Übungen zur Vorlesung

Theorie des Maschinellen Lernens

Sommer 2014

Übungsblatt 05

Beachte: Auf diesem Aufgabenblatt arbeiten wir im Boosting-Framework, in dem Konzepte nicht mehr auf $\{0,1\}$, sondern auf $\{-1,1\}$ abbilden.

Aufgabe 5.1

Sei $X = \mathbb{R}$ und sei \mathcal{H} die Klasse der Halbintervalle, die aus folgenden Hypothesen $h_{t,b}$ besteht:

$$h_{\theta,b}(x) = \begin{cases} b, & \text{falls } x \ge \theta \\ -b, & \text{falls } x < \theta \end{cases}$$

für $\theta \in \mathbb{R}$ und $b \in \{-1, 1\}$.

Sei folgende Menge S gegeben:

$$S = \{(1, +1), (2, -1), (3, +1), (4, -1)\}$$

Führe drei Iterationen von AdaBoost mit der Basisklasse der Halbintervalle \mathcal{H} aus. Wähle in jedem Schritt ein h_t mit minimalen Fehler ϵ_t .

Für die Abgabe reicht es, folgendes zu notieren: D_t , h_t , ϵ_t , α_t (für $1 \leq t \leq 3$) und die endgültige Hypothese H(x). Reelle Zahlen können dabei auf drei Nachkommastellen gerundet werden. Gib außerdem die Anzahl der Fehler von H auf S an.

Aufgabe 5.2

Zeige bei AdaBoost, dass der Fehler von h_t unter Verteilung D_{t+1} genau $\frac{1}{2}$ ist. Zeige also:

$$\Pr_{i \sim D_{t+1}}(h_t(x_i) \neq y_i) = \frac{1}{2}$$

Aufgabe 5.3

Betrachte folgende randomisierte Variante von AdaBoost: Die zusammengesetzte Hypothese H wird durch einen Klassifizierer \tilde{H} ersetzt, der mit einer Wahrscheinlichkeit von $\frac{e^{F(x)}}{e^{F(x)}+e^{-F(x)}}$ für den Punkt x das Label +1 vorhersagt (ansonsten sagt er -1 voraus). Dabei ist $F(x) = \sum_{t=1}^{T} \alpha_t h_t(x)$.

Zeige, dass die obere Schranke für den Fehler auf den Trainingsdaten aus der Vorlesung für \tilde{H} um den Faktor 2 verbessert werden kann. Das heißt, zeige:

$$\Pr_{i \sim D_1, \tilde{H}}(\tilde{H}(x_i) \neq y_i) \leq \frac{1}{2} \prod_{t=1}^{T} \sqrt{1 - 4\gamma_t^2}$$

Aufgabe 5.4

Sei $X = \{0,1\}^n$ und sei S eine Stichprobe mit Punkten aus $X \times \{-1,1\}$, die von einer k-Term-DNF gelabelt worden sind. Weise nach, dass die Basisklasse der Monome auf S einen Margin von mindestens $\frac{1}{2k-1}$ besitzt.

Zeige also: Für jede k-Term-DNF $c: X \to \{-1,1\}$ existiert eine gewichtete Summe

$$h(x) = \sum_{i=1}^{l} \alpha_i M_i(x) \quad ,$$

wobei die $M_i: X \to \{-1,1\}$ durch Monome gegeben sind und $\alpha_i \geq 0, \ \sum_{i=1}^l \alpha_i = 1,$ mit der Eigenschaft

$$c(x) \cdot h(x) \ge \frac{1}{2k-1}$$
 für alle $x \in X$.

 ${\it Hinweis:}$ Die Basisklasse der Monome enthält mit dem leeren Monom die konstante-1-Funktion.