Übungen zur Vorlesung

Theorie des Maschinellen Lernens

Sommer 2014

Übungsblatt 08

Aufgabe 8.1

Zeige, dass PAC-Reduzierbarkeit transitiv ist. Zeige, also: Aus $C_1 \leq_{PAC} C_2$ und $C_2 \leq_{PAC} C_3$ folgt $C_1 \leq_{PAC} C_3$.

Aufgabe 8.2

Eine read-once-DNF-Formel ist eine DNF-Formel, in der jede Variable höchstens einmal auftaucht (egal ob in negierter oder nicht-negierter Form).

Sei p ein beliebiges Polynom.

Zeige, dass die Klasse der DNF-Formeln, wobei eine Formel über n Variablen maximal p(n) Terme besitzt, auf die Klasse der read-once-DNF-Formeln PPAC-reduzierbar ist.

Aufgabe 8.3

Die Klasse der (binären) Halbräume über $\{0,1\}^n$ sei folgendermaßen definiert: Jeder normierte Vektor $u \in \mathbb{R}^n$ definiert ein Konzept c_u mit

$$c_u(x) = \begin{cases} 1, & \text{falls } \sum_{i=1}^n u_i \cdot x_i \ge 0\\ 0, & \text{sonst} \end{cases}$$

Die Klasse der symmetrischen Differenzen zweier Halbräume über $\{0,1\}^n$ sei folgendermaßen definiert: Je zwei normierte Vektoren $u,v\in\mathbb{R}^n$ definieren ein Konzept $c_{u,v}$ mit

$$c_{u,v}(x) = \begin{cases} 1, & \text{falls } c_u(x) \neq c_v(x) \\ 0, & \text{sonst} \end{cases}$$

Zeige, dass die Klasse der symmetrischen Differenzen zweier Halbräume auf die Klasse der binären Halbräume PAC-reduzierbar ist.

Hinweis: Punkte auf dem Rand der Halbräume können ignoriert werden; für jedes u existiert ein u' mit $c_u(x) = c_{u'}(x)$ und $\sum_{i=1}^n u'_i x_i \neq 0$ für alle $x \in \{0,1\}^n$.

Aufgabe 8.4

Sei $\Sigma = \{a, b, c\}$. Gib den Zustandsgraphen eines endlichen Automaten an, der Elemente aus Σ^* genau dann akzeptiert, wenn die Anzahl an a's und b's zusammen genau eins ist und eine ungerade Anzahl an c's vorliegt.