identifiziert“ die Wörter x und y: nach Verarbeitung von x

erreicht er den gleichen Zustand wie nach Verarbeitung von y.

Definition (Nerode–Relation) L ⊆ Σ∗ sei eine formale Sprache.

xRLy gdw (∀w ∈ Σ∗ : xw ∈ L ⇔ yw ∈ L) .

intuitiv: ein DFA dürfte x und y identifizieren, ohne dass sich daraus Fehler

beim Fortsetzen der Rechnung ableiten lassen.
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Eigenschaften dieser Relationen

Bemerkungen

1. Beide Relationen sind Äquivalenzrelationen,

d.h., sie sind reflexiv, symmetrisch und transitiv.

2. Darüberhinaus gilt:

xRMy =⇒ xvRMyv

xRLy =⇒ xvRLyv

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Exkurs: Index, Verfeinerung, Vergröberung

R, R1, R2 seien Äquivalenzrelationen.

• Index von R = Anzahl der Äquivalenzklassen von R (evtl. ∞).

• R1 heißt Verfeinerung von R2 (und R2 Vergröberung von R1) gdw

aR1b ⇒ aR2b.

In diesem Fall zerfällt jede Äquivalenzklasse von R2 in Äquivalenzklassen

von R1 und somit gilt:

Index von R2 ≤ Index von R1 .
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Der Satz von Myhill und Nerode

Satz: L ist regulär gdw RL hat einen endlichen Index.

Der Beweis zerfällt in zwei Teile.
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1. Beweisrichtung

Lemma: Wenn L regulär ist, dann hat RL einen endlichen Index.

Beweis in 5 Teilschritten:

• Wähle einen DFA M , der L erkennt (und nur Zustände besitzt, die vom

Startzustand z0 aus erreichbar sind).

• Index von RM = |Z|.

• z0 · x = z0 · y =⇒ (∀w ∈ Σ∗ : xw ∈ L ⇔ yw ∈ L).

Ansonsten würde M auf einer der Eingaben xz und yz einen Fehler

machen.

• RL ist Vergröberung von RM :

xRMy =⇒ z0 · x = z0 · y =⇒ (∀w ∈ Σ∗ : xw ∈⇔ yw ∈ L) =⇒ xRLy

• Index von RL ≤ Index von RM = |Z| < ∞.

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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2. Beweisrichtung

Lemma: Wenn RL einen endlichen Index hat, dann ist L regulär.

Für ein Wort x bezeichne [x] die zugehörige Äquivalenzklasse bez. RL.

Bei endlichem Index von RL, sagen wir Index k, gibt es k Äquivalenzklassen,

sagen wir [x1], . . . , [xk].

Beweis erfolgt durch Angabe eines DFA (Nerode–Automat) M = (Z, Σ, δ, z0, E):

1. Z = {[x1], . . . , [xk]}.

2. z0 = [ε].

3. E = {[x]| x ∈ L}.

4. δ([x], a) = [xa].

Das Problem der Wohldefiniertheit wird an der Tafel diskutiert!

• M gestartet in Zustand [ε] ist nach Verarbeitung eines Wortes x (gemäß

der Definition von δ) im Zustand [x].

• Aus der Definition von E folgt nun T (M) = L.
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Beispiel

Betrachte die Sprache

L = {x ∈ {0, 1}∗| x endet mit 00} .

RL hat 3 Äquivalenzklassen:

[ε] = {x| x endet nicht mit 0}

[0] = {x| x endet mit 0 aber nicht mit 00}

[00] = {x| x endet mit 00}

Der Nerode–Automat mit Zuständen z0 = [ε], z1 = [0], z2 = [00] ist dann

durch folgenden Zustandsgraphen gegeben:

1

0 0

1
1

z z z0 1 2 0
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Minimierung eines gegebenen DFA

Eingabe: DFA M = (Z, Σ, δ, z0, E), bei dem jeder Zustand vom Startzustand

aus erreichbar ist

Ausgabe: Minimalautomat M0 zu M :

der DFA mit möglichst wenigen Zuständen, der die gleiche Sprache wie M

erkennt

Methode: Verschmelzung äquivalenter Zustände (Details folgen)

Hans U. Simon, Ruhr-Universität Bochum, Germany TI WS 2007/2008
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Äquivalente und inäquivalente Zustände

Zwei Zustände z1, z2 ∈ Z heißen äquivalent gdw

∀w ∈ Σ∗ : z1 · w ∈ E ⇔ z2 · w ∈ E .

Somit sind z1, z2 inäquivalent gdw

∃w ∈ Σ∗ : z1 · w ∈ E und z2 · w /∈ E oder umgekehrt .

Wir nennen w dann ein
”
separierendes Wort“ für z1, z2.

Intuition

Genau dann wenn z1 ∼ z2 können z1 und z2 zu einem Zustand
”
verschmolzen“

werden, ohne die Sprache T (M) abzuändern (Details an der Tafel).

Beobachtungen:

• Falls z1 ∈ E und z2 /∈ E (oder umgekehrt), dann sind z1, z2 inäquivalent.

• Falls z′1, z
′
2 inäquivalent sind, und z′

1 = z1 ·a, z′2 = z2 ·a für ein a ∈ Σ, dann

sind auch z1, z2 inäquivalent.
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Resultierende Minimierungsprozedur

Markierung aller Paare inäquivalenter Zustände kann wie folgt geschehen:

Initialisierung: Markiere alle Paare (z1, z2) mit z1 ∈ E und z2 /∈ E (oder

umgekehrt).

Iteration: Solange ein unmarkiertes Paar (z1, z2), ein a ∈ Σ und ein markiertes

Paar (z′1, z
′
2) mit z′1 = z1 ·a, z′2 = z2 ·a existieren, markiere (z1, z2) ebenfalls.

Äquivalente Zustandspaare sind gerade die unmarkierten Paare.

Berechnung des Minimalautomaten:

• Transformiere GM zu einem
”
gröberen“ Zustandsgraphen, bei welchem

jede Äquivalenzklasse von Knoten durch einen einzigen
”
Superknoten“

repräsentiert ist.

• Eine mit a markierte Kante von z nach z′ wird dann zu einer mit a

markierten Kante von [z] nach [z′].

• Startknoten ist nun [z0], Endknoten sind die Superknoten [z] mit z ∈ E.
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Beispiel

Links der DFA M , rechts der Minimalautomat M0:

4z0

1

0

1

0
11

0
z

z z

z

0 1

2 3 [z  ] = {z  ,z  }

[z  ] = {z  ,z  }
0 0 2

1 1 3

0
0

1

1 0,1

z z z z z
0 2 1 3 4

0,1

Die folgende Tabelle gibt die markierten Paare inäquivalenter Knoten an:

z0 z1 z2 z3 separierendes Wort

z1 ∗ 0

z2 ∗ 0

z3 ∗ ∗ 0 (jeweils)

z4 ∗ ∗ ∗ ∗ ε
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Abschlusseigenschaften

Satz: Die Klasse der regulären Sprachen ist abgeschlossen unter den Operatio-

nen ∪, ·, ∗,¬,∩.

Beweis:

• Abschluss unter ∪.·, ∗ ist offensichtlich:

Reguläre Sprachen sind durch reguläre Ausdrücke repräsentierbar.

• Abschluss unter ¬ ist einfach nachzuweisen:

Falls T (M) = L mit DFA M = (Z, Σ, δ, z0, E) so folgt T (M̄) = L̄ mit DFA

M̄ := (Z, Σ, δ, z0, Z \ E).

• Abschluss unter ∩ ergibt sich jetzt mit
”
de Morgan“:

L1 ∩ L2 = L1 ∩ L2 = L̄1 ∪ L̄2
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Der
”
Produktautomat“

Produktautomat liefert einen alternativen Beweis für den Abschluss unter

Vereinigung und Durchschnitt.

Zu gegeben DFAs M1 = (Z1, Σ, δ1, z01, E1) und M2 = (Z2, Σ, δ2, z02, E2)

betrachte den DFA

M = (Z1 × Z2, Σ, δ, (z01, z02), E)

mit

δ((z1, z2), a) = (δ1(z1, a), δ2(z2, a)) .

Intuition: M führt die
”
Rechnungen“ von M1 und M2 parallel aus.

• Mit E = E1 × E2 folgt T (M) = T (M1) ∩ T (M2).

• Mit E = (E1 × Z2) ∪ (Z1 × E2) folgt T (M) = T (M1) ∪ T (M2).
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Das Wortproblem

Spezielles Wortproblem für eine reguläre Sprache L ⊆ Σ∗

Eingabe: x ∈ Σ∗

Frage: x ∈ L ?

Komplexität: lösbar in Realzeit (n = |x| Rechenschritte)

Methode: Benutze einen DFA M mit T (M) = L. Gestartet auf Eingabe x

liefert er die Antwort in |x|
”
Rechenschritten“.
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Das
”
Leerheitsproblem“

Eingabe: DFA M gegeben durch seinen Zustandsgraphen GM

Frage: T (M) = ∅ ?

Komplexität: lösbar in Linearzeit

Methode: Verwende eine Graphexplorationstechnik (wie DFS oder BFS):

T (M) 6= ∅ ⇔ von z0 ist ein Zustand aus E erreichbar

Bemerkung: Eine analoge Methode ist auch bei gegebenem NFA verwendbar.
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Das
”
Endlichkeitsproblem“

Eingabe: DFA M gegeben durch seinen Zustandsgraphen GM

Frage: |T (M)| < ∞ ?

Komplexität: lösbar in Linearzeit

Methode: Verwende eine Graphexplorationstechnik (wie DFS oder BFS):

• Markiere alle Zustände, die von z0 aus erreichbar sind und von denen

ausgehend sich ein Zustand aus E erreichen lässt. Es bezeichne G′
M von

markierten Knoten induzierten Untergraphen von GM .

• Nutze aus:

|T (M)| = ∞ ⇔ G′
M enthält einen Zyklus

Bemerkung: Eine analoge Methode ist auch bei gegebenem NFA verwendbar.
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Das
”
Schnittproblem“

Eingabe: DFAs M1, M2 gegeben durch ihre Zustandsgraphen GM1
, GM2

Frage: T (M1) ∩ T (M2) = ∅ ?

Komplexität: lösbar mit quadratischem Zeitaufwand

Methode: Berechne den Produktautomaten M mit T (M) = T (M1) ∩ T (M2)

und löse für M das Leerheitsproblem.

Bemerkung: Eine analoge Methode ist auch bei gegebenen NFAs verwendbar.
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Reguläre Sprachen Slide 65'

&

$

%

Das
”
Inklusionsproblem“

Eingabe: DFAs M1, M2 gegeben durch ihre Zustandsgraphen GM1
, GM2

Frage: T (M1) ⊆ T (M2) ?

Komplexität: lösbar mit quadratischem Zeitaufwand

Methode: Nutze aus, dass A ⊆ B ⇔ A ∩ B̄ = ∅.

• Berechne aus M2 den DFA M̄2 mit T (M̄2) = T (M2).

• Löse für M1 und M̄2 das Schnittproblem.
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Das
”
Äquivalenzproblem“

Eingabe: DFAs M1, M2 gegeben durch ihre Zustandsgraphen GM1
, GM2

Frage: T (M1) = T (M2) ?

Komplexität: lösbar mit quadratischem Zeitaufwand

Methode: Offensichtliche Reduktion auf das Inklusionsproblem wegen

A = B ⇔ (A ⊆ B und B ⊆ A)
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Lernziele
• Kenntnis der wesentlichen Konzepte und Resultate auf dem Level der

regulären Sprachen besitzen und Zusammenhänge verstehen

• aus DFA bzw. NFA den Zustandsgraphen ablesen und umgekehrt

• zu einer regulären Sprache einen passende(n) reguläre Grammatik, DFA,

NFA, bzw. regulären Ausdruck angeben können und umgekehrt

• wechselseitige Transformationen zwischen den Repräsentationsformen

(reguläre Grammatik, DFA, NFA, regulärer Ausdruck) durchführen

können

• Nachweis der Nicht–Regularität einer Sprache mit Hilfe des Pumping–

Lemmas führen können

• Nerode–Relation zu einer Sprache bestimmen können

• den Minimalautomaten zu einem gegebenen DFA konstruieren können

• zu einem gegebenen DFA die besprochenen Entscheidungsprobleme lösen

können
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