Hans U. Simon Francesco Aldà

Homeworks for

Komplexitätstheorie A. Y. 13/14

Sheet 12

Exercise 12.1 Let BPL be the class of all languages L that can be recognized by a logspace-bounded PTM that accepts inputs from L and rejects words from \overline{L} with probability at least 2/3, respectively. Show that $BPL \subseteq P$.

Exercise 12.2 Show that if there is a polynomial-time algorithm that approximates the number of cycles in a given digraph up to a factor 1/2, then P = NP.

Exercise 12.3

- a) Show that the problem of counting the number of satisfying assignments $a \in \{0,1\}^n$ of a CNF-Formula F such that $a_1 = 1$ is computationally equivalent to #SAT (by presenting mutual Cook-reductions between these two problems).
- b) Show that #3-SAT is #P-complete.

Exercise 12.4 Show that the XOR gadget in the proof of the #P-completeness of the permanent has the required properties. Specifically, let G be any digraph with integer edge-weights containing a pair of edges (u, u'), (v, v'). Let G' be the graph obtained by replacing these edges by the XOR gadget. The following holds:

- a) Every cycle cover of G of weight 1 that uses exactly one of the edges (u, u'), (v, v') is mapped to a set of cycle covers in G' whose total weight is 4.
- b) All the other cycle covers of G' have total weight 0.