Bochum, October 27^{th} 2016 Deadline on November 3^{rd} 2016

Homework for

Komplexitätstheorie

A. Y. 16/17

Assignment 2

Exercise 2.1

- a) In the lecture we have described the codeword $\langle w_1, \ldots, w_k \rangle \in \{0, 1\}^*$ of a k-tuple (w_1, \ldots, w_k) such that $w_i \in \{0, 1\}^*$. Let $n := \sum_{i=1}^k |w_i|$ denote the total length of w_1, \ldots, w_k . Express $|\langle w_1, \ldots, w_k \rangle|$ as a function of n and k.
- b) Define a new codeword $C_k(w_1, \ldots, w_k) \in \{0, 1\}^*$ of (w_1, \ldots, w_k) inductively as follows:

$$C_1(w) = w$$

 $C_{i+1}(w_1, \dots, w_{i+1}) = \langle C_i(w_1, \dots, w_i), w_{i+1} \rangle$

How does $|C_k(w_1, \ldots, w_k)|$ depend on n and k (in O-notation)? How is the dependence on n if k is considered constant?

Exercise 2.2

Let M be a 2-state busy beaver, i.e., $M = (Q, \Sigma, \Gamma, B, q_0, \delta, F)$ is a DTM where $Q = \{q_0, q_1, q_h\}$, $\Sigma = \{1\}$, $\Gamma = \{B, 1\}$, $F = \{q_h\}$ and δ is defined by the following table:

$$\begin{array}{c|cc} & B & 1 \\ \hline q_0 & (q_1, 1, R) & (q_1, 1, L) \\ q_1 & (q_0, 1, L) & (q_h, 1, R) \end{array}$$

Write the configurations of the machine M when it is initialized with the empty input.

Exercise 2.3

Sketch the proof of the "Linear Speedup" theorem for a 1-tape DTM (resp. NTM), that is, for each 1-tape DTM (resp. NTM) M which, on input of length n, makes at most T(n) steps, there exists a DTM (resp. NTM) M' that simulates M in at most $\varepsilon T(n) + n + 1$ steps, where $\varepsilon > 0$ is an arbitrarily small constant.

Hint: M' can have two tapes.

Exercise 2.4

Let PARTITION be the following problem: Given a set of natural numbers $A = \{a_1, \ldots, a_n\}$, is there $M \subseteq A$ such that $\sum_{a \in M} a = \sum_{a \in (A \setminus M)} a$? Let PARTITION-INTO-3-SUMS be the following problem: Given a set of natural numbers $A = \{a_1, \ldots, a_n\}$ such that $\sum_{i=1}^n a_i = 3S$, are there pairwise disjoint $M, N, P \subseteq A$ such that $\sum_{a \in M} a = \sum_{a \in N} a = \sum_{a \in P} a$?

Show PARTITION \leq_{pol} PARTITION-INTO-3-SUMS.