symbol	meaning
R _.	the set of real numbers
\mathbb{R}^d	the set of d -dimensional vectors over $\mathbb R$
\mathbb{R}_{+}	the set of non-negative real numbers
N	the set of natural numbers
$O, o, \Theta, \omega, \Omega, O$	asymptotic notation (see text)
¹ [Boolean expression]	indicator function (equals 1 if expression is true and 0 o.w.)
$[a]_+$	$=\max\{0,a\}$
[n]	the set $\{1,\ldots,n\}$ (for $n\in\mathbb{N}$)
x, v, w	(column) vectors
x_i, v_i, w_i	the ith element of a vector
$\langle \mathbf{x}, \mathbf{v} \rangle$	$= \sum_{i=1}^{d} x_i v_i \text{ (inner product)}$
$\ \mathbf{x}\ _2$ or $\ \mathbf{x}\ $	$=\sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$ (the ℓ_2 norm of \mathbf{x})
$\ \mathbf{x}\ _1$	$=\sum_{i=1}^{d} x_i $ (the ℓ_1 norm of \mathbf{x})
$\ \mathbf{x}\ _{\infty}$	$=\max_{i} x_{i} $ (the ℓ_{∞} norm of \mathbf{x})
$\ \mathbf{x}\ _0$	the number of nonzero elements of x
$A \in \mathbb{R}^{d.k}$	a $d \times k$ matrix over \mathbb{R}
A^{\top}	the transpose of A
$A_{i,j}$	the (i, j) element of A
$\mathbf{x}\mathbf{x}^{T}$	the $d \times d$ matrix A s.t. $A_{i,j} = x_i x_j$ (where $\mathbf{x} \in \mathbb{R}^d$)
$\mathbf{x}_1, \ldots, \mathbf{x}_m$	a sequence of m vectors
$X_{i,j}$ (T)	the jth element of the ith vector in the sequence
$\mathbf{w}^{(1)}, \dots, \mathbf{w}^{(T)}$	the values of a vector \mathbf{w} during an iterative algorithm
$w_i^{(t)}$	the i th element of the vector $\mathbf{w}^{(t)}$
X	instances domain (a set)
\mathcal{Y}	labels domain (a set)
Z	examples domain (a set)
\mathcal{H}	hypothesis class (a set)
$\ell: \mathcal{H} \times Z \to \mathbb{R}_+$	loss function
D D(4)	a distribution over some set (usually over Z or over \mathcal{X})
$\mathcal{D}(A)$	the probability of a set $A \subseteq Z$ according to \mathcal{D}
$z \sim D$	sampling z according to \mathcal{D}
$S = z_1, \dots, z_m$ $S \sim \mathcal{D}^m$	a sequence of <i>m</i> examples
P.E	sampling $S = z_1,, z_m$ i.i.d. according to \mathcal{D}
$\mathbb{P}_{z\sim\mathcal{D}}[f(z)]$	probability and expectation of a random variable $= \mathcal{D}(\{z: f(z) = \text{true}\})$ for $f: Z \to \{\text{true}, \text{false}\}$
$\mathbb{E}_{z \sim \mathcal{D}}[f(z)]$	expectation of the random variable $f: Z \to \mathbb{R}$
$N(\mu,C)$	Gaussian distribution with expectation μ and covariance C
f'(x)	the derivative of a function $f: \mathbb{R} \to \mathbb{R}$ at x
f''(x)	the second derivative of a function $f: \mathbb{R} \to \mathbb{R}$ at x
$\frac{\partial f(\mathbf{w})}{\partial w_i}$	
	the partial derivative of a function $f: \mathbb{R}^d \to \mathbb{R}$ at \mathbf{w} w.r.t. w_i
$ abla f(\mathbf{w})$ $ all f(\mathbf{w})$	the gradient of a function $f: \mathbb{R}^d \to \mathbb{R}$ at w
$\min_{x \in C} f(x)$	the differential set of a function $f: \mathbb{R}^d \to \mathbb{R}$ at \mathbf{w}
$\max_{x \in C} f(x)$	$= \min\{f(x) : x \in C\} \text{ (minimal value of } f \text{ over } C)$ $= \max\{f(x) : x \in C\} \text{ (maximal value of } f \text{ over } C)$
$\underset{x \in C}{\operatorname{argmin}}_{x \in C} f(x)$	the set $\{x \in C : f(x) = \min_{z \in C} f(z)\}$
$\operatorname{argmax}_{x \in C} f(x)$	the set $\{x \in C : f(x) = \max_{z \in C} f(z)\}$