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Abstract

Sample compression schemes are schemes for “encoding” a set of examples in a small subset of examples.
The long-standing open sample compression conjecture states that, for any concept class C of VC-dimension
d, there is a sample compression scheme in which samples for concepts in C are compressed to samples of
size at most d.

We show that every order over C induces a special type of sample compression scheme for C, which we
call order compression scheme. It turns out that order compression schemes can compress to samples of
size at most d if C is maximum, intersection-closed, a Dudley class, or of VC-dimension 1–and thus in most
cases for which the sample compression conjecture is known to be true.

Since order compression schemes are much simpler than sample compression schemes in general, their
study seems to be a promising step towards resolving the sample compression conjecture. We reveal a
number of fundamental properties of order compression schemes, which are helpful in such a study. In
particular, order compression schemes exhibit interesting graph-theoretic properties as well as connections
to the theory of learning from teachers.

To obtain small compressed sets, order compression schemes for a concept class C must often use a
proper superset H ⊃ C as a hypothesis space. We thus further compare order compression schemes for C to
order compression schemes for such hypothesis spaces, leading to a study of a number of mutually related
combinatorial parameters specifying compressibility.
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1. Introduction

In the context of concept learning, sample compression schemes are schemes for “encoding” a set of
examples in a small subset of examples. For instance, from the set of examples they process, learning
algorithms often extract a subset of particularly “significant” examples in order to represent their hypotheses.
This way sample bounds for PAC-learning of a concept class C can be obtained from the size of a smallest
sample compression scheme for C [1, 2]. The size of a sample compression scheme is the size of the largest
subset resulting from compressing any sample consistent with some concept in C. In what follows, we will
use the term sample compression number of a concept class C to refer to the smallest possible size of a
sample compression scheme for C.

Littlestone and Warmuth [1] pointed out that their sample bounds for PAC-learning, stated in terms
of the sample compression number, could sometimes improve on the classical bounds stated in terms of
the VC-dimension (see [3]) if one could show that the sample compression number is linear in the VC-
dimension. The precise relationship between these two combinatorial parameters is of great interest to
the learning theory community, as witnessed by a continuing series of publications on the topic, see, e.g.,
[4, 5, 6, 2, 7, 1, 8, 9]. Floyd and Warmuth [2] conjectured that any concept class C of VC-dimension d
(abbreviated by VCD(C) = d) possesses a sample compression scheme of size d, but to date this conjecture
(called the sample compression conjecture) remains open. It is even open whether or not the sample
compression number is linear in the VC-dimension.
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While this paper does not resolve the sample compression conjecture, it offers a potential new stepping
stone for its solution. We demonstrate that any total order over a finite concept class1 C induces a sample
compression scheme for C; we call such schemes order compression schemes. The principle behind the
construction of this special kind of compression scheme is very simple; in particular, it does not fully exploit
the available options for “coding tricks”. Consequently, order compression schemes are not in general optimal
in terms of size, i.e., for some concept classes the smallest possible size for an order compression scheme
exceeds the sample compression number, and it is shown to exceed the VC-dimension in some cases. Despite
their “suboptimality”, order compression schemes exhibit properties that make them a very promising object
of study for future research on the sample compression conjecture:

• Every finite concept class has order compression schemes, and thus our notion is generally applicable.

• Many finite concept classes C for which the sample compression conjecture is proven, i.e., that are
known to have a sample compression scheme of size VCD(C), have an order compression scheme of size
VCD(C). In particular, we prove the existence of order compression schemes of size VC-dimension for
maximum classes (classes of the largest possible size for a given VC-dimension [10, 11]), for intersection-
closed classes, for Dudley classes [12], and for classes of VC-dimension 1. This suggests that there
might be further well-structured concept classes for which order compression schemes witness the
correctness of the sample compression conjecture.

• If the sample compression conjecture is true, then a helpful step towards its proof could be to gain a
deeper understanding of the circumstances under which order compression schemes are not optimal
in terms of size. In particular, it could be worth analyzing which “coding tricks” beyond those
systematically exploited by order compression schemes can make general compression schemes more
powerful.

• If the sample compression conjecture is false, then a helpful step towards disproving it could be an
attempt to show that the size of the smallest possible order compression scheme is not linear in the VC-
dimension. First, due to the simplicity of the construction of order compression schemes, this should
be less challenging than disproving the general conjecture. Second, the results obtained and the proof
techniques used could potentially yield new insights into the theory behind the general conjecture.

• The definition of order compression schemes exhibits similarities to a model of learning from helpful
teachers, namely the model of recursive teaching [13]. The central complexity parameter delimiting the
number of examples required for learning in this model is the recursive teaching dimension. By proving
that the recursive teaching dimension lower-bounds the smallest possible size of order compression
schemes, we establish a new connection between teaching and sample compression. Hence, known
results on the recursive teaching model may provide useful tools for the study of order compression
schemes.

• Order compression schemes also exhibit interesting graph-theoretic properties. We define a graph
representation of general sample compression schemes and prove that order compression schemes cor-
respond exactly to the acyclic graphs in this definition.

We further provide a number of properties of order compression that may potentially be helpful in future
studies. For this purpose, we introduce a combinatorial parameter called order compression number of a
concept class C, which refers to the smallest possible order compression scheme for C. This parameter turns
out to satisfy helpful monotonicity and sub-additivity properties.

For many concept classes C, smallest possible order compression schemes necessarily involve a hypothesis
spaceH (i.e., a class of concepts used as decompressions of compressed sample sets) that strictly comprises C.
Interestingly, the order compression number for such H can be larger than that of C, i.e., order-compressing

1In this paper, we focus on finite concept classes. This is not a restriction, since it is proven that the sample compression
conjecture is true if and only if it is true for all finite concept classes [4].
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only the subclass C of H using the hypothesis space H can be “easier” than order-compressing the whole
class H. Our results on the relationship between the order compression number of C and that of H include
a provably smallest class for which these two parameters differ.

It remains open whether or not the size of a smallest possible order compression scheme is linear in the
VC-dimension. We demonstrate that the former can exceed the latter by a factor of 3/2, but so far no
example of a larger discrepancy between the two parameters is known. Interestingly, the factor 3/2 is also
the largest known discrepancy between the recursive teaching dimension and the VC-dimension [5], which
suggests a further relationship between teaching and sample compression.

This article is an extension of a published conference paper [14].

2. Preliminaries

Throughout this paper, X = {x1, . . . , xn} is a set of cardinality n ∈ N, called the instance space,
and C,H ⊆ P(X) denote concept classes and hypothesis classes over the domain X. For X ′ ⊆ X, we
define C|X′ := {C ∩ X ′| C ∈ C}. We treat concepts and hypotheses interchangeably as subsets of X
and as 0, 1-valued functions on X. A labeled example is a pair (x, l) with x ∈ X and l ∈ {0, 1}. A
labeled sample is a set of labeled examples. For every labeled sample S and every X ′ ⊆ X, we define
X(S) := {x ∈ X| (x, 0) ∈ S or (x, 1) ∈ S} and S|X′ := {(x, b) ∈ S| x ∈ X ′}. Further, Cons(S,H) is the set
of all hypotheses in H that are consistent with S, i.e., Cons(S,H) = {H ∈ H | H(x) = l for all (x, l) ∈ S}.
S is called C-realizable if Cons(S, C) 6= ∅. The VC-dimension of the class C, denoted by VCD(C), is defined
as the cardinality of the largest X ′ ⊆ X such that C|X′ is the power set of X ′.

2.1. Sample Compression

A sample compression scheme [1] of size k for the class C consists of a compression function f and a
reconstruction function g. The compression function f maps every C-realizable sample S to a subset of
size at most k, called compression set. The reconstruction function g maps any compression set f(S) to a
hypothesis g(f(S)) ⊆ X, where

∀ (x, l) ∈ S : g(f(S))(x) = l ,

i.e., g(f(S)) is consistent with the original sample set S. The set H = {g(f(S)) | S is a C-realizable sample}
consists of all hypotheses that are used by the compression scheme. Obviously, the hypothesis class H must
be at least as powerful as C, i.e., C ⊆ H. A sample compression scheme fulfilling H = C is called proper.
We often write “(C,H)-scheme” as an abbreviation for “sample compression scheme for C using hypotheses
from H”.

Definition 1. The compression number of a pair (C,H), denoted by CN(C,H), called the compression
number of (C,H), is the minimum size of an an arbitrary (C,H)-scheme.

Example 2. The following compression scheme for the class P2 of all subsets of {1, 2} is of size 1, and
thus CN(P2,P2) = 1.

• Any sample without a positive example is compressed to ∅ (the empty sample), which is decompressed
to ∅ (the empty hypothesis).

• Any sample containing (1,+) but not (2,+) is compressed to {(1,+)}, which is decompressed to {1}.

• Any sample containing (2,+) but not (1,−) is compressed to {(2,+)}, which is decompressed to {1, 2}.

• The sample {(1,−), (2,+)} is compressed to {(1,−)}, which is decompressed to {2}.

Now let Pn be the power set over n elements. For n ≥ 4, the following compression scheme shows that
CN(Pn,Pn) ≤ bn/2c:

• As before, any sample containing only negative examples is compressed to ∅, which is again decom-
pressed to ∅, i.e. the hypothesis assigning negative labels to all elements.
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• Any sample containing only positive examples is compressed to an arbitrary single positive example,
which is decompressed to a hypothesis assigning positive labels to all elements.

• Any sample containing exactly one positive and one or more negative examples is compressed to the
positive and an arbitrary negative example; the decompressed hypothesis assigns negative labels to all
elements missing in the compressed sample.

• All remaining samples are compressed to their examples with the minority label. The resulting sets can
be distinguished from the ones of the afore-mentioned cases (if the minority label is positive, the result-
ing set will contain at least two examples, separating it from the second case), and the decompressed
hypothesis assigns the opposite label to all elements missing in the compressed sample.

Since a compression scheme of size k uses at most
∑k
i=0 2i

(
n
i

)
compression sets, no class of more than∑k

i=0 2i
(
n
i

)
concepts can have such a scheme. Since

(
n
0

)
+ 2 ·

(
n
1

)
= 2n+ 1 < 2n for n ≥ 3, this implies that

CN(Pn,H) > 1 for all n ≥ 3 and all H ⊇ Pn, and thus CN(P3,P3) = CN(P4,P4) = CN(P5,P5) = 2.

Let (f, g) be a sample compression scheme. We say that two labeled samples S′, S′′ are g-equivalent if
g(S′) = g(S′′). We can certainly normalize schemes according to the following policy: S′ = f(S) is always
chosen as a subset of S of minimal size among all subsets of S that are g-equivalent to S′. We will henceforth
implicitly assume that a scheme is normalized in this sense.

An important open question is whether every class C of finite VC-dimension d has a sample compression
scheme of size linear in d, or even equal to d [2].

2.2. Teaching

Following Goldman and Kearns [15] and Shinohara and Miyano [16], a set S of labeled examples is called
a teaching set for a concept C ∈ C (with respect to C) if C is the only concept in C that is consistent with
S, i.e., if Cons(S, C) = {C}. By T S(C, C) we denote the set of all teaching sets for C with respect to C.
TD(C, C) = min{|S| | S ∈ T S(C, C)}, called the teaching dimension of C with respect to C, denotes the
smallest possible size of a teaching set for C with respect to C. According to Zilles et al. [13], a teaching
plan for a class C = {C1, . . . , Cm} of cardinality m is a sequence

P = ((C1, S1), . . . , (Cm, Sm))

in which St ∈ T S(Ct, {Ct, . . . , Cm}) for all t = 1, . . . ,m. The order of P is defined as ord(P ) = max{|St| |
1 ≤ t ≤ m}. The recursive teaching dimension of C, denoted by RTD(C), is the minimum order over all
teaching plans of C, and is always witnessed by a teaching plan P = ((C1, S1), . . . , (Cm, Sm)) for C in which,
for all t ∈ {1, . . . ,m},

• Ct is chosen from Ct = C \ {C1, . . . , Ct−1} such that TD(Ct, Ct) = minC∈Ct(TD(C, Ct)).

• St is a smallest possible teaching set for Ct with respect to Ct.

The notion
RTD∗(C) = max

X′⊆X
(RTD(C|X′))

was introduced by Doliwa et al. [6].

3. Properties of Order Compression Schemes

We will now introduce order compression schemes, a notion that is inspired by Fan’s work [17] and that
is central to this paper:

Definition 3. Let H = {H1, . . . ,Hm} be a hypothesis class over X and let C ⊆ H. Let < be a total order
on H, say H1 < H2 < . . . < Hm. An order compression scheme for (C,H) with respect to < is a pair (f, g)
of mappings that satisfies the following properties for all C-realizable samples S:
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1. Let t be the largest number such that Ht is consistent with S. Then f(S) is a smallest subset of S that
is a teaching set for Ht with respect to {Ht, . . . , Hm}.

2. Let t be the largest number such that Ht is consistent with f(S). Then g(f(S)) = Ht.

Because the definition of f and g is constructive it is clear that any order over a hypothesis class induces
an order compression scheme.

The similarly obvious observation, that the t in the first and second part of Definition 3 must be the
same number, shows that any such scheme is indeed a compression scheme:

Proposition 4. Let H = {H1, . . . ,Hm} be any hypothesis class over X and C ⊆ H. Then any order
compression scheme for (C,H) is a (C,H)-scheme.

Since order compression schemes are compression schemes, we are particularly interested in their size:

Definition 5. The order compression number of a pair (C,H), denoted by OCN(C,H), is the minimum size
of an order (C,H)-scheme (where the minimum is taken over all total orders over H).

The following example shows that non-proper order compression schemes can be greatly superior to
proper ones. In particular, there are concept classes for which the smallest possible non-proper order
compression scheme is of size 1, while the smallest possible proper schemes can be arbitrarily large:

Example 6. Let C = {{0}, . . . , {n−1}} be the class of singletons, and let H = C ∪{∅}. The improper order
compression scheme with respect to the order {0} < . . . < {n− 1} < ∅ is easily seen to be of size 1:

• A C-realizable sample S including a positive example, say (k, 1), is compressed to {(k, 1)}.

• All other samples are compressed to ∅.

Note that {(k, 1)} is a teaching set for {k} with respect to H, and ∅ is a teaching set for ∅ with respect
to {∅}. Thus, the described compression mapping respects the policy of order compression schemes. The
compressed sets are of size at most 1. We thus obtain OCN(H,H) = OCN(C,H) = 1.

By contrast, consider proper order compression schemes for C. For reasons of symmetry, we may assume
that {0} < . . . < {n−1} is the underlying order. The sample S = {(1, 0), . . . , (n−1, 0)} is a teaching set for
{0}. However, any compression to a proper subsample would be decompressed to some {i} such that i > 0,
which is an inconsistency to (i, 0) ∈ S. It follows that OCN(C, C) = n− 1.

It should be noted that general compression schemes for the class C of singletons can be made proper and
of size 1 at the same time:

• A sample S including a positive example is compressed as described above for order compression
schemes.

• A non-empty C-realizable sample S not including positive examples can be of size at most n − 1. Let
k ∈ {0, . . . , n−1} be an index such that k occurs in S but k+1 mod n does not. Then S is compressed
to {(k, 0)} (resolving ambiguities in favor of smaller indices).

Clearly, {(k, 1)} is decompressed to {k}, and {(k, 0)} is decompressed to {k+ 1 mod n}. We obtain a proper
compression scheme of size 1 for the class of singletons.

This example raises the question of what is the optimal choice for the hypothesis class H ⊇ C when
considering order compression schemes. The best choice for H leads us to the order compression number of
a class C which is formally defined as follows:

Definition 7. The order compression number of C, denoted OCN(C) (resp. OCN′(C)), is the minimum
of OCN(C,H) (resp. OCN(H,H)) over the choice of H ⊇ C. We say that C is OC-closed if OCN(C, C) =
OCN(C), i.e., if the size of the smallest proper order scheme for C coincides with the size of the smallest (not
necessarily proper) order scheme for C. The notations CN(C) and CN′(C), referring to arbitrary compression
schemes, should be understood analogously. We say that C is AC-closed if CN(C, C) = CN(C).

5



Note that
OCN(C) ≤ OCN′(C) ≤ OCN(C, C) and CN(C) ≤ CN′(C) ≤ CN(C, C) (1)

with equality for OC-closed (resp. AC-closed) concept classes. The concept class H from Example 6 (sin-
gletons augmented by the empty set) is OC-closed, whereas the class C from Example 6 (singletons) is not.
The concept class P2 from Example 2 is AC-closed because, clearly, there is no compression scheme for P2

of size 0.

Definition 8. Let X1, . . . , Xs be pairwise disjoint domains. For i = 1, . . . , s, let Ci be a concept class over
Xi. The direct sum of C1, . . . , Cs is defined as follows:

s⊎
r=1

Cr := {∪sr=1Cr| Cr ∈ Cr}

Let K be a function that assigns a real number to each concept class C. We say that K is sub-additive on
C1, . . . , Cs if

K

(
s⊎
r=1

Cr

)
≤

s∑
r=1

K(Cr) . (2)

If (2) holds with equality, we say that K is additive on C1, . . . , Cs. We say that K (sub-)additive if it is
(sub-)additive on every finite sequence of concept classes over pairwise disjoint domains.

In the sequel, we apply the operation “]” to arbitrary sequences of concept classes with the understanding
that, after renaming instances if necessary, the underlying domains are pairwise disjoint. If K is additive
(sub-additive) on finite sequences consisting of “disjoint duplicates” of the same concept class C, we say that
K is additive (sub-additive, resp.) on C. We say that K ≤ K ′ if K(C) ≤ K ′(C) holds for every concept
class C.

Lemma 9. Suppose that K is additive on C, K ′ is sub-additive on C, K ≤ K ′, and K(C) = K ′(C). Then,
K ′ is additive on C.

Proof. Let C ] . . . ] C be the direct sum of s disjoint duplicates of C. Then,

K ′(C ] . . . ] C) ≤ s ·K ′(C) = s ·K(C) = K(C ] . . . ] C) ≤ K ′(C ] . . . ] C) .

Thus all terms in this chain of equalities/inequalities are actually equal. �

It is well known that VCD and RTD are additive [5]. As we show now, OCN and CN are sub-additive.

Lemma 10. Let C′ ⊆ H′ (resp. C′′ ⊆ H′′) be concept classes over the same domain X ′ (resp. X ′′) where
X ′ ∩X ′′ = ∅. Then the following holds:

OCN(C′ ] C′′,H′ ]H′′) ≤ OCN(C′,H′) + OCN(C′′,H′′) (3)

CN(C′ ] C′′,H′ ]H′′) ≤ CN(C′,H′) + CN(C′′,H′′) (4)

Proof. Let C = C′ ] C′′, H = H′ ] H′′ and X = X ′ ∪ X ′′. Inequality (4) is pretty obvious because any
C-realizable sample S decomposes into S′ := S|X′ and S′′ := S|X′′ , and these sets can be compressed and
decompressed separately by means of the optimal (C′,H′)-scheme and the optimal (C′′,H′′)-scheme.
The reasoning for inequality (3) is similar but slightly more complicated because we have to commit to an
order over the hypotheses in H. Details follow.
Let m′ = |H′| and let H ′1, . . . ,H

′
m′ be an order over the hypotheses from H′ that leads to a (C′,H′)-scheme,

say (f ′, g′), of size d′ := OCN(C′,H′). Let m′′, H ′′1 , . . . ,H
′′
m′′ , f ′′, g′′, d′′ be the analogous quantities for the

classes C′′ and H′′. We choose the following order for the m′m′′ hypotheses from H:

H ′1 ∪H ′′1 , H ′1 ∪H ′′2 , . . . ,H ′1 ∪H ′′m′′ , . . . , H ′m′ ∪H ′′1 , H ′m′ ∪H ′′2 , . . . ,H ′m′ ∪H ′′m′′ (5)
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Let S be a C-realizable sample. S decomposes into S′ := S|X′ and S′′ := S|X′′ . Note that S′ is C′-realizable
and S′′ is C′′-realizable. Suppose that H ′t′ ∪H ′′t′′ is the rightmost hypothesis in (5) that is consistent with
S. Then t′ (resp. t′′) is the largest number such that H ′t′ (resp. H ′′t′′) is consistent with S′ (resp. S′′).
f ′(S′) (resp. f ′′(S′′)) is a smallest subset of S′ (resp. S′′) that is a teaching set for H ′t′ with respect to
{H ′t′ , . . . ,H ′m′} (resp. for H ′′t′′ with respect to {H ′′t′′ , . . . ,H ′′m′′}). It follows that f ′(S′)∪ f ′′(S′′) is a teaching
set for H ′t′ ∪ H ′′t′′ with respect to {H ′t′ ∪ H ′′t′′ , . . . H ′m′ ∪ H ′′m′′}. Moreover, |f ′(S′) ∪ f ′′(S′′)| ≤ d′ + d′′. It
follows that the ordering (5) induces a (C,H)-scheme of size at most d′ + d′′, as required. �

Corollary 11. OCN,OCN′,CN,CN′ are sub-additive.

Proof. Let us consider OCN. It clearly suffices to verify (2) for s = 2 (with OCN in the role of K). The
sub-additivity of OCN is obtained from Lemma 10 and the following calculation:

OCN(C1 ] C2) = min
H⊇C1]C2

OCN(C1 ] C2,H)

≤ min
H1⊇C1,H2⊇C2

OCN(C1 ] C2,H1 ]H2)

≤ min
H1⊇C1

OCN(C1,H1) + min
H2⊇C2

OCN(C2,H2)

= OCN(C1) + OCN(C2)

The first inequality makes use of the fact that every pair of classes H1,H2 over X1, X2, respectively, can
be merged to H = H1 ∪ H2. The second inequality makes use of Lemma 10. The sub-additivity of
OCN′,CN,CN′ can be verified analogously. �

Lemma 12. Let Pn be the power set over n elements. Then CN(P5k) ≤ 2k for all k ≥ 1.

Proof. The result follows directly from the fact that, by Example 2, CN(P5) = 2 and from the sub-
additivity of the compression number. �

We obtain an almost matching lower bound of CN(P5k) > k from the following result:

Lemma 13 (Floyd, Warmuth [2]). For any class C of VC-dimension d it holds that CN(C) > d/5.

We also observe certain monotonicity properties of OCN, OCN′, CN, and CN′, which will prove useful
later.

Theorem 14. Let X denote the domain of the classes H and C ⊆ H, and let X ′ ⊆ X. Then, CN(C,H) ≥
CN(C|X′ ,H|X′) and OCN(C,H) ≥ OCN(C|X′ ,H|X′).

Proof. Let C′ := C|X′ and H′ := H|X′ . For any hypothesis H ∈ H, let H ′ denote its restriction to X ′.
The inequality for CN is pretty obvious. A C′-realizable sample S′ such that X(S′) ⊆ X ′ is C-realizable,
and H ∈ H is consistent with S′ iff H ′ is consistent with S′. We may therefore compress S′ to S′′ ⊆ S′

and decompress S′′ to some Ht ∈ H according to an optimal (C,H)-scheme, and then consider H ′t as the
decompression of S′′ within the hypothesis class H′. Since Ht is consistent with S′, H ′t is consistent with S′

too.
Next we verify the inequality for OCN. Let H1 < . . . < Hm be the order over H = {H1, . . . ,Hm}

such that the corresponding order compression scheme has size OCN(C,H). For i = 1, . . . ,m, let H ′i
denote the restriction of Hi to X ′. Note that i 6= j does not necessarily imply H ′i 6= H ′j since different
hypotheses might coincide on X ′. Let m′ ≤ m denote the number of distinct restrictions. Pick indices
i(1) < . . . < i(m′) such that the sequence H ′i(1), . . . ,H

′
i(m′) contains every restriction exactly once and,

subject to this constraint, the indices i(j) are chosen as large as possible, i.e., for every hypothesis from
H|X′ , we select the latest representative in the sequence H1, . . . ,Hm. Consider now the order compression
scheme for (C|X′ ,H|X′) with H ′i(1) < . . . < H ′i(m′) as the underlying order. Let S be a C-realizable sample

over the restricted domain X ′, and let t ∈ {1, . . . ,m} be the largest index such that Ht ∈ Cons(S,H). The
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definition of order compression schemes implies that f(S) ⊆ S is a smallest teaching set for Ht with respect
to {Ht, . . . ,Hm}. By the maximality of t, Ht is the latest representative of H ′t in the sequence H1, . . . ,Hm

so that t = i(τ) for some τ ∈ {1, . . . ,m′}. Note that X(f(S)) ⊆ X(S) ⊆ X ′ so that a hypothesis Hi is
consistent with f(S) iff H ′i is consistent with f(S). It follows that τ ∈ {1, . . . ,m′} is the largest index
such that H ′t = H ′i(τ) ∈ Cons(S,H|X′). Moreover, f(S) ⊆ S is a teaching set for H ′t with respect to

H′τ := {H ′i(τ), . . . ,H
′
i(m′)}. It follows that the size of the smallest teaching set for H ′t with respect to H′τ is

bounded by |f(S)| ≤ OCN(C,H), which concludes the proof. �

The following example shows that it is essential that, when fixing the order over the hypotheses in
H′ = H|X′ in the proof of Theorem 14, we have chosen the latest representative for H ′ ∈ H′ in the sequence
H1, . . . ,Hm.

Example 15. Let X = {1, . . . , n} and C = H = {{1}, {2}, . . . , {n}, ∅}. We fix the following order over H:

{1}, {2}, . . . , {n}, ∅ (6)

We know from Example 6 that the corresponding proper order scheme has size 1. It follows that C is OC-
closed and the above order induces an optimal order scheme.

Let X ′ = X \ {1}. Note that the empty concept over X ′ is represented twice in (6): by {1} and by the
empty set. Suppose we pick {1} as the representative instead of ∅. Then we arrive at the following order
over H′ = H|X′ :

∅, {2}, . . . , {n} (7)

Consider now the sample S′ = {(2, 0), . . . , (n, 0)}. Similar as in the proper order compression scheme from
Example 6, S′ cannot be compressed to a proper subsample and thus the order scheme based on order (7)
has size n− 1.

Corollary 16. For every X ′ ⊆ X: OCN(C) ≥ OCN(C|X′), OCN′(C) ≥ OCN′(C|X′), CN(C) ≥ CN(C|X′),
CN′(C) ≥ CN′(C|X′).

Proof. The result for OCN is obtained from Theorem 14 as follows:

OCN(C) = min
H

OCN(C,H) ≥ min
H

OCN(C|X′ ,H|X′)

≥ min
H′

OCN(C|X′ ,H′) = OCN(C|X′)

The proof for the other complexity measures is analogous. �

Definition 17. Let K be a function that assigns a “complexity” K(C) to each concept class C. We say
that K is monotonic if C′ ⊆ C implies that K(C′) ≤ K(C). We say that K is twofold monotonic if K is
monotonic and, for every concept class C over X and every X ′ ⊆ X, it holds that K(C|X′) ≤ K(C).

It is easy to see that OCN and OCN′ are monotonic. For C′ ⊆ C, we get:

OCN(C) = min
H⊇C

OCN(C,H) ≥ min
H′⊇C′

OCN(C′,H′) = OCN(C′)

OCN′(C) = min
H⊇C

OCN(H,H) ≥ min
H′⊇C′

OCN(H′,H′) = OCN′(C′)

The analogous reasoning applies to CN and CN′. In combination with Corollary 16, we get:

Corollary 18. OCN,OCN′,CN,CN′ are twofold monotonic.

Lemma 19. OCN′(C) ≤ |X| − 1 unless C = 2X .
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(c)

Figure 1: The compression graphs of the compression schemes from Example 6 for the class C = {{0}, {1}, {2}, {3}}: (a) results
from the acyclic improper scheme of size 1 with H = C ∪ {∅}, (b) results from the acyclic proper scheme of size 3, and (c)
results from the cyclic proper scheme of size 1 (assuming that the empty set is decompressed to {3}, which yields an additional
edge from {2} to {3}.)

Proof. Choose the order C1, . . . , CN of the concepts Ci in C such that for all i there is some xi ∈ X with
either Ci ∪ {xi} /∈ {Ci, . . . , CN} or Ci \ {xi} /∈ {Ci, . . . , CN}. From a sample consistent with Ci but not
consistent with Ci+1, . . . , CN , we may remove a labeled example for xi and obtain a subset of S of size at
most |X| − 1 (possibly equal to S) which still is a teaching set for Ci with respect to {Ci, . . . , CN}. �

A useful tool for analyzing compression schemes in general and order compression schemes in particular
is the “compression graph”:

Definition 20. Let (f, g) be a (C,H)-scheme. The digraph Gcomp(f, g) = (V,E), called the compression
graph associated with (f, g), is given as follows:

1. V equals the set of hypotheses H.

2. For any H1, H2 ∈ H, (H1, H2) ∈ E if there exists a C-realizable labeled sample S such that both H1

and H2 are consistent with f(S) and g(f(S)) = H2.

A compression scheme (f, g) is called acyclic if the induced compression graph is acyclic.

For illustration, Figure 1 shows the compression graphs of the compression schemes from Example 6 for
the case n = 4.

The following result presents a useful characterization of order compression schemes, which we will exploit
several times in Section 5:

Theorem 21. For any (C,H)-scheme (f, g) the following holds: the compression scheme (f, g) is acyclic
iff (f, g) is an order compression scheme.

Proof. Assume first that (f, g) is an order compression scheme. Let H1 < . . . < Hm be the underlying
order over the hypotheses from H. Pick an arbitrary edge (Hi, Hj) of the compression graph G associated
with (f, g). The definition of compression graphs implies that there exists a sample S such that S is realizable
by C, Hi, Hj ∈ Cons(f(S),H) and g(f(S)) = Hj . The definition of order compression schemes implies that
j > i. Thus, G is acyclic.
Assume now that the compression graph G = (V,E) associated with (f, g) is acyclic. Let H1 < . . . < Hm

be a topological order of V = H. Let S be an arbitrary sample that is realizable by C, let S′ = f(S) and
let Hj = g(S′). The definition of compression graphs implies that, for every Hi ∈ Cons(S′,H), the edge
(Hi, Hj) belongs to E. Since the hypotheses are ordered topologically, we may conclude that

j = max{i : Hi ∈ Cons(S′,H)} . (8)

This is precisely how decompression proceeds in an order compression scheme. It now suffices to show that
the compression function f agrees with the definition of an order compression scheme too. To this end,
let S be a sample that is realizable by C, and let t ∈ {1, . . . ,m} be maximum such that Ht ∈ Cons(S,H).
In particular, Ht+1, . . . ,Hm are not consistent with S. Let S′ = f(S) and Hj = g(S′). According to the
definition of schemes, Hj actually is consistent with S so that Hj ∈ {H1, . . . ,Ht}. As already mentioned
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earlier in this proof, the definition of compression graphs implies that j satisfies (8). Since Ht is consistent
with S, it is certainly consistent with S′ ⊆ S too. Since, as mentioned before, Hj ∈ {H1, . . . ,Ht}, we may
conclude that g(f(S)) = Hj = Ht. We remind the reader that we normalized all compression functions f
to pick subsets of S of minimal size among all g-equivalent ones. It follows that f(S) = S′ is a smallest
subset of S whose g-image is Ht. Furthermore, since g acts like a decompression function of an order
compression scheme, it follows that S′, among all subsets of S, is a smallest teaching set for Ht with respect
to {Ht, Ht+1, . . . ,Hm}. Since this is precisely how compression should proceed in order compression schemes,
we are done. �

Note that the proof of Theorem 21 implies the following: the total orders on H that induce order
compression schemes with an acyclic compression graph G = (V,E) are precisely the topological orders of
V .

4. Order Compression Schemes and Teaching

The definition of order compression schemes bears some similarity to the model of recursive teaching [13],
and the notion of order compression number hence is related to the complexity parameter of this teaching
model, namely the recursive teaching dimension.

Let C ⊆ H = {H1, . . . ,Hm}, and let P = ((H1, S1), . . . , (Hm, Sm)) be a teaching plan for H. Then P
is called realizable by C if the samples S1, . . . , Sm are realizable by C. P is called inclusion-minimal with
respect to C if P is realizable by C and, for every t ∈ {1, . . . ,m}, there is no proper subset of St that
is a teaching set for Ht with respect to {Ht, Ht+1, . . . ,Hm}. P is called a maximal (C,H)-plan (among
the inclusion-minimal ones) if, for every t ∈ {1, . . . ,m}, St is of largest cardinality among all C-realizable
inclusion-minimal teaching sets for Ht with respect to {Ht, Ht+1, . . . ,Hm}.

We say that a (C,H)-scheme (f, g) is H-exhaustive iff for all H ∈ H there exists a C-realizable labeled
sample S such that g(f(S)) = H.

Theorem 22. There is an H-exhaustive order (C,H)-scheme of size k iff there is a maximal (C,H)-plan of
order k.

Proof. Let (f, g) represent an order (C,H)-scheme of size k, and let H1 < . . . < Hm be the underlying
order of H = {H1, . . . ,Hm}. According to the definition of (C,H)-schemes, there must exist a sample
St such that St is realizable by C and g(f(St)) = Ht. According to the definition of order compression
schemes, t is maximum subject to Ht ∈ Cons(f(St),H). Thus, f(St) is a teaching set for Ht with respect to
{Ht, Ht+1, . . . ,Hm} (and f(St) is inclusion-minimal with this property by our implicit assumption of dealing
with normalized schemes only). Since f(St) ⊆ St and St is realizable by C, f(St) is realizable by C too. It
follows from this discussion that the teaching sets f(St) with g(f(St)) = Ht represent a teaching plan that is
inclusion-minimal with respect to C. In order to get a maximal (C,H)-plan, we proceed as described above,
with the following exception: St such that g(f(St)) = Ht is not chosen arbitrarily but as a set of maximal
size among all C-realizable inclusion-minimal teaching sets for Ht with respect to {Ht, Ht+1, . . . ,Hm}. In
this case, f(St) = St, and we obtain a maximal (C,H)-plan of order k.

Suppose now that P = ((H1, S1), . . . , (Hm, Sm)) is a maximal (C,H)-plan of order k. Consider the order
(C,H)-scheme with H1 < . . . < Hm as the underlying order. Let S be a C-realizable sample and let t
be maximum subject to Ht ∈ Cons(S,H). Then S is a C-realizable teaching set for Ht with respect to
{Ht, Ht+1, . . . ,Hm}. Recall that order compression maps S to a smallest S′ ⊆ S that is still a teaching set
for Ht with respect to {Ht, Ht+1, . . . ,Hm}. Then clearly |S′| ≤ |St| ≤ k because St is the teaching set for
Ht with respect to {Ht, Ht+1, . . . ,Hm} taken from a maximal (C,H)-plan P . The discussion shows that the
order (C,H)-scheme (f, g) induced by the order H1 < . . . < Hm is of size k. Note that each hypothesis in H
is mapped to, because, for all t, Ht = g(f(St)). �

Theorem 22 leads to the following lower bound on OCN.

Lemma 23. For every concept class C: OCN(C) ≥ RTD(C).

10



Proof. Choose H such that OCN(C) = OCN(C,H). Let P be a teaching plan for H that is realizable by
C ⊆ H (e.g., a maximal (C,H)-plan). According to Theorem 22, it suffices to show that the order of P is
lower-bounded by RTD(C). To this end, we define the plan PC , called the projection of P on C, as follows:
PC is obtained from P by deletion of all items (Hi, Si) such that Hi /∈ C. It is obvious that PC is a valid
teaching plan for C, and the order of PC is smaller than or equal to the order of P . Thus, OCN(C) ≥ RTD(C).

�

The definition of RTD∗ implies that RTD∗(C) ≥ RTD(C), and it is easy to find classes for which RTD∗

is considerably larger than RTD. Thus it is remarkable that Lemma 23 can be strengthened as follows:

Theorem 24. OCN(C) ≥ RTD∗(C).

Proof. Let H = {H1, . . . ,Hm} be a hypothesis class such that OCN(C) = OCN(C,H). Let X be the
domain of C and of H. Let X ′ ⊆ X such that RTD∗(C) = RTD(C|X′). With this notation, the following
holds:

OCN(C) = OCN(C,H)
Th.14
≥ OCN(C|X′ ,H|X′)

≥ OCN(C|X′)

L.23
≥ RTD(C|X′) = RTD∗(C)

This proves the theorem. �

Since RTD∗(C) ≥ VCD(C) (see [6]), we immediately obtain the following corollary from Theorem 24:

Corollary 25. OCN(C) ≥ VCD(C).

It is known from previous work that VCD can exceed RTD by an arbitrary amount [6]. Thus, Corollary 25
implies that also OCN can exceed RTD by an arbitrary amount.

Example 26 below presents a concept class CMW such that VCD(CMW ) = 2 and OCN(CMW ) = 3,
thereby showing that the inequality OCN(C) ≥ VCD(C) can be strict occasionally. By means of padding, it
is easy to find classes C of arbitrarily large VC-dimension such that OCN(C) = 1.5 · VCD(C). However, for
the time being, it is not known whether the gap can be made larger than a factor of 1.5.

Example 26. Consider the class CMW in Figure 2, which was found by Manfred Warmuth (personal com-
munication). It is the smallest concept class for which RTD exceeds VCD [5]. In this particular example,
RTD(CMW ) = 3, while VCD(CMW ) = 2.

A proper sample compression scheme (f, g) of size 2 for CMW can be designed as follows. Let a, b, c, d, e
be any cyclic permutation of x5, x4, x3, x2, x1. Thus, in the following description of a compression scheme,
(a, b) can represent any solid edge in Fig. 2 (in clockwise direction). Similarly, (a, c) can represent any
dashed edge.
Since samples of size 2 or less can be compressed and decompressed in an obvious fashion, we may assume
a sample size of at least 3. The rules for compression given below will map S to a subsample S′ of size
precisely 2 such that S′ corresponds either to a solid edge (a, b) or to a dashed edge (a, c) in Fig. 2. With
these notations, the rules for decompression are as follows:

(a, 1), (b, 1) 7→ {a, b} and (a, 0), (c, 0) 7→ {a, c} = {b, d, e} (9)

(a, 1), (c, 1) 7→ {a, c, e} and (a, 0), (b, 0) 7→ {a, b, c} = {d, e} (10)

(a, 0), (c, 1) 7→ {c, d} and (a, 1), (e, 0) 7→ {b, e} = {a, c, d} (11)

Let S be a sample of size at least 3. Let S+ (resp. S−) denote the set of 1-labeled (resp. 0-labeled) samples
in S. The rules for compressing S to a subsample S′ = f(S) (with rules higher up having higher priority to
apply) are as follows:
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CMW x1 x2 x3 x4 x5
C1 1 1 0 0 0
C2 0 1 1 0 0
C3 0 0 1 1 0
C4 0 0 0 1 1
C5 1 0 0 0 1
C6 0 1 0 1 1
C7 0 1 1 0 1
C8 1 0 1 1 0
C9 1 0 1 0 1
C10 1 1 0 1 0

(a) CMW given as a table of concepts.

x1

x2

x3 x4

x5

(b) All concepts in CMW are given either
by the vertices of the solid edges or by
the complements of the vertices of the
dashed edges.

Figure 2: The smallest compression schemes for the concept class CMW are always cyclic. Part (b) is a nice visualization of
this concept class.

1. If S+ is of the form {(a, 1), (b, 1)}, then S′ = S+. Otherwise, if S− is of the form {(a, 0), (c, 0)}, then
S′ = S−.

2. If S contains (a, 0), (b, 0) for some solid edge (a, b) but does not contain (c, 1), then S′ = {(a, 0), (b, 0)}.
Similarly, if S contains (a, 1), (c, 1) for some dashed edge (a, c) but does not contain (e, 0), then S′ =
{(a, 1), (c, 1)}.

3. If S contains (a, 0), (b, 0), (c, 1) for some solid edge (a, b), then S′ = {(a, 0), (c, 1)}. Similarly, if S
contains (a, 1), (c, 1), (e, 0) for some dashed edge (a, c), then S′ = {(a, 1), (e, 0)}.

Note that compression rule 1 applies to any S of size 5 and to any S such that |S+| = |S−| = 2. Rule 2
applies to any S such that |S+| ≥ 3 or |S−| ≥ 3. Thus the first two rules cover completely the cases where
|S| ≥ 4. It is easy to check, that for any S of size 3, exactly one of the three compression rules applies. Thus
the three rules completely determine how a sample of size at least 3 is actually compressed. Furthermore, it
is easy to check that the three compression rules match with the aforementioned three decompression rules
so as to form a valid compression scheme of size 2.

Note that the compression graph G = (V,E) for this scheme has cycles. For instance, there is a loop
between the two hypotheses C1 = {x1, x2} and C10 = {x1, x2, x4}; the edge (C10, C1) ∈ E is witnessed by the
sample {(x1, 1), (x2, 1)}, while (C1, C10) ∈ E is witnessed by {(x3, 0), (x5, 0)}.

In fact, we already know that no sample compression scheme of size 2 for CMW can be acyclic since
OCN′(CMW ) ≥ OCN(CMW ) ≥ RTD(CMW ) = 3. The question whether OCN′(CMW ) = 3 can be answered
affirmatively because the following reasoning provides us with a proper order scheme of size 3:

Every CMW -realizable sample S contains a subsample S′ of size at most 3 such that every concept from
CMW which is consistent with S′ is consistent with S too. The claim is obvious if |S| ≤ 3. It is obvious
if |S| = 5 because every concept has a teaching set of size 3 (consisting either of three positive or of three
negative examples). Let now |S| = 4. If S still contains one of the teaching sets of size 3, we are done.
Otherwise we may assume for reasons of symmetry that S = {(x1, 0), (x2, 1), (x3, 1), (x4, 0)}. But then
S′ = {(x1, 0), (x2, 1), (x3, 1)} fits our purpose.

Corollary 27. There exists a family (Cd)d≥1 of concept classes such that VCD(Cd) = 2d and RTD(Cd) =
OCN(Cd) = OCN′(Cd) = 3d.

Proof. Let Cd = CMW ]. . .]CMW be the direct sum of d disjoint duplicates of CMW . Since VCD(CMW ) = 2
and VCD is additive, it follows that VCD(Cd) = 2d. We know from Example 26 that RTD(CMW ) =
OCN′(CMW ) = 3. Since RTD is additive, OCN′ is sub-additive and RTD ≤ OCN′, we may conclude from
Lemma 9 that OCN′ is additive on CMW , which yields OCN′(Cd) = 3d. �

Example 26 demonstrates that the size of the best order scheme (with acyclic compression graph) can
occasionally be larger than the size of the best arbitrary scheme (with a non-acyclic compression graph).
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5. Order Schemes for Special Classes

The following families of concept classes C are known to have sample compression schemes of size VCD(C):

• the family F∩ of intersection-closed classes,

• the family Fmax of maximum classes,

• the family FDudley of Dudley classes,

• the family F1 of classes of VC-dimension 1.

In the sequel, we show that (some of) the standard sample compression schemes for classes from these
families induce an acyclic compression graph so that, according to Theorem 21, they actually are order
schemes. Before starting our investigation with intersection-closed and maximum classes, we briefly remind
the reader of some standard definitions and facts. A class C is called intersection-closed if the intersection of
any two concepts from C is itself a concept in C. For an intersection-closed class C and T ⊆ X, 〈T 〉C denotes
the unique smallest concept in C containing T . A spanning set for a set T ⊆ X is a set T ′ ⊆ T such that
〈T ′〉C = 〈T 〉C . It is called minimal if no proper subset T ′′ of T ′ satisfies 〈T ′′〉C = 〈T ′〉C . It is well known
that the size of any minimal spanning set is bounded from above by VCD(C) [18, 19].

A class C of VC-dimension d over a domainX of cardinality n is called maximum if |C| =
∑d
i=0

(
n
i

)
[10, 11].

The following definition was introduced by Kuzmin and Warmuth [7]. An unlabeled sample compression
scheme for a maximum class C of VC-dimension d is given by a bijective mapping r that assigns to every
concept C ∈ C a set r(C) ⊆ X of size at most d such that the following condition, referred to as the
non-clashing property, is satisfied:

∀C 6= C ′ ∈ C,∃x ∈ r(C) ∪ r(C ′) : C(x) 6= C ′(x) (12)

As shown in [7], the non-clashing property guarantees that, for every C-realizable sample S, there is exactly
one concept C ∈ C that is consistent with S and satisfies r(C) ⊆ X(S). This allows to compress S by
f(S) = r(C) and to decompress r(C) by g(r(C)) = C, i.e., the decompression function g is the inverse of
the bijective function r. The acyclic non-clashing property with respect to an order C1 < . . . < Cm of the
concepts in C = {C1, . . . , Cm} is the following modification of (12):

∀1 ≤ i < j ≤ m, ∃x ∈ r(Ci) : Ci(x) 6= Cj(x) (13)

For instance, the representation function resulting from the Tail Matching Algorithm [7] has the acyclic
non-clashing property.

Theorem 28. There are proper order schemes for C of size VCD(C) provided that C is intersection-closed
or maximum.

Proof. First, suppose that C is intersection-closed. Let S be a C-realizable sample, and let S+ be the
subsample consisting precisely of all positive examples in S. Then the standard scheme (known to be of size
VCD(C)) compresses S to a minimal spanning set S′ ⊆ S+ for S+. A sample S′ = f(S) (always consisting
of positive examples only) is decompressed to the smallest set in C that contains S′, i.e., g(S′) = 〈X(S′)〉C .
Consider now the compression graph G associated with (f, g). Every sample S′ = f(S) induces edges leading
from concepts properly containing 〈X(S′)〉C to 〈X(S′)〉C . Since edges always lead from sets to proper subsets,
G is acyclic. We may therefore conclude from Theorem 21 that the scheme is an order scheme.

Second, suppose that C is a maximum class. We will argue that the scheme (f, g) induced by a repre-
sentation function r is an order scheme provided that r satisfies (13). Again it suffices to show that the
compression graph G associated with (f, g) is acyclic. To this end, let (Ci, Cj) be an edge in G. Thus there
exists a sample S such that Ci, Cj ∈ Cons(S, C) and Cj = g(f(S)). The latter condition is equivalent to
Cj being the unique concept that is consistent with S and satisfies r(Cj) ⊆ X(S). Since both of Ci, Cj
are consistent with S, they do not disagree on r(Cj). According to the acyclic non-clashing property, they
disagree on r(Ci) and i < j. Thus edges in G always go from smaller to larger indices so that G is acyclic.
�
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The following result is immediate from Theorem 28 and Corollary 25:

Corollary 29. Every intersection-closed or maximum class C is OC-closed and therefore satisfies

OCN′(C) = OCN(C) = OCN(C, C) = VCD(C) .

The proper order schemes for the classes mentioned in Theorem 28 can be used as (non-proper) order
schemes for subclasses. The family of subclasses of maximum classes is very rich and comprises the so-called
Dudley classes.

Definition 30 (Dudley [12]). Let F be a vector space of real-valued functions over some domain X and
h : X → R. For every f ∈ F , let

Cf (x) :=

{
1, if f(x) + h(x) ≥ 0

0, else
.

Then DF,h = {Cf | f ∈ F} is called a Dudley class.

We briefly note that the VC-dimension of DF,h is equal to the dimension of the vector space F [20].
Some popular examples of Dudley classes include:

• collections of half spaces over Rn, which are very common objects of study in machine learning, such
as in artificial neural networks and support vector machines, see, e.g., [21],

• unions of at most k intervals over R,

• n-dimensional balls.

Now, the following well-known result comes into play:

Lemma 31 (Ben-David and Litman [4]). Dudley classes of VC-dimension k are embeddable in maxi-
mum classes of VC-dimension k.

Corollary 32. Let C be a Dudley class of VC-dimension k. Then,

OCN′(C) = OCN(C) = VCD(C) . (14)

Proof. Since OCN′(C) ≥ OCN(C) ≥ VCD(C) holds for any concept class, it suffices to show that VCD(C) ≥
OCN′(C). Let Cmax ⊇ C be a maximum class of the same VC-dimension as C (in accordance with Lemma 31).
Corollary 29 now yields

VCD(C) = VCD(Cmax) = OCN(Cmax, Cmax) ≥ min
H⊇C

OCN(H,H) = OCN′(C) ,

and the corollary follows. �

As the proof of Corollary 32 shows, equality (14) is obtained whenever a class C is embeddable in a
maximum class of the same VC-dimension. Another family which fits into this pattern consists of all classes
of VC-dimension 1. Such classes are known to be contained in maximum classes of VC-dimension 1 [22].
Thus:

Corollary 33. Let C be a concept class of VC-dimension 1. Then,

OCN′(C) = OCN(C) = VCD(C) .

In combination, we obtain:
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Corollary 34. OCN′(C) = OCN(C) = VCD(C) provided that C belongs to at least one of the families F∩,
Fmax, FDudley or F1.

Finally, we can generalize our result on intersection-closed classes to the case of nested differences of
such classes. A nested difference of depth d over C is a concept C1 \ (C2 \ (. . . (Cd−1 \ Cd) . . .)) where each
Ci belongs to C. The class of nested differences of depth at most d over C is denoted by DIFF≤d(C). Our
generalization of the result on intersection-closed classes is the following.

Theorem 35. Suppose that C is intersection-closed. Then,

OCN′(DIFF≤d(C)) ≤ OCN(DIFF≤d(C),DIFF≤d(C)) ≤ d ·VCD(C) .

Proof. As already noted in (1), the first inequality holds for any concept class. As for the second inequality,
we have to design a proper order scheme for H := DIFF≤d(C) of size less than or equal to d ·VCD(C).

In the proof of this theorem, we assume that any concept in DIFF≤d(C) is given in a normal form as
follows (see [6]). We can represent C ∈ H as

C = C1 \
=:D1︷ ︸︸ ︷

(C2 \ (· · · (Cd−1 \ Cd) · · · )) (15)

such that for every j it holds that Cj ∈ C ∪{∅} and, unless Cj = ∅, Cj+1 is a proper subset of Cj . Then, for
Dj = Cj+1 \ (Cj+2 \ (. . . (Cd−1 \Cd) . . .)), we can assume that the representation of the form (15) is minimal
in the sense that Cj = 〈Cj \Dj〉C holds for all 1 ≤ j ≤ d.

Let H = DIFF≤d(C). We define a partial order A on H. Given two concepts C,C ′ ∈ H let C = C1 \D1

and C ′ = C ′1 \D′1 be their normalized representations. Then C A C ′ iff C1 ⊃ C ′1 or C1 = C ′1 ∧D1 A D′1.
Let (H1, . . . ,Hm) be any order over H such that j < i if Hj A Hi and let (f, g) be the corresponding

proper order scheme.
Recall that, given a H-realizable sample S, the compression function f finds the largest t such that

Ht ∈ Cons(S,H) and then compresses S to a teaching set for Ht with respect to {Ht, . . . ,Hm}. We will now
describe a method for constructing this hypothesis Ht: let S1 = {x | (x, 1) ∈ S} and C1 = 〈S1〉C , i.e., C1 is
the smallest concept in C that is consistent with all examples in S that are labeled with 1. Note that C1 can
be inconsistent with some of the examples in S that are labeled with 0 – hence, let S2 = {x ∈ C1 | (x, 0) ∈ S}
and C2 = 〈S2〉C . Then C1 \ C2 itself can disagree with some S on some examples contained with label 1
in S. Again, let S3 = {x ∈ C2 | (x, 1) ∈ S} and C3 = 〈S3〉C . Proceed iteratively in this manner until
the nested difference HS = C1 \ (C2 \ (. . . (Cd−1 \ Cd) . . .)) is consistent with S. This procedure will find a
concept consistent with S in at most d steps, because of the normal form assumption on all the underlying
concepts in H. By construction, every H ∈ Cons(S,H) fulfills H w HS , and thus HS is the last concept in
the underlying order that is consistent with S. Hence, HS equals the desired concept Ht. Now f(S) is a
smallest teaching set for Ht with respect to {Ht, . . . ,Hm}, among the subsets of S.

We can now give an upper bound on the size of the order compression scheme defined above: for any i,
let S′i ⊆ Si be smallest such that 〈S′i〉C = 〈Si〉C , i.e. S′i is a minimal spanning set. Augment the instances of
S′i by the label 1 if i is odd and by 0 otherwise. Then let S′ be the union over all S′i for 1 ≤ i ≤ d. It follows
that S′ is a (not necessarily minimal) teaching set for Ht with respect to {Ht, . . . ,Hm}. Thus |f(S)| ≤ |S′|
and, because |S′i| ≤ VCD(C), we obtain |f(S)| ≤ d ·VCD(C). �

6. Separating OCN′ from OCN

In this section, we will focus on concept classes over the domain {w, x, y, z} of size 4. As visualized in
Figure 3, we can represent concepts over {w, x, y, z} as nodes in the 4-dimensional Boolean cube. The latter,
denoted W 4 in what follows, is drawn as a pair of 3-dimensional cubes, one for w = 0 and the other one
for w = 1. The edges between corresponding nodes in the subcubes w = 0 and w = 1, respectively, are (in
most cases) not explicitly shown in order to avoid clutter.
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w = 0

0011

w = 1

1011

origin x = 1

z = 1

y = 1

Figure 3: A coordinate system that lets us graphically represent concepts over {w, x, y, z} as nodes in the 4-dimensional Boolean
cube W 4.

w = 0 w = 1

Figure 4: The concept class C1. The edges between the subcubes w = 0 and w = 1 are not shown.

In what follows, the nodes in W 4 that represent the concepts of a given class are drawn as black disks.
White disks represent concepts outside the class. An example, the concept class C1, is shown in Figure 4.

Each labeled sample S induces a subcube in W 4 that includes all nodes that are consistent with S.
Vice versa, each subcube is induced by a sample. In the following we will identify subcubes (especially
edges) with the samples that induce them. For example, using the concept class C1, after seeing the sample
S = {(x, 0), (y, 0)} we know that all consistent nodes lie in the subcube from Figure 5a. Since this subcube
contains more than one black node, S is not a teaching set. On the other hand, S′ = {(w, 1), (x, 0), (z, 0)}
is a teaching set for the concept (1, 0, 1, 0) with respect to C1 as demonstrated by Figure 5b. Note that a
sample with k elements induces a subcube of dimension 4− k.

A class C has VC-dimension 2 (or less) iff the following holds: for every collection of 3 instances, there
exists a 3-bit pattern which cannot be realized by any concept in C. As for W 4 this means that, for every
u ∈ {w, x, y, z}, there exists an edge along dimension u whose endpoints are both white. An inspection of
Figure 4 shows that C1 has VC-dimension 2.

Suppose that the class C over domain {w, x, y, z} results from W 4 by the deletion of a minimal set of
nodes such that one edge along each of the 4 dimensions is missing (like, for instance, the class C1 from
Figure 4). It follows that C is a maximal class of VC-dimension 2, i.e., adding any concept to C would
increase the VC-dimension.

w = 0 w = 1

(a) Subcube induced by S = {(x, 0), (y, 0)}

w = 0 w = 1

(b) Subcube induced by S′ = {(w, 1), (x, 0), (z, 0)}

Figure 5: The subcubes induced by labeled samples S and S′ in the class C1.
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Figure 6: The concept class C1 (the black nodes) and its extension H1 (the black nodes and the gray node). The critical edges
are shown as thick lines.

Since OCN′(C) = OCN(H,H) (for a suitably chosen H ⊇ C) is lower-bounded by VCD(H), we draw the
following conclusion: if OCN′(C) = 2, then OCN(C, C) = 2, i.e., there must be a proper OCS of size 2 for C.
As for this proper scheme, the following must hold: there must exist a concept C ∈ C (namely the leftmost
concept in the order inducing the scheme) such that every teaching set of size 4 or 3 contains a teaching set
of size 2 as a subset. In other words: every edge (= a subcube of dimension 1) with precisely one black node
must be part of a square (= a subcube of dimension 2) that still does not contain any other black node.
Edges violating this condition will henceforth be called critical edges.

From Figure 6 (where the critical edges are highlighted) one can see that OCN′(C1) > 2 and, by
Lemma 19, OCN′(C1) = 3. However, as illustrated in Figure 6, we get OCN(C1) = 2. In other words,
C1 can be extended to a hypothesis class, say H1 ⊃ C1, such that OCN(C1,H1) = 2. As shown in Figure 6,
H1 consists of all black nodes (corresponding to the concepts from C1) plus an additional node that is shown
in gray. The figure also shows the critical edges (drawn as thick edges) which allowed us to argue that
OCN(C1, C1) ≥ 3. The main difference between C1 and H1 is that the gray node neutralizes the three critical
edges in the subcube w = 1. To see that the order indicated by the numbering in the figure leads to a
(C1,H1)-OCS of size 2, one argues as follows:

• Let S be any C1-realizable sample set that is inconsistent with nodes 5 through 11. S must contain
(w, 1). The nodes 1, 2, 3, 4 correspond to (0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 0, 0) in (x, y, z)-coordinates,
i.e., to the singletons and the empty set over {x, y, z}. For this subclass, the given order yields an
order compression scheme of size 1, cf. Example 6. Thus, S will be compressed to a set of up to two
elements, one of which is (w, 1).

• Let S be any C1-realizable sample set that is consistent with at least one of the nodes 5 through 11,
which form a proper subset of the boolean cube over {x, y, z}. By Lemma 19, S is compressed to a
set of size at most 2.

The preceding discussion can be summarized as follows:

Theorem 36. The concept class C1 from Figure 4 separates OCN′ from OCN. More precisely: OCN(C1) = 2
and OCN′(C1) = 3.

Note that Theorem 36 also shows that the VC-dimension of the optimal hypothesis class H is not a lower
bound for OCN(C), while it is a lower bound for OCN′(C) = OCN(H,H) by Corollary 25.

6.1. Proper Sub-Additivity of OCN′

We observed in Corollary 11 that CN is sub-additive. Since CN(P5k) ≤ 2k by Lemma 12, and P5k is the
direct sum of 5k disjoint copies of P1, the sub-additivity of CN is proper. In particular, we have shown CN
to be “below additivity by a factor of 2/5.”
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Figure 7: The concept class C2 (pairs of black nodes) and its extension H2 (pairs of black nodes plus the pair of gray nodes).

By contrast, the power sets Pn do not suffice to show that OCN or OCN′ are properly sub-additive. If at
all, the latter can only be witnessed by a pair of concept classes of which at least one satisfies OCN > VCD
(OCN′ > VCD, respectively). This is an immediate consequence of the following three facts: (i) OCN and
OCN′ are sub-additive by Corollary 11, (ii) VCD is additive, and (iii) OCN′ ≥ OCN ≥ VCD. Note that the
VC-dimension does not bound the compression number CN from below, which is why proper sub-additivity
is easier to verify for CN than for OCN or OCN′. Thus the problem of quantifying the sub-additivity of
OCN and OCN′ is closely related to the problem of determining by which factor the order compression
number can exceed the VC-dimension.

Since OCN′(C1) = 3, the following result implies that OCN′ is not additive on C1.

Theorem 37. Let C1 be the concept class from Figure 4. Let C2 be the direct sum of two disjoint duplicates
of C1. Then, OCN′(C2) = 5.

Proof. First we show the upper bound OCN′(C2) ≤ 5.
We may visualize C2 as the set of pairs of black nodes in Figure 7 where the first black node is taken

from the cube W with dimensions w, x, y, z and the second one is taken from the cube W ′ with dimensions
w′, x′, y′, z′. As shown in Figure 7, W (resp. W ′) decomposes into the subcubes W0 and W1 (resp. W ′0 and
W ′1). Let H0 be the hypothesis that is represented by the pair of gray nodes in Figure 7. LetH2 := C2∪{H0}.
It suffices to show that OCN(H2,H2) ≤ 5. To this end, we fix an order on H2 as follows:

Group 1: The smallest elements are those pairs that consist of one black node from W1 and one black node
from W ′1. We can fix an arbitrary order of these pairs.

Group 2: The next element in the order is H0.

Group 3: Group 3a is formed by pairs with one black node from W0 (in the order that is indicated in
Figure 7) and one black node from W ′1 (in an arbitrary order). Group 3b is analogously formed by
pairs with one black node from W ′0 and one black node from W1.

Group 4: Largest in the order are the remaining hypotheses, i.e., the pairs with one black node from W0

and one black node from W ′0.

It follows from Lemma 19 and (3) that the hypotheses in Group 4 have a proper order compression scheme
of size at most 4. Thus, it suffices to show that the minimal teaching sets for the hypotheses from the first
three groups (always relative to the given order over H2) have size at most 5. We make use of the fact that
any teaching set decomposes into a set S of labeled examples from X×{0, 1} for X := {w, x, y, z} (so that S
can be viewed as a subcube in W ) and a set S′ of labeled examples from X ′×{0, 1} for X ′ := {w′, x′, y′, z′}
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(so that S′ can be viewed as a subcube in W ′). |S| and |S′| are both clearly bounded by |X| = |X ′| = 4.
However, it is easy to see that minimal teaching sets even satisfy |S|, |S′| ≤ 3. In the following discussion of
the first three groups, we suppose we are given a teaching set S ∪ S′ for a hypothesis H in the group such
that |S| = |S′| = 3. Thus, S induces an edge e in the cube W and S′ induces an edge e′ in the cube W ′.
Then, we argue that one of these edges can be extended to a square (or an even larger subcube) without
ceasing to be a teaching set for H. Thus S ∪ S′ contains a subset of size 5 that is a teaching set for H.

Group 1: It is easy to see that e must be an edge of the cube W1. Similarly, e′ must be an edge of the cube
W ′1. It cannot be the case that both edges are critical2 since, otherwise, S ∪ S′ would be consistent
with H0 (= the pair of gray nodes) in Group 2. But any non-critical edge can be extended to a square
without destroying the “teaching set” property.

Group 2: Group 2 consists just of H0 (the pair of gray nodes). Then e is either an edge in W1 (containing
the gray node) or the edge that connects the gray node with the white node in W0. An analogous
statement applies to e′. If one of these edges contains a white node, then this edge already forms a
teaching set (so that the other edge is superfluous) because H2 contains only one concept including a
gray node. If none of e and e′ contains a white node, then e can be replaced by the cube W1 and e′

can be replaced by the cube W ′1 (because the black nodes from Group 1 are already out of the game,
and H2 does not contain a combination of a black node with a gray node).

Group 3: We may focus on the hypotheses in the Group 3a because the reasoning for the hypotheses in
Group 3b would be similar. The edge e must represent a teaching set for a black node w0 in W0. Let
us consider first the case where e connects w0 with a node in W1. The order over the black nodes in
W0 (indicated by the numbers in Figure 7) is such that w0 must have an “effectively white” neighbor
v0 within W0 (where v0 possibly is a formerly black node that precedes w0 in the order so that all
combinations of v0 and a black node in W ′1 are already out of the game). Now we can replace the edge
e by the square formed by e and the edge with endpoint v0 that is parallel to e. (Here we profit from
the fact that the hypotheses from Groups 1 and 2 are out of the game already.) We finally have to
consider the case where e is an edge in the cube W0. But then we can readily extend it to the square
formed by e and the corresponding edge in W1.

It follows that OCN(H2,H2) ≤ 5, and we proceed with the proof of the lower bound OCN′(C) ≥ 5.
If we use C2 as the hypothesis class, then there exists an inclusion-minimal teaching set of size 6 for

every hypothesis from H = C2, as witnessed by the “critical edges”, which would yield OCN(H,H) =
OCN(C2, C2) = 6. Thus H = C2 is not the optimal choice. If H is chosen optimally, i.e. such that
OCN′(C2) = OCN(H,H), then H contains at least one additional hypothesis that was not already in C2.
Using Corollary 25 and the observation that C2 is a maximal class of VC-dimension 4, we conclude that
OCN′(C2) = OCN(H,H) ≥ VCD(H) ≥ 5. �

Since OCN′ is sub-additive according to Corollary 11, Theorem 37 implies the following result:

Corollary 38. Let C1 be the concept class from Figure 4. Let Ck be the direct sum of k disjoint copies of
C1. Then, OCN′(C2k) ≤ 5k.

Since 2k · OCN′(C1) = 6k, Corollary 38 shows that OCN′ is “separated away” from additivity on C1 by a
factor of 5/6 even when the number of disjoint duplicates becomes arbitrarily large.

6.2. Minimality of the Class Separating OCN′ from OCN

It is well known that RTD and VCD coincide on all classes over a domain of size 4 or less [5]. The next
result shows that no class over a domain of size 3 or less separates OCN′ from VCD (implying that the
complexity measures VCD,RTD,RTD∗,OCN,OCN′ coincide on such classes):

2= drawn as a thick edge in Figure 7
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Figure 8: A white subgraph V of W 4 with two connected components of size 3.

Lemma 39. Let C be a concept class over a domain of size 3 or less. Then, OCN′(C) = VCD(C).

Proof. If VCD(C) = 1, then, according to Corollary 33, OCN′(C) = 1. If VCD(C) = 3, then OCN′(C) = 3
(because we assumed that |X| ≤ 3). Suppose now that VCD(C) = 2. It follows that either |X| = 2 and
C = 2X or |X| = 3 and C 6= 2X . In the former case it is obvious that OCN′(C) = 2. In the latter case,
OCN′(C) = 2 is obtained from Lemma 19. �

So far we know that 4 is the smallest domain size allowing for a separation of OCN′ and VCD. One may
ask whether there is a smaller concept class than C1, which has size 10, over a domain of size 4 that still
separates OCN′ from VCD. In the sequel, we will answer this question to the negative.

Let C be a class over domain {w, x, y, z}. A simple reasoning (similar to the one in the proof of Lemma 39)
shows that C can possibly separate OCN′ from VCD only if VCD(C) = 2. So suppose that this is the case
and that C is a maximal class, i.e., it results from W 4 by the deletion of a minimal set of nodes such that
one edge along each of the 4 dimensions is missing.

Our goal is to show the following

Claim: Either C = C1 (up to automorphisms of W 4) or OCN′(C) = 2.

It is easy to see that every proper subclass of C1 has a proper order compression scheme of size 2. Thus, the
claim implies that at least 10 concepts over a domain of size 4 are required for the separation of OCN′ from
VCD. We still have to prove the claim. To this end, let V = W 4 \ C denote the set of white nodes. In the
sequel, we will identify V with its induced subgraph of W 4. Let s denote the size of the largest connected
component of V . It is easy to see that s ≥ 3. In other words, V must contain a path of length 2.

Suppose first that s = 3, i.e., a largest connected component L1 in V forms a path of length 2. It is
easy to see (simply because W 4 does not leave much space) that there can be only one other connected
component in V , say L2. L2 must contain the remaining 2 of the 4 deleted edges thereby forming a path of
length 2 as well. As illustrated in Figure 8, there exists (up to automorphisms of W 4) only one choice for
V .3 An inspection of the concept class C = W 4 \ V in Figure 8 shows that there exists an order over the
black nodes (indicated by the numbers in Figure 8) such that every edge, whose endpoints are a black node
numbered i and either a white node or another black node numbered j < i, can be extended to a square
not containing any black nodes with numbers larger than i. As explained earlier in this section, this means
that OCN′(C) = 2.

Second, consider the case s ≥ 4. A connected component of size 4 must either form a path P3 of length 3
or a star S3.

Suppose first that it forms a star S3. But then, up to automorphisms of W 4, C must coincide with the
class C1 in Figure 4.4

Suppose now that a component of V contains P3. It is easy to see that P3, in combination with an edge
along each of the 4 dimensions, leads to a component of a size exceeding 4. It is furthermore easy to see
that one of the following cases must occur:

3The middle nodes of the two connected components, the nodes (0, 0, 0, 0) and (1, 1, 1, 1) in Figure 8, must necessarily be
located at opposing ends of W 4 because, otherwise, a connected component of size exceeding 3 will result.

4The edge along the dimension not covered by S3 must involve a node that is located opposite to the center of S3 because,
otherwise, a larger connected component will result.
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Figure 9: A connected white subgraph whose complement is a concept class of order compression number 2.

Case 1 V has precisely one connected component that forms a path of length 4 with one edge along each
of the 4 dimensions.
It follows that there are 11 =

(
4
0

)
+
(
4
1

)
+
(
4
2

)
nodes in C = W 4 \ P4 so that C is a maximum class of

VC-dimension 2. Thus, OCN′(C) = 2.

Case 2 One of the connected components of V contains S3 as a partial subgraph.
In this case, C looks (up to automorphisms of W 4) like the concept class shown in Figure 9. As the
numbering of the black nodes in this figure indicates, there is an order over these nodes that witnesses
OCN′(C) = 2.

The discussion shows that the above claim is true. Since OCN′(C) = 2 for each proper subclass of C1,
we now arrive at the following result:

Theorem 40. 1. Let C be a concept class over a domain of size 4 that separates OCN′ from VCD. Then
C equals C1 up to automorphisms of W 4. In particular, |C| = 10.

2. Let C be a concept class over a domain of size 4 or less. Then, OCN(C) = VCD(C).

7. Conclusions

Order compression schemes obey a very simple structure and exhibit interesting connections to teaching
and graph theory. Furthermore, in many cases where the sample compression conjecture is known to be
true, it can already be verified using order compression schemes. We hence believe that order compression
schemes provide a useful notion for studying sample compression schemes in general.

While we presented a number of important fundamental properties of order compression schemes, several
questions remain open, most notably the question of how VCD and OCN relate in general. One of many
challenges in this context could be to devise a method for finding a best possible hypothesis space H for C,
so that an order compression scheme for H induces the best possible order compression scheme for C, i.e.,
so that OCN(C,H) = OCN(C). Further interesting questions are:

• Is there a concept class for which OCN exceeds VCD by more than a factor of 1.5?

• Are there any further interesting conditions on concept classes under which OCN coincides with any
of the parameters VCD, CN, and RTD?

• If C and H are given, how to find an order over H that induces the best possible order compression
scheme for C, without trying out all possible orders?

• For which families of concept classes are OCN, OCN′, CN, CN′ additive?

• Are there any interesting bounds on the amount of subadditivity of OCN and OCN′?
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