Übungen zur Vorlesung

Komplexitätstheorie

WS 19/20

Übungsblatt 3

Aufgabe 3.1

- a) Zeigen Sie, dass VERTEX COVER als Entscheidungsproblem in Polynomialzeit lösbar wird, wenn wir es auf bipartite Graphen einschränken.
- b) Entwerfen Sie einen Algorithmus, der zu gegebenem bipartiten Graphen und zu gegebener Kostenschranke k ein Vertex Cover der Größe k konstruiert, sofern eines existiert. Hinweis zu a): Sie dürfen ausnutzen, dass das Maximum Matching Problem für beliebige Graphen in Polynomialzeit lösbar ist. Recherchieren Sie, in welcher Beziehung Maximum Matching und Vertex Cover in bipartiten Graphen zueinander stehen.

Aufgabe 3.2

Betrachten Sie die polynomielle Reduktion von 3–SAT auf 3–COLORABILITY und beweisen Sie (unter der Voraussetzung, dass für die Knoten A, B, C nur die Farben 0 und 1 zur Verfügung stehen) folgende Aussagen über die Klauselkomponente (Skript S.36) und das Crossover–Gadget (S. 4 Handzettel):

- a) Wenn A, B, C die Farbe 0 haben, so muss auch Z mit 0 gefärbt sein.
- b) Wenn einer der Knoten A, B, C die Farbe 1 hat, so kann auch Z mit 1 gefärbt werden.
- c) Zu jeder Wahl von zwei Farben $a, b \in \{1, 2, 3\}$ existiert eine Färbung f mit f(x) = f(x') = a und f(y) = f(y') = b.
- d) Es gilt f(x) = f(x') und f(y) = f(y') für alle zulässigen 3-Färbungen.

Aufgabe 3.3

Verwenden Sie die Reduktion von 3-SAT auf 3-COLORABILITY, indem Sie zu der nachfolgend angegebenen 3-SAT-Formel die zugehörige Eingabeinstanz für 3-COLORABILITY bestimmen. Entscheiden Sie anhand der Instanz, ob die Formel erfüllbar ist. Wenn ja, geben Sie die entsprechende 3-Färbung und eine korrespondierende Belegung an:

$$F = (x_1 \vee \overline{x_2} \vee \overline{x_2}) \wedge (x_2 \vee \overline{x_1} \vee \overline{x_1})$$

Aufgabe 3.4

Gegeben sei die folgende Variante von PARTITION:

Eingabe: Zahlen $a_1, \ldots, a_{2n} \in \mathbb{N}$ mit $\sum_{i=1}^{2n} a_i = S$ **Frage:** Existiert eine Menge $I \subset [2n]$ mit |I| = n/2 und $\sum_{i \in I} a_i = S/2$?

Zeigen Sie, dass dieses Problem pseudopolynomiell lösbar ist.