Übungen zur Vorlesung

Komplexitätstheorie

Sommer 2015

Übungsblatt 3

Aufgabe 3.1

Zeigen Sie die Reflexivität und Transitivität der Relationen » \leq_T « und » \leq_L «.

Aufgabe 3.2

Das Problem LONGEST PATH BETWEEN TWO NODES ist gegeben durch

Eingabe: Ungerichteter Graph G = (V, E) mit Kantengewichten $l(e) \in \mathbb{N}_0$, Knoten $a, b \in V$. Schranke $B \in \mathbb{N}$.

Frage: Existiert in G ein Pfad von a nach b, der mindestens Gesamtgewicht B hat?

Konstruieren Sie eine Levin–Reduktion von HAMILTON CIRCUIT auf LONGEST PATH BETWEEN TWO NODES.

Aufgabe 3.3

Das Problem PARTITION ist gegeben durch:

Eingabe: Zahlen $a_1, a_2, ..., a_n \in \mathbb{N}$.

Frage: Existiert eine Menge $J \subseteq \{1, ..., n\}$ mit: $\sum_{i \in J} a_i = \sum_{i \notin J} a_i$?

Zeigen Sie mit elementaren Mitteln (d.h. ohne Reduktion auf ein anderes Problem) die Selbstreduzierbarkeit von PARTITION.

Aufgabe 3.4

Sei R eine selbstreduzierbare, polynomiell verifizierbare Relation und val(x',y) eine polynomiell auswertbare Bewertungsfunktion. Dabei ist ein Paar (x,y) genau dann in R, wenn gilt: x=(x',K) und $val(x',y)\geq K$ für das Maximierungsproblem (bzw. $val(x',y)\leq K$ für das Minimierungsproblem). Zeigen Sie, dass das Maximierungsproblem bzw. Minimierungsproblem von R bezüglich val Cook-reduzierbar auf das Entscheidungsproblem für R ist.