Abgabe: 21.11.2011 (bis 15:15 Uhr)

Übungen zur Vorlesung

Diskrete Mathematik

WS 11/12

Übungsblatt 05

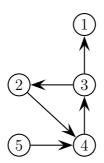
Aufgabe 5.1

a) Berechne den Prüfercode von

$$T = ([8], \{\{1, 2\}, \{1, 3\}, \{2, 6\}, \{3, 4\}, \{3, 5\}, \{4, 7\}, \{4, 8\}\}))$$

nach der Methode des Beweises des Satzes von Cayley aus der Vorlesung. Gib dazu in jedem Schritt die Veränderung des Baumes an.

b) Zeichne den Baum mit n=8 Knoten, dessen Prüfercode 272537 ist. Gib dazu die Kanten des Baumes in der Reihenfolge an, in der sie durch den Aufruf des Dekodierungsalgorithmus generiert werden.


Aufgabe 5.2 Betrachte folgenden Digraphen G = (V, E):

$$V = \{1, \dots, 8\}$$

$$E = \{(1, 2), (2, 3), (2, 7), (3, 4), (3, 5), (4, 1), (4, 3), (5, 6), (5, 7), (6, 7), (6, 8), (8, 5)\}$$

- a) Zeichne den Graphen.
- b) Gib die starken Zusammenhangskomponenten des Graphen an.
- c) Ist der Graph azyklisch? Falls ja, gib eine topologische Sortierung der Knoten an. Falls nein, gib einen gerichteten Kreis an.

Aufgabe 5.3 Berechne mit Hilfe des Algorithmus von Warshall die transitive Hülle von folgendem Digraphen:

Gib dazu nach jeder Iteration der Hauptschleife die Matrix P[i,j] an. Hinweis: Im Buch wird die Matrix P[i,j] mit W[i,j] bezeichnet.

Aufgabe 5.4 Gegeben sei ein Graph G=(V,E) mit $V=\{1,\ldots,7\}$ und

$$E = \{\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 4\}, \{2, 7\}, \{3, 6\}, \{4, 5\}, \{5, 6\}\}\}$$

- a) Führe eine Breitensuche für G mit dem Startknoten 1 durch. Gib dazu tabellarisch bei jeder Veränderung des Queue-Inhalts den gesamten Queue-Inhalt und die Werte zeiger $[1], \ldots,$ zeiger[7] an.
- b) Führe eine Tiefensuche für G mit dem Startknoten 1 durch. Gib dazu tabellarisch bei jeder Veränderung des Stack-Inhalts den gesamten Stack-Inhalt und die Werte zeiger $[1], \ldots, z$ eiger[7] an.