Lösungen zu den Übungsaufgaben

Diskrete Mathematik

WS 04/05

Blatt 11

Aufgabe 11.2

- a) $\operatorname{Var}[X] > 0$: Falsch für n = 1, da dann gilt $x_1 = \operatorname{E}[X]$ und damit $\operatorname{Var}[X] = (x_1 \operatorname{E}[X])^2 = 0$. Sonst gilt die Aussage, da für $n \geq 2$ aus $x_i \neq E[X]$ für mindestens ein $i \in \{1, \ldots, n\}$ folgt, dass $\operatorname{Var}[X] \geq \operatorname{Pr}(X = x_i)(x_i \operatorname{E}[X])^2 > 0$.
- b) $E[X] \ge x_1$: Richtig! $E[X] = \sum_{i=1}^n \Pr(X = x_i) x_i \ge \sum_{i=1}^n \Pr(X = x_i) x_1 = 1 \cdot x_1$.
- c) $Var[X] \ge x_1$: Falsch! Gegenbeispiel ist Zufallgröße X+1, wobei X Bernoulli-verteilt mit Gewinnwahrscheinlichkeit $p=\frac{1}{2}$ ist. Damit ist $V[X+1]=V[X]=\frac{1}{4}<1=x_1$.
- d) $\operatorname{Var}[X] \geq \operatorname{E}[X]$: Falsch! Gegenbeispiel $X \sim Bin(n,p)$. Es gilt: $Var[X] = np(1-p) < np \cdot 1 = \operatorname{E}[X]$.
- e) $\operatorname{Var}[X] \leq \operatorname{E}[X^2]$: Richtig! Mit $E[X]^2 \geq 0$ folgt $\operatorname{Var}[X] = \operatorname{E}[X^2] \operatorname{E}[X]^2 \leq E[X^2]$.
- f) Var $[X] \le E[X]^2$: Falsch! Gegenbeispiel Bernoulli-verteilte Zufallsgröße mit $(1-p) < \frac{1}{2} < p$. Es gilt dann $E[X]^2 = p^2 > p(1-p) = Var[X]$

Aufgabe 11.3

Wir betrachten folgende zwei Zufallsgrößen X,Y: $W_X = \{-1,0,1\}$ wobei $\Pr(-1) = \Pr(0) = \Pr(1) = \frac{1}{3}$ und $W_Y = \{1,0\}$ wobei Y = 1 falls X = 0 und Y = 1 sonst. Damit sind X und Y abhängig, da zum Beispiel $\Pr(X = 0, Y = 0) = 0 \neq \frac{2}{9} = \Pr(X = 0) \Pr(Y = 0)$. Aber es gilt E[XY] = 0 und E[X] = 0. Damit ist aber Cov(X,Y) = E[XY] - E[X] E[Y] = 0 und X und Y sind damit unkorreliert!

Aufgabe 11.4

Im Folgenden bezeichne A das Ereignis, dass der Kandidat bei seiner ersten Wahl, die Türe mit Auto wählt, G das Ereignis, dass der Kandidat gewinnt und U das Ereignis, das der Showmaster die Tür im Urzeigersinn öffnet.

a) Die Strategien A und B der Kandidaten sind unabhängig von der Entscheidung des Showmasters und können daher analog zum klassischen Ziegenproblem analysiert werden:

A:
$$\Pr(G) = \Pr(G|A)\Pr(A) + \Pr(G|\overline{A})\Pr(\overline{A}) = 1 \cdot \frac{1}{3} + 0 \cdot \frac{2}{3} = \frac{1}{3}$$

B:
$$\Pr(G) = \Pr(G|A)\Pr(A) + \Pr(G|\overline{A})\Pr(\overline{A}) = 0 \cdot \frac{1}{3} + 1 \cdot \frac{2}{3} = \frac{2}{3}$$

C: Für Strategie C muss eine weitere Unterscheidung berücksichtigt werden. Wir definieren dazu die beiden zusätzlichen Ereignisse A_1 (das Auto ist in der im Uhrzeigersinn nächsten Tür) und A_2 (das Auto ist in der im Uhrzeigersinn übernächsten Tür). Dann gilt:

$$Pr(G) = Pr(G|A) Pr(A) + Pr(G|A_1) Pr(A_1) + Pr(G|A_1) Pr(A_1)$$

$$= (Pr(G|A \cap U) Pr(U|A) + Pr(G|A \cap \overline{U}) Pr(\overline{U}|A)) Pr(A)$$

$$+ Pr(G|A_1) Pr(A_1) + Pr(G|A_1) Pr(A_1)$$

$$= (1 \cdot 1 + 0 \cdot 0) \frac{1}{3} + 1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} = \frac{2}{3} ,$$

da der Showmaster in den Fällen A_1 und A_2 keine Wahl hat und immer die einzig verbliebene freie Tür öffnet, was die Kandidatin bei Strategie C im ersten Fall zum erfolgreichen Wechsel bewegt, im zweiten jedoch fälschlicherweise zum Festhalten an der zuerst gewählten Tür.

b) Da die beiden Strategien A und B in keiner Weise auf die Entscheidung des Showmasters eingehen, bleiben die Analysen aus Teil a) korrekt und die Gewinnwahrscheinlichkeit ändert sich nicht. Anders mit Strategie C. In diesem Falle gilt:

$$Pr(G) = Pr(G|A) Pr(A) + Pr(G|A_1) Pr(A_1) + Pr(G|A_1) Pr(A_1)$$

$$= (Pr(G|A \cap U) Pr(U|A) + Pr(G|A \cap \overline{U}) Pr(\overline{U}|A)) Pr(A)$$

$$+ Pr(G|A_1) Pr(A_1) + Pr(G|A_1) Pr(A_1)$$

$$= (1 \cdot \frac{1}{2} + 0 \cdot \frac{1}{2}) \frac{1}{3} + 1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} = \frac{1}{2} ,$$