132 DATA STRUCTURES FOR SET MANIPULATION PROBLEMS 47

begin -
make LIST empty;
v < ELEMENT({];
while FATHER([v] # 0 do
begin
add v to LIST; -
v « FATHER][v]
end;
comment v is now the root;
. print NAME][v];
for each w on LIST do FATHER[w] < v
end

Fig. 4.18. Executing instruction FIND(/).

begin
wig assiime COUNTI[ROOTI}i]]} =< COUNT[ROOTL;]]
otherwise interchange / and _} in .
begin
- LARGE « ROOT[j];
SMALL <« ROOTYi];
FATHER[SMALL] « LARGE;
COUNT[LARGE] < COUNT[LARGE] + COUNT[SMALL];
NAME[LARGE] « £;
ROOT[4]} « LARGE
end
end

Fig. 4.19. Executing instraction UNION(G, J, k).

n F(n)
0 1

1 2
2 4

3 16
4 65536
5 | 2=

Fig. 4.20. Sdnie ‘values of F.

140 DATA STRUCTURES FOR SET MANIPULATION PROBLEMS \ 4.

for i < 1 until n do
besi
7 < FIND(G);
if j < k then
beei |
: print i “is deleted by the ”j“th EXTRACT_MIN instruc-
tion™’;
UNIONYj, SUCC[/], SUCCLiD;
SUCC[PRED[/]] « SUCCI[s];
PRED[SUCC/j]] « PRED[j]_
end '

Fig. 4.23. Program for off-line MIN problem.

144 DATA STRUCTURES FOR SET MANIPULATION PROBLEMS

begin
LIST < (s, 52

COLLECTION <« §;
for each s in $; U S, do add {s} to COLLECTION;

comment We have just initialized a set for each state in §, U S;
‘while there is a pair (5, s’) of states on LIST do

begin '
delete (s, s') from LIST;

let A and 4’ be FIND(s) and FIND(s'), respectively;
if A # A’ then
begin
UNION@, A4', A);
forallain I do ,
add (8(s, a), 8(s', a)) to LIST

end
end '
end _
Fig. 4.25. Algorithm for finding sets of equivalent states, assuming s, and s, -ar:-;-

equivalent.

DICTIONARIES AND PRIORITY QUEUES 149

{a} {b)

Fig. 4.28 Tree of Fig. 4.27(a), after inserting 4.

152 DATA STRUCTURES FOR SET MANIPULATION PROBLEMS 4.11

Fig. 431 Tree of Fig. 4.28, after removing 4.

156 DATA STRUCTURES FOR SET MANIPULATION PROBLEMS

procedure SEARCH(a, r):
if any son of r is a leaf then return r
else

begin '
let s; be the ith son of r;

if a = L{r] then retarn SEARCH(a, s,)
else
if r has two sons or a < M[r] then return SEARCH(a, S3)

‘ " else return SEARCH(a, s3)
end

Fig. 4.29. Procedure SEARCH.

procedure ADDSON(v):
begin
create a new vertex v'
make the two nghtmost sons of v the left and right sons of v’
if v has no father then
begin
create a new root r;
make v the left son and v’ the right son of r
end

else
begin
let f be the father of v;
make v’ a son of f immediately to the right of v;
if £ now has four sons then ADDSON(f)
end
end . 3

Fig. 4.30. Procedure ADDSON.

MERGEABLE HEAPS 153

procedure IMPLANT(T,, T,): :
if HEIGHT(T,) = HEIGHT(T,) then
begin
‘create a new root r;
make ROOT([T,] and ROOT[T,] the left and right sons of r

end
else ;
~ wig assume HEIGHT(T,) > HEIGHT\(T,) otherwise ‘
interchange T, and T, and interchange “left” and “right” in
begin _ .
let v be the vertex on the rightmost path of T, such that |
DEPTH(v) = HEIGHT(T,) — HEIGHT(T,);
let f be the father of v; _ :
make ROOTI[T,] a son of f immediately to the right of v;
if f now has four sons then ADDSON(f)f
end :

t If we wish to have L and M values for the new vertex which ADDSON(f) will

create, we must first find the maximum descendant of v by following the path to the
_ rightmost leaf. '

Fig. 4.32. Procedure IMPLANT.

CONCATENABLE QUEUES

155

|

7

Ts

Fig. 4.33 Sphitting a 2-3 tree.

PARTITIONING 157

procedure DlVIDE(a, T):
begin
on the path from ROOT[T] to the leaf labeled a remove all vertices ex-
cept the leaf;
comment At this point 7 has been divided into two forests-—the left
forest, which consists of all trees with leaves to the left of and including
the leaf labeled a, and the right forest, which consists of all trees with
leaves to the right of a;
while there is more than one tree in the left forest do
begin
let T’ and T" be the two nghtmost trees in the left forest;
IMPLANT(T', T"){
end; ' ,
while there is more than one tree in the right forest do
begin
let T' and T" be the two leftmost trees in the right forest;
IMPLANT(T', T™ :
end
end

t The resuit of IMPLANT(T', T") should be considered as remaining in the left
forest. Similarly, when applied to trees in the right forest, the result of IMPLANT is
a tree in the right forest.

Fig. 4.34. Procedure fo split a 2-3 tree.

PARTITIONING 159

[)
.

el i

AT

ek

13.
14.

A S

begin
WAITING «—{1,2,...,ph
qg<p;
while WAITING not empty do
begin
select and delete any integer i from WAITING:;
INVERSE « f~YB[il);
for each j such that B[j] N INVERSE # ﬁ "and
B[j] ¢ INVERSE do
begin-
q<q-+1l;
create a new block Bgl;
Blg] < B[j] N INVERSE;
BLjl1 < BLi1—Blql;
if j is in WAITING then add g to WAITING
else
if |BL/ll = |Biq]ll then
add j to WAITING
else add g to WAITING

end
end
end

Fig. 4.35. Partitioning algorithm.

EXERCISES

163

Time to process n
imstructions on sets

of size n
: Type of - Expected | Worst-case
Data structure universe lnstmctiqns permitted time time
1. Hash table Arbitrary set MEMBER, INSERT, { O(n) o)
on which a DELETE : :
hashing func-
tion can be
_ computed
. Binary search Arbitrary MEMBER, INSERT, | O(nlog n) | O(#)
tree ordered set DELETE, MIN
. Tree structure | Integers 1 to n | MEMBER, INSERT, | OnG®n)) | O@mGm)
of Algorithm DELETE, UNION, at most at most
4.3 FIND .
. 23 trees Arbitrary MEMBER, INSERT, | O(nlog n) | O(nlog n)
with leaves ordered set DELETE, UNION,
unordered - FIND, MIN _ .
. 2-3 l'ree$ Arbitrary MEMBER, INSERT. | O(nlog n} | O(n log n)
with lea\fes ordered set DELETE, FIND,
ordered SPLIT, MIN,
: CONCATENATE

Fig. 4.36. Summary of properties of data structures.

