Hans U. Simon Francesco Aldà Bochum, December 1^{st} 2016 Deadline on December 8^{th} 2016

Homework for

Komplexitätstheorie A. Y. 16/17

Assignment 7

Exercise 7.1

In the lecture, we have seen that Sahni's algorithm A_k for KNAPSACK outputs a solution that differs from the optimum at most by a factor 1+1/k. Show that the performance ratio of A_k actually is 1+1/k for $k \ge 1$.

Exercise 7.2

Read Theorem 8.14 in the lecture notes (transformation of a FPTA-scheme into a pseudopolynomial algorithm). In the lecture, the theorem was proved for minimization problems. Prove it for maximization problems.

Exercise 7.3

Given a maximization problem Π and two real numbers $0 \le a \le b$, the [a, b]-gap- Π problem consists of distinguishing between the following two cases for an instance I of problem Π :

- $OPT(I) \ge b;$
- OPT(I) < a.

The instances satisfying the former case are the YES instances and the latter are the NO instances. Show that if the [a, b]-gap version of a maximization problem Π is NP-hard, then it is not possible to find an approximate solution for Π within a factor of a/b, unless P = NP.

Exercise 7.4

A kernelization algorithm for a decision problem Π is a polynomial-time transformation that maps an instance (I, k) into an instance (I', k') such that

a) $(I, k) \in \Pi$ if and only if $(I', k') \in \Pi$;

- b) $k' \leq k$; and
- c) $|I'| \leq f(k)$ for some computable function f.

Show that Π is decidable and has a kernelization algorithm if and only if $\Pi \in \mathrm{FPT}.$