| symbol | meaning | |--|---| | R _. | the set of real numbers | | \mathbb{R}^d | the set of d -dimensional vectors over $\mathbb R$ | | \mathbb{R}_{+} | the set of non-negative real numbers | | N | the set of natural numbers | | $O, o, \Theta, \omega, \Omega, O$ | asymptotic notation (see text) | | ¹ [Boolean expression] | indicator function (equals 1 if expression is true and 0 o.w.) | | $[a]_+$ | $=\max\{0,a\}$ | | [n] | the set $\{1,\ldots,n\}$ (for $n\in\mathbb{N}$) | | x, v, w | (column) vectors | | x_i, v_i, w_i | the ith element of a vector | | $\langle \mathbf{x}, \mathbf{v} \rangle$ | $= \sum_{i=1}^{d} x_i v_i \text{ (inner product)}$ | | $\ \mathbf{x}\ _2$ or $\ \mathbf{x}\ $ | $=\sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$ (the ℓ_2 norm of \mathbf{x}) | | $\ \mathbf{x}\ _1$ | $=\sum_{i=1}^{d} x_i $ (the ℓ_1 norm of \mathbf{x}) | | $\ \mathbf{x}\ _{\infty}$ | $=\max_{i} x_{i} $ (the ℓ_{∞} norm of \mathbf{x}) | | $\ \mathbf{x}\ _0$ | the number of nonzero elements of x | | $A \in \mathbb{R}^{d.k}$ | a $d \times k$ matrix over \mathbb{R} | | A^{\top} | the transpose of A | | $A_{i,j}$ | the (i, j) element of A | | $\mathbf{x}\mathbf{x}^{T}$ | the $d \times d$ matrix A s.t. $A_{i,j} = x_i x_j$ (where $\mathbf{x} \in \mathbb{R}^d$) | | $\mathbf{x}_1, \ldots, \mathbf{x}_m$ | a sequence of m vectors | | $X_{i,j}$ (T) | the jth element of the ith vector in the sequence | | $\mathbf{w}^{(1)}, \dots, \mathbf{w}^{(T)}$ | the values of a vector \mathbf{w} during an iterative algorithm | | $w_i^{(t)}$ | the i th element of the vector $\mathbf{w}^{(t)}$ | | X | instances domain (a set) | | \mathcal{Y} | labels domain (a set) | | Z | examples domain (a set) | | \mathcal{H} | hypothesis class (a set) | | $\ell: \mathcal{H} \times Z \to \mathbb{R}_+$ | loss function | | D
D(4) | a distribution over some set (usually over Z or over \mathcal{X}) | | $\mathcal{D}(A)$ | the probability of a set $A \subseteq Z$ according to \mathcal{D} | | $z \sim D$ | sampling z according to \mathcal{D} | | $S = z_1, \dots, z_m$
$S \sim \mathcal{D}^m$ | a sequence of <i>m</i> examples | | P.E | sampling $S = z_1,, z_m$ i.i.d. according to \mathcal{D} | | $\mathbb{P}_{z\sim\mathcal{D}}[f(z)]$ | probability and expectation of a random variable $= \mathcal{D}(\{z: f(z) = \text{true}\})$ for $f: Z \to \{\text{true}, \text{false}\}$ | | $\mathbb{E}_{z \sim \mathcal{D}}[f(z)]$ | expectation of the random variable $f: Z \to \mathbb{R}$ | | $N(\mu,C)$ | Gaussian distribution with expectation μ and covariance C | | f'(x) | the derivative of a function $f: \mathbb{R} \to \mathbb{R}$ at x | | f''(x) | the second derivative of a function $f: \mathbb{R} \to \mathbb{R}$ at x | | $\frac{\partial f(\mathbf{w})}{\partial w_i}$ | | | | the partial derivative of a function $f: \mathbb{R}^d \to \mathbb{R}$ at \mathbf{w} w.r.t. w_i | | $ abla f(\mathbf{w})$ $ all f(\mathbf{w})$ | the gradient of a function $f: \mathbb{R}^d \to \mathbb{R}$ at w | | $\min_{x \in C} f(x)$ | the differential set of a function $f: \mathbb{R}^d \to \mathbb{R}$ at \mathbf{w} | | $\max_{x \in C} f(x)$ | $= \min\{f(x) : x \in C\} \text{ (minimal value of } f \text{ over } C)$ $= \max\{f(x) : x \in C\} \text{ (maximal value of } f \text{ over } C)$ | | $\underset{x \in C}{\operatorname{argmin}}_{x \in C} f(x)$ | the set $\{x \in C : f(x) = \min_{z \in C} f(z)\}$ | | | | | $\operatorname{argmax}_{x \in C} f(x)$ | the set $\{x \in C : f(x) = \max_{z \in C} f(z)\}$ |