Übungen zur Vorlesung

Theorie des maschinellen Lernens

Sommer 17

Übungsblatt 10

Aufgabe 10.1 (4 Punkte)

Seien K_1 und K_2 zwei Kernels über $\mathcal{X} \times \mathcal{X}$ mit $\mathcal{X} \subseteq \mathbb{R}^n$, $a \in \mathbb{R}^+$ und f eine reell-wertige Funktion auf \mathcal{X} . Zeige, dass folgende Funktionen dann allesamt Kernels sind.

- a) $K(x,z) = K_1(x,z) + K_2(x,z)$
- b) $K(x,z) = aK_1(x,z)$
- c) K(x,z) = f(x)f(z)
- d) Seien $x, z \in \mathbb{R}^2$. Ist $K(x, z) = \sqrt{2}[(x_1z_1)^2 5(x_2z_1^2 + x_1^2z_2) + 25x_2z_2]$ ein Kernel?

Aufgabe 10.2 (4 Punkte)

Für alle $A \subseteq \{1, ..., n\}$ sei $\psi_A(x) = \prod_{i \in A} x_i$. Des Weiteren sei $\psi(x) = (\psi_A(x))_{A \subseteq \{1, ..., n\}}$ und es gelte $K(x, z) = \langle \psi(x), \psi(z) \rangle$.

Finde eine effizient auswertbare Formel für K(x,z) (poly(n) arithmetische Operationen).

Aufgabe 10.3 (4 Punkte)

Für $x, x' \in [N]$ definiere

$$K(x, x') = \min\{x, x'\}.$$

Finde eine Abbildung $\psi: [N] \to H$, wobei H ein geeigneter Hilbertraum ist, sodass für alle $x, x' \in [N]$ gilt

$$K(x, x') = \langle \psi(x), \psi(x') \rangle.$$

— Bitte wenden! —

Aufgabe 10.4 (4 Punkte)

Seien \mathcal{X} die Grundmenge und ψ eine Merkmalsabbildung von X auf einen Hilbert-Raum \mathcal{F} . Sei $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ eine Kernelfunktion, die ein inneres Produkt auf \mathcal{F} liefert, d.h. $K(x,x') = \langle \psi(x), \psi(x') \rangle$ für alle $x,x' \in \mathcal{X}$.

Sei $S = [(x_1, y_1), \dots, (x_m, y_m)] \in (\mathcal{X} \times \{-1, +1\})^m$ eine Trainingsmenge. Wir definieren

$$c_{+} = \frac{1}{m_{+}} \sum_{i:y_{i}=+1} \psi(x_{i}) \qquad \land \qquad c_{-} = \frac{1}{m_{-}} \sum_{i:y_{i}=-1} \psi(x_{i}),$$

wobei $m_y = |\{i: y_i = y\}|$, und nehmen an, dass m_+ und m_- nicht null sind. Die binäre Vorhersage soll anhand der Funktion

$$h(x) = \begin{cases} 1 & \text{, falls } ||\psi(x) - c_+|| \le ||\psi(x) - c_-|| \\ 0 & \text{, sonst} \end{cases}$$

erfolgen.

a) Setze $w = c_+ - c_-$ und $b = (||c_-||^2 - ||c_+||^2)/2$. Zeige, dass

$$h(x) = sign(\langle w, \psi(x) \rangle + b).$$

b) Wie kann man h(x) mit Hilfe der Kernelfunktion ausdrücken ohne $\psi(x)$ und w explizit zu bestimmen?