Übungen zur Vorlesung

Theorie des maschinellen Lernens

Sommer 17

Übungsblatt 11

Aufgabe 11.1 (4 Punkte)

Gegeben sei die Trainingsmenge

$$S = \{((-2,7),1), ((-1,2),3), ((0,3),1), ((1,1),3), ((2,4),1), ((3,5),3), ((4,2),2), ((5,6),1), ((6,0),2), ((7,1),2)\}$$

über der Grundmenge \mathbb{R}^2 und der Labelmenge $\{1, 2, 3\}$. Nutze den All-Pairs Ansatz und bestimme bezüglich der Decision Stumps über \mathbb{R}^2 so eine Vorhersagefunktion h. Wie werden mit diesem h die Punkte (1, 5) und (5, 3) klassifiziert?

Aufgabe 11.2 (4 Punkte)

Die Hypothese $h_w(x)$ für die Multiklassen-Kategorisierung mit strukturierten Objekten soll effizient bestimmt werden. Zeige dazu wie man mit Hilfe der Tabelle M(x|w) und Backtracking die beste Zeichenkette y^* ermitteln kann. Siehe dazu auch Ende des Abschnitts 17.3 im Skript.

Aufgabe 11.3 (4 Punkte)

Zeige, dass $\mathcal{O}(r \log r)$ Zeit ausreicht um den Rangnummernvektor \overline{y} aus $y \in \mathbb{R}^r$ zubestimmen. Gib dazu einen geeigneten Algorithmus an. Siehe dazu auch Anfang des Abschnitts 17.4 im Skript.

Aufgabe 11.4 (4 Punkte)

Betrachte den folgenden Perzeptron-Algorithmus für Multiklassen:

Eingabe Trainingsmenge $(x_1, y_1), \dots, (x_m, y_m) \in \mathcal{X} \times \mathcal{Y}$ Label-sensitive Abbildung $\Psi : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}^d$

Initialisierung Setze $w^{(1)} = (0, \dots, 0) \in \mathbb{R}^d$.

Hauptschleife Für t = 1, 2, 3, ... mache folgendes:

Falls ein $i \in [m]$ und ein $y \neq y_i$ existieren mit $\langle w^{(t)}, \Psi(x_i, y_i) \rangle \leq \langle w^{(t)}, \Psi(x_i, y) \rangle$, dann setze

$$w^{(t+1)} = w^{(t)} + \Psi(x_i, y_i) - \Psi(x_i, y)$$

anderenfalls gib $w^{(t)}$ aus und stoppe.

Nimm an, dass ein w^* existiert, sodass für alle i und alle $y \neq y_i$ gilt $\langle w^*, \Psi(x_i, y_i) \rangle \geq \langle w^*, \Psi(x_i, y) \rangle + 1$. Es sei $R := \max_{i,y} ||\Psi(x_i, y_i) - \Psi(x_i, y)||$. Zeige, dass dann der obige Algorithmus nach höchstens $(R||w^*||)^2$ Iterationen der Hauptschleife anhält.