Übungen zur Vorlesung

Komplexitätstheorie

Sommer 2010

Übungsblatt 3

Aufgabe 3.1

Sei L_1 und $L_2 \in NP$. Beweise oder widerlege:

- a) $L_1 \cup L_2 \in NP$
- b) $L_1 \cap L_2 \in NP$
- c) $L_1L_2 \in NP$ (wobei $x \in L_1L_2 \iff \exists x_1 \in L_1, \exists x_2 \in L_2 : x = x_1x_2$)

Aufgabe 3.2

Für jede beliebige Menge K von Sprachen definieren wir co- $K := \{L \mid \overline{L} \in K\}$ und $KC := \{L \mid L \in K \text{ und } \forall L' \in K \text{ gilt } L' \leq_{pol} L\}$. Zum Beispiel ist NPC die Menge der NP-vollständigen Sprachen.

Zeige, dass gilt: co-(NPC) = (co-NP)C

Aufgabe 3.3

Beweise:

- a) $P \subseteq NP \cap \text{co-}NP$
- b) FACTORING $\in NP \cap \text{co-}NP$

FACTORING

Eingabe: Zwei Zahlen $x, k \in \mathbb{N}$

Frage: Hat x einen Primfaktor, der kleiner oder gleich k ist?

Hinweis zur b): Nutze aus, dass ein Primzahltest in polynomieller Zeit möglich ist.

Aufgabe 3.4

Zeige mit elementaren Mitteln (also ohne eine Reduktion auf SAT), dass folgende Probleme selbstreduzierend sind:

- a) TSP
- b) 3-COLORABILITY

$\mathbf{TSP}-\mathbf{Traveling}\text{-}\mathbf{Salesman}\text{-}\mathbf{Problem}$

Eingabe: Eine Kostenschranke C, n Städte C_1, \ldots, C_n und eine Distanzmatrix $D = (d_{i,j})_{1 \leq i,j \leq n}$, wobei $d_{i,j} \in \mathbb{N}$ die Distanz zwischen C_i und C_j angibt **Frage:** Existiert eine Rundreise durch die Städte C_1, \ldots, C_n , deren Gesamtlänge C nicht überschreitet, d.h. existiert eine Permutation σ von $1, \ldots, n$, so dass $\sum_{i=1}^{n-1} d_{\sigma(i),\sigma(i+1)} + d_{\sigma(n),\sigma(1)} \leq C$?