Übungen zur Vorlesung

Komplexitätstheorie

WS 19/20

Übungsblatt 4

Aufgabe 4.1

Zeigen Sie für A_1 , die MST-basierte Heuristik für metrisches TSP, dass $R_{A_1} \geq 2$. Hierbei bezeichnet R_{A_1} die *Performanzrate* des Algorithmus A_1 . Wir definieren allgemein für Minimierungsprobleme

$$R_A = \sup_{x} \frac{A(x)}{\operatorname{opt}(x)},$$

wobei A(x) die Kosten der von A erzielten Lösung und opt(x) die Kosten einer optimalen Lösung für die Eingabe x bezeichnet. Für Maximierungsprobleme gilt entsprechend

$$R_A = \sup_{x} \frac{\operatorname{opt}(x)}{A(x)}.$$

Beachten Sie, dass in der Vorlesung lediglich gezeigt wurde, dass $R_{A_1} \leq 2$ gilt.

Aufgabe 4.2

Das Problem RECTANGLE PACKING ist wie folgt definiert:

Eingabe: Eine Menge von Rechtecken R_1, \ldots, R_n sowie ein Rechteck R mit Flächeninhalt $A(R) = \sum_{i=1}^n A(R_i)$

Frage: Können alle Rechtecke R_i , i = 1, ..., n, überlappungsfrei in R gepackt werden?

Zeigen Sie, dass 4-PARTITION pseudopolynomiell reduzierbar ist auf RECTANGLE PACKING.

Aufgabe 4.3

 $(A_k)_k$ bezeichne das Approximationsschema von Sahni für KNAPSACK. Führen Sie A_0 und A_2 für die folgenden Daten aus:

- Objekte $O = \{1, ..., 5\}.$
- Profit p_i für Objekt i: $p_1 = 5, p_2 = 24, p_3 = 18, p_4 = 30, p_5 = 16.$
- Gewicht w_i für Objekt i: $w_1 = 4, w_2 = 11, w_3 = 8, w_4 = 12, w_5 = 10.$
- Gewichtsschranke W = 19.

Aufgabe 4.4

Zeigen Sie, dass der Algorithmus A_0 von Sahnis Approximationsschema um einen beliebig großen Faktor vom Optimum abweichen kann, d.h. es gilt $R_{A_0} = \infty$.