Hans U. Simon Francesco Aldà

Homeworks for

Komplexitätstheorie A. Y. 13/14

Sheet 5

Exercise 5.1 Let EXACT-k-SAT be the version of SAT where every clause consists of exactly k literals. Argue that a random assignment satisfies, on the average, a fraction $1 - 2^{-k}$ of all clauses. Can you design a *deterministic* polynomial time procedure which finds an assignment that satisfies a fraction of at least $1 - 2^{-k}$ of all clauses?

Hint: One could use the following fact. Let S be the fraction of clauses which are satisfied by a random assignment, then

$$\mathbb{E}[S] = \frac{\mathbb{E}[S|x_i=0] + \mathbb{E}[S|x_i=1]}{2},$$

for $1 \leq i \leq m$, where m is the number of variables.

Exercise 5.2 Show that Sahni's algorithm A_0 for KNAPSACK has performance ratio ∞ .

Exercise 5.3 In the lecture, we have seen that Sahni's algorithm A_k for KNAPSACK differs from optimum at most by a factor 1 + 1/k. Show that the performance ratio of A_k actually is 1 + 1/k.

Exercise 5.4 Read Theorem 8.13 in the Lecture Notes (Transformation of a FPTA-scheme into a pseudopolynomial algorithm). In the lecture, the theorem was proved for minimization problems. Prove it for maximization problems.