Übungen zur Vorlesung

Komplexitätstheorie

Sommer 2010

Übungsblatt 11

Aufgabe 11.1

Zeige folgende Aussagen:

- a) Sei $L \in MA$ und $\epsilon > 0$. Ohne die Anzahl an Runden zu erhöhen ist es möglich die Akzeptanzwahrscheinlichkeit eines Wortes $x \in L$ größer als 1ϵ und die eines Wortes $x \notin L$ kleiner als ϵ zu bringen.
- b) $MA \subseteq AM$

Aufgabe 11.2

Zeige:

- a) $PCP(0, \log n) = P$
- b) PCP(0, poly(n)) = NP

Aufgabe 11.3

Zeige: Falls CLIQUE $\in PCP(r(n), 1)$ mit $r(n) = o(\log n)$, dann folgt P = NP.

Aufgabe 11.4

Sei φ eine 3CNF-Formel mit genau drei verschiedenen Variablen pro Klausel. Zeige, dass es einen deterministischen Algorithmus gibt, der in polynomieller Zeit eine Belegung findet, die mindestens 7/8 der Klauseln von φ erfüllt.