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Supervised Learning:

• Concept class C with target h⇤ 2 C

• Distribution over instance space X

• Labeled sample of size m

• Upper bound: m = O
⇣

d·log 1/"+log 1/�
"

⌘
= eO

⇣
d
"

⌘

• Lower bound: m = ⌦
⇣

d+log 1/�
"

⌘
= e⌦

⇣
d
"

⌘
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Motivation
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Semi Supervised Learning:

• Additional unlabeled sample

• Conjecture by Ben-David, Lu and Pál:

Even for fixed , only saves a constant factor of labels

– For special classes and distributions:

Ben-David et al (2008)

– For finite classes and ‘most’ distributions:

Simon and D. (2011)
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• Data points have two ‘views’: x = (x1, x2), X = X1 ⇥X2

• Two target concepts: h

⇤
1 2 C1, h

⇤
2 2 C2

• Distribution over X1 ⇥X2

– Perfectly compatible: h

⇤
1(x1) = h

⇤
2(x2) with probability 1

– Conditional independence given the label:

�
x1, x2|+

�
=

�
x1|+

�
·

�
x2|+

�
�
x1, x2|�

�
=

�
x1|�

�
·

�
x2|�

�
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Co-Training with conditional independence
by Blum and Mitchell (1998)
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• Balcan and Blum (2010) give a Semi Supervised algorithm

that learns with just one labeled example!

• Power of unlabeled data?
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• Balcan and Blum (2010) give a Semi Supervised algorithm

that learns with just one labeled example!
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Co-Training

e⌦
✓
d

"

◆
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DIS(V ) := {x 2 X| 9h, h0 2 V : h(x) 6= h

0(x)}
for any subset V ✓ C (usually a version space)
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The disagreement coefficient
definition
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✓(C,H| , h

⇤
, sample) :=

�
DIS(VC)

�

sup
h2VH

�
h(x) 6= h

⇤(x)
�

✓(C,H) := sup
,h⇤,sample

✓(C,H| , h

⇤
, sample)
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largest error

size of disagreement region

after seeing the sample

✓(C,H| , h

⇤
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�
DIS(VC)

�

sup
h2VH

�
h(x) 6= h

⇤(x)
�

✓(C,H) := sup
,h⇤,sample

✓(C,H| , h

⇤
, sample)
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The disagreement coefficient
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• A variant of Hanneke’s disagreement coe�cient (2007) for
the realizable case

• Note: error according to hypothesis class H, but the dis-
agreement region is from C

largest error

size of disagreement region

after seeing the sample

✓(C,H| , h

⇤
, sample) :=

�
DIS(VC)

�

sup
h2VH

�
h(x) 6= h

⇤(x)
�

✓(C,H) := sup
,h⇤,sample

✓(C,H| , h

⇤
, sample)
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h⇤ = {0, 1}
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The disagreement coefficient
example
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• Simple class that is useful for proving lower bounds

• SFn :=
�
{0}, {0, 1}, {0, 2}, . . . , {0, n}

 2 3

4

5

67
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h⇤ = {0}
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h⇤ = {0}

• ✓(SFn, SFn) = n

– Generally: ✓(C, C)  |C|� 1

– Also ✓(SFn, SFn) � n:

Choose as uniform on {1, . . . , n} and sample = h⇤ = {0}
) ✓(SFn, SFn| , h⇤, sample) = 1

1/n = n.
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The disagreement coefficient
application in learning theory
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Lemma:
For a sample size of

m = eO
✓
✓(C,H) ·VCdim(H)

"

◆

it holds with high probability that

�
DIS(VC)

�  "

• MakeHmore powerful)
✓ decreases, but VCdim
increases

• Proof: classic PAC bound

for class H
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• Concept classes C1, C2, hypotheses classes H1,H2

• d

i

:= VCdim(H
i

)

• ✓

i

:= ✓(C
i

,H
i

)

• p+ :=

�
h

⇤
(x) =“+”

�

• p� :=

�
h

⇤
(x) =“�”

�
= 1� p+

• p

min

:= min{p+, p�}, dmax

:= max{d1, d2}, ...
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Back to Co-Training
some notation
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• After seeing a labeled sample, the learner has to label a new
instance (x1, x2):

– Safe decision, if x1 62 DIS1 or x2 62 DIS2

– How should we label an instance in DIS1 ⇥DIS2?
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Three resolution rules
with upper bounds
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• First fix some consistent h1 2 H1, h2 2 H2

R1: If h1(x1) = h2(x2) then output this la-
bel, otherwise choose the hi that belongs
to the class with higher ✓

R2: Same as R1, but when in conflict output
the label that occurred less often in the
sample

R3: Output the label that occurred less often
in the sample
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pmin

z }| {z }| { R1R2R3 z }| {

F = ✓1✓2
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pmin

✓
max

✓min
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 r
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"

· F
!

z }| {z }| {z }| {z }| {



• Learner has to estimate pmin by p̂min

• The upper bounds still hold

0 1

✓1✓2

1

✓
max

✓
min

✓
max

1

2

department of mathematics and computer science
research group | Malte Darnstädt

SUPERVISED LEARNING AND CO-TRAINING | ALT 2011, Espoo | October 7, 2011

The combined rule
a general upper bound

16
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z }| {z }| { R1R2R3 z }| {

F = ✓1✓2
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✓
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· F
!
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• WLOG p̂� � 1/2

• With high probability (after eO(1) examples): p� � 1/4

• R3: if x1 2 DIS1 and x2 2 DIS2 then output ‘+’

• If R3 makes an error on (x1, x2), then x1 2 DIS1, x2 2 DIS2 and
the true label is �
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Proof
only for rule 3
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�
error on (x1, x2)

�

=

�
x1 2 DIS1, x2 2 DIS2|�

�
p�

=

�
x1 2 DIS1|�) ·

�
x2 2 DIS2|�

�
p�

=

1

p�
·

�
x1 2 DIS1|�

�
p� ·

�
x2 2 DIS2|�

�
p�

 1

p�|{z}
4

·
�
x1 2 DIS1)| {z }

 1
2

q
d1
d2

· 1
✓1✓2

·"

·
�
x2 2 DIS2)| {z }

 1
2

q
d2
d1

· 1
✓1✓2

·"

 ✏
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• With high probability:
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• With high probability:

conditional

independence
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• With high probability:

conditional

independence

m = eO
✓q

d1d2
✏ · ✓1✓2

◆

and the earlier lemma
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Lower bounds
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• We have a ‘witness class’ for each upper bound

• The fiendish concentrates on the flower head {0}
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• VCdim

�
SFn

�
= VCdim

�
co(SFn)

�
= 1

• Get classes of arbitrary VC dimension by padding:

– C[d]
:= d-fold “disjoint unions” of C

– VCdim(C[d]
) = d ·VCdim(C)

– Lemma: ✓(C[d],H[d]
) = ✓(C,H)
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Proof technique
padding the VC dimension
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Singleton Size
definition

22

• s+(C) := size of the largest singleton sub-class in C

• s�(C) := size of the largest co-singleton sub-class in C

• C+ := all unions of concepts from C

• C� := all intersections of concepts from C



Singletonsn :=
�
{1}, {2}, . . . , {n}

 

co-Singletonsn :=
�
{2, 3, . . . , n}, {1, 3, . . . , n}, . . . , {1, 2, . . . , n� 1}
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Combinatorial upper bound
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Theorem:

For rule R3 and hypothesis classes H1,2 = C+
1,2 [ C�

1,2

m =

eO
�q

max{s+1 s+2 , s�1 s�2 }/"
�
labeled examples are su�cient.
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Combinatorial upper bound

23

Theorem:

For rule R3 and hypothesis classes H1,2 = C+
1,2 [ C�

1,2

m =

eO
�q

max{s+1 s+2 , s�1 s�2 }/"
�
labeled examples are su�cient.

• Outputs the largest consistent hypothesis in C+
1,2

or the smallest consistent hypothesis in C�
1,2

• Strong connection to “PAC-learnability from positive examples alone”

by Geréb-Graus (1989)
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Combinatorial lower bound
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Theorem:

Let 3  s+1,2, s
�
1,2 < 1 and let " > 0 be su�ciently small, then

m =

e
⌦

�q
max{s+1 s

+
2 , s

�
1 s

�
2 }/"

�
labeled examples are necessary.
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Theorem:

Let 3  s+1,2, s
�
1,2 < 1 and let " > 0 be su�ciently small, then

m =

e
⌦

�q
max{s+1 s

+
2 , s

�
1 s

�
2 }/"

�
labeled examples are necessary.

• One can drop the restriction 3  s+1,2, s
�
1,2 and still prove tight bounds

• Valid for pmin = "  1/max{s+1 s
+
2 , s

�
1 s

�
2 },

i.e. pmin is small
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• Sharper bounds for classes with one-sided errors

• Multiple views x = (x1, . . . , xk) lead to bounds like

m = eO
 

k

r
d1✓1 · · · dk✓k

"

!

• Negative result under the ↵-expanding assumption (weaker than

conditional independence)
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More results
see the proceedings and upcoming journal version
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Open questions and current work
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• Bounds for infinite s�(C), s+(C)?

– One can find classes with bounds like: m = e⌦
✓q

d1d2
" + 1

"

◆

• Can some of our techniques be applied to active learning?
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Thank you for your attention!
-- end of talk --
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