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Abstract

Thirty years after the introduction of Valiant’s PAC-learning framework in 1984,
proving sharp sample complexity bounds in the standard, realizable framework
is still an open problem. This is true for general concept classes but also for
most natural families of classes. In this letter we will give sharp bounds on
the sample complexity of PAC-learning intersection-closed classes. Our result
settles an open problem posed by Auer and Ortner and supports a conjecture
by Warmuth about the true sample complexity and the optimal PAC-learning
algorithm for general classes.

Furthermore this letter demonstrates a useful application of the disagreement
coefficient—a complexity measure developed for agnostic learning by Giné and
Koltchinskii based on the work of Alexander and, independently, by Hanneke—
in the realizable PAC-learning framework.

Keywords: computational complexity, PAC-learning, sample complexity,
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1. Introduction

Since Valiant introduced the PAC-learning framework in [1], it is an open
problem to give sharps bounds on the number of labeled examples necessary to
successfully learn in the realizable setting (readers unfamiliar with this frame-
work may want to read Section 2 first, which gives a succinct definition of
PAC-learning). The best known worst case lower bound, which was proven by
Ehrenfeucht, Haussler, Kearns and Valiant in [2], is
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)

Email address: malte.darnstaedt@rub.de (Malte Darnstädt)
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where d is the VC-dimension of the concept class, ε is the accuracy and δ is
the confidence parameter. On the other hand, the best matching upper bound,
which was proven by Blumer, Ehrenfeucht, Haussler and Warmuth [3], is

O

(
d log(1/ε) + log(1/δ)

ε

)
.

Obviously, these bounds leave a gap of log(1/ε).
Warmuth conjectured in [4] that the factor of log(1/ε) in the upper bound

can be overcome. He furthermore conjectured that this can be achieved by the
one-inclusion graph algorithm, which—in the case of intersection-closed concept
classes—collapses to the closure algorithm, whose output is the smallest consis-
tent hypothesis. For some special intersection-closed classes, which possess an
additional combinatorial property, Auer and Ortner provided a proof of the
conjecture in [5]. We will show that Warmuth’s conjecture is indeed true for all
intersection-closed classes.

We will prove our main result by employing a technique which involves the
so-called disagreement coefficient. The disagreement coefficient was first used in
learning theory, without calling it by this name, by Giné and Koltchinskii in a
paper on agnostic learning in 2006 [6], which was based on the work of Alexan-
der [7], but it was independently discovered by Hanneke in 2007 [8] to analyze
the label complexity of agnostic active learning. While most applications of the
disagreement coefficient are in the field of agnostic active learning, we are aware
of two exceptions where it was used in the standard, i.e., realizable and passive
setting: one section of Hanneke’s Ph.D. thesis [9, page 50ff] and an article by
D., Simon and Szörenyi [10]. We will combine the ideas from these two works
and improve on Hanneke’s results in Section 4.

2. Preliminaries

2.1. Notation and basic definitions

We introduce some notation and remind the reader of the definitions of
PAC-learning [1] and the VC-dimension [11]:

For any set A, let 2A denote the power set of A. Let X be a nonempty
set, called the domain, let D be a distribution over X and, for any (measurable)
S ⊆ X, let D(S) denote the probability mass of S under D. A concept class2 is a
set C ⊆ 2X . The elements of C are called concepts and we identify these sets with
their corresponding indicator functions. The error of concept c under target
concept t and distribution D is defined as errt,D(c) := Prx∼D

(
c(x) 6= t(x)

)
.

For any set S ⊆ X and any t ∈ C, we define the sample St := {(x, t(x)) |x ∈
S}, i.e. the elements of S paired with labels from {0, 1} induced by concept t.3

2In this letter we do not consider hypothesis classes that are different from the concept
class. Our results can easily be extended to that case.

3We often draw S i.i.d. according to D, so in fact S ∈ Xm for some m > 0, but we always
ignore the order and multiplicities in S and it is easier to think of it as a set.
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The set V (St) := {c ∈ C | c(x) = t(x) for all x ∈ S} is called the version space
and, for any V ⊆ C, DIS(V ) := {x ∈ X | ∃c1, c2 ∈ V : c1(x) 6= c2(x)} is called
the disagreement region of V . Note that for any c ∈ V , the disagreement region
is the union of all subsets from X where some concept from V disagrees with
c, i.e. DIS(V ) =

⋃
c′∈V {x ∈ X | c′(x) 6= c(x)}. In the case t ∈ V , we see that

DIS(V ) is the union of all sets where some concept from V errs.
A PAC-learner L is an algorithm that receives a sample as its input and

outputs a concept, such that for all t ∈ C, all distributions D over X and all
ε, δ > 0 there exists an m0, such that for all m ≥ m0 it holds that

Pr
S∼Dm

(
errt,D(L(St)) ≤ ε

)
≥ 1− δ .4

We call L(St) the hypothesis of the learner. The sample complexity of class C
is defined as the smallest possible m0, as a function in ε and δ, for the best
PAC-learner of C.

We say that a set S ⊆ X is shattered by class C if {c ∩ S | c ∈ C} = 2S . The
VC-dimension of C, denoted by V C(C), is defined as the size of the largest set
shattered by C (or infinite if no such set exists).

2.2. Intersection-closed classes

A class C is called intersection-closed if for all c1, c2 ∈ C it also holds that
c1 ∩ c2 ∈ C. For example, the class of Boolean monomials over n variables and
the class of axis-aligned boxes in Rn are intersection-closed.

We will assume in the following that intersection-closed classes contain all
intersections, i.e. that ∩c∈C′c ∈ C holds for any C′ ⊆ C. As Auer and Ortner
have shown in [5], adding the missing intersections does not increase the VC-
dimension of C.

We briefly note that all results that hold for intersection-closed classes can
also be applied to classes that are ‘union-closed’ by taking the complement of
each concept over X.

3. Disagreement coefficients

Hanneke’s original definition of the disagreement coefficient is as follows:

Definition 1 (Hanneke [8]). For r > 0 and t ∈ C, let B(t, r) be the ball
of radius r around concept t, i.e. B(t, r) := {c ∈ C | errt,D(c) ≤ r}. Then
Hanneke’s disagreement coefficient is defined as

θH(C | t,D) := sup
r>0

D(DIS(B(t, r)))

r
.

Taking the supremum over all t ∈ C and all distributions D over X yields the
distribution independent disagreement coefficient θH(C) := supt,D θH(C | t,D).

4While Valiant’s original definition of PAC-learning also demands a polynomial running
time in 1/ε and 1/δ, we will ignore computational issues in this letter.
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D., Simon and Szörenyi considered the following variant, which will turn out
to be more useful in realizable PAC-learning:

Definition 2 (D., Simon and Szörenyi [10]). For t ∈ C, any S ⊆ X and
any distribution D over X, the realizable disagreement coefficient is defined as

θR(C | t, S,D) :=
D(DIS(V (St)))

supc∈V (St) errt,D(c)
.

For the degenerate case that both denominator and numerator are zero, we de-
fine θR(C | t, S,D) := 1. Similar as before, let θR(C | t,D) := supS⊆X θR(C | t, S,D)
and θR(C) := supt,D θR(C | t,D).

As noted in [10], setting r∗ := supc∈V (St) errt,D(c) immediately shows that
θR(C | t, S,D) = D(DIS(V (St)))/r

∗ ≤ D(DIS(B(t, r∗)))/r∗ ≤ θH(C | t,D).
The following two lemmas demonstrate that the realizable disagreement co-
efficient can be much smaller than Hanneke’s:

Lemma 3. For any class C over X it holds that V C(C) ≤ θH(C) ≤ |X|.

Proof. The first inequality is trivial for classes of VC-dimension zero, since
θH is non-negative. Now let S ⊆ X be a set of size d ≥ 1 shattered by C and
let D be the uniform distribution over S. Then θH(C | t,D) ≥ d holds for all
t ∈ C: let r∗ = 1/d, so that S ⊆ DIS(B(t, r∗)). Since D(S) = 1, it follows that
θH(C | t,D) ≥ 1/(1/d) = d.

The second inequality is trivial for infinite X. Note that θH(C) ≤ |X| holds
for finite X, because DIS(B(t, r)) ⊆ {x ∈ X |D({x}) ≤ r}. �

Lemma 4. Let C be a concept class, D a distribution and St a sample. If
a concept c̃ ∈ V (St) exists, that errs on the whole disagreement region al-
most surely under D, i.e., D(DIS(V (St)) \ {x ∈ X | t(x) 6= c̃(x)}) = 0, then
θR(C | t, S,D) = 1.

Proof. From supc∈V (St) errt,D(c) ≥ errt,D(c̃) ≥ D(DIS(V (St))) follows that
θR(C | t, S,D) ≤ 1. On the other hand, the error of a concept from the version
space can never be larger than the probability mass of the disagreement region.
Thus it holds that θR(C | t, S,D) ≥ 1. �

Example 5. Let X 6= ∅ be a finite set and let C = 2X . From Lemma 3 and 4
follows θH(C) = |X| ≥ 1 = θR(C).

4. PAC bounds

While the main application of θH is in the field of agnostic active learning,
Hanneke also proved the following theorem for the realizable framework:
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Theorem 6 (Hanneke [9]). Let C be a concept class of VC-dimension d, D
a distribution over X, S ∼ Dm a random sample of size m and t ∈ C. Then for
any δ > 0 it holds with probability ≥ 1− δ for all h ∈ V (St)

errt,D(h) ≤ 24

m

(
d log(880 θH(C|t,D)) + log

12

δ

)
.

Thus the sample complexity is upper bounded by O
(
1
ε (d log θH(C) + log 1

δ )
)
.

Combining Hanneke’s result with the realizable disagreement coefficient from
D., Simon and Szörenyi yields the following improved theorem, where we can
replace θH by θR:

Theorem 7. Let C be a concept class of VC-dimension d, D a distribution over
X, S ∼ Dm a random sample of size m and t ∈ C. Then for any δ > 0 it holds
with probability ≥ 1− δ for all h ∈ V (St)

errt,D(h) ≤ 24

m

(
d log(880 θR(C|t,D)) + log

12

δ

)
.

Thus the sample complexity is upper bounded by O
(
1
ε (d log θR(C) + log 1

δ )
)
.

Proof. By carefully reading the proof of Theorem 6 (as Theorem 2.23 in [9,
page 51f]), one can see that θH(C|t,D) may safely be replaced by θR(C|t,D).
Since the proof of Theorem 7 is therefore the same as Hanneke’s proof for
Theorem 6—except for this minor change—we will only provide a rough proof
sketch for the sake of completeness:

We want to prove the following statement by induction on m: “For all δ > 0
it holds with a probability of at least 1− δ over the draw of S that

sup
h∈V (St)

errt,D(h) ≤ 24

m

(
d log(880 θR(C|t,D)) + log

12

δ

)
.”

For m ≤ d the statement is obvious, since the error is upper bounded by 1
(and θR(C|t,D) ≥ 1 always). For the inductive step from m/2 to m we de-
note by Vm and Vm/2 the version spaces after drawing m or m/2 points of the
sample, respectively. Note that Vm ⊆ Vm/2 and therefore suph∈Vm

errt,D(h) ≤
suph∈Vm/2

errt,D(h).

Let DIS := DIS(Vm/2). If D(DIS) ≤ 8
m ·log 3

δ , we are finished. In the other
case a Chernoff bound shows that at least n := m/4 · D(DIS) sample points
from the second m/2 draws lie in DIS with a probability of at least 1−δ/3. We
can regard these n points as a random sample drawn according to D conditioned
on DIS and apply a standard PAC bound from Blumer et al. [3], showing that
suph∈Vm

errt,D(h) is upper bounded by D(DIS) · 4n
(
d log 2en

d + log 12
δ

)
with a

probability of at least 1−δ/3. To handle the occurrence of n inside the logarithm,
we note that n ≤ m/4 · θR(C|t,D) · suph∈Vm/2

errt,D(h) by Definition 2. After

using the inductive assumption (with the probability of success set to 1− δ/3)
and some simplifying we arrive at the desired statement. �
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We can now give our main result:

Theorem 8. Let C be an intersection-closed concept class of VC-dimension d.
Then the sample complexity of C is upper bounded by

O

(
d+ log(1/δ)

ε

)
,

which matches the general lower bound and is therefore optimal. The closure
algorithm realizes this bound.

Proof. The idea of the proof is similar to that of the inductive step from the
proof of Theorem 6 and 7.

Let t ∈ C and D be a distribution over X and let S ∼ Dm be a random
sample of size m > 0. By h := ∩c∈V (St)c we denote the closure algorithm’s

hypothesis after seeing St. We will prove that errt,D(h) ≤ 48
m (d log 880 + log 24

δ )
holds with a probability of at least 1− δ over the draw of S.

Partition X into X+ := t and X− := X \ t and let D+ and D− denote D
conditioned on X+ and X−.5 Since h only errs on positively labeled points it
holds that

errt,D(h) = errt,D+(h) ·D(X+) + errt,D−(h)︸ ︷︷ ︸
=0

·D(X−) . (1)

Thus, if D(X+) ≤ 48
m (d log 880 + log 24

δ ) we are already finished. So assume the
opposite.

Let m+ denote the number of elements in S that lie in X+. Obviously, m+ is
binomially distributed with an expected value of m ·D(X+). By our assumption
D(X+) is larger than 48

m (d log 880 + log 24
δ ) ≥ 8

m · log 2
δ . From a Chernoff bound

follows that
m+ ≥ m

2
·D(X+) (2)

holds with a probability of at least 1− δ/2.
By Theorem 7 it holds with a probability of at least 1− δ/2 that

errt,D+(h) ≤ 24

m+

(
d log(880 θR(C|t,D+)) + log

24

δ

)
. (3)

Since h errs on the whole disagreement region under D+ for all S, Lemma 4
yields θR(C|t,D+) = 1.

We now obtain the desired result by plugging (3) and (2) in (1) and observing
that the overall probability of failure is upper bounded by δ/2 + δ/2 = δ. �

5That is, for any S ⊆ X, D+(S) := D(S∩X+)/D(X+) and D−(S) := D(S∩X−)/D(X−).
The cases D(X+) = 0 and D(X−) = 0 are trivial: in the former case errt,D(h) is zero and in
the latter case we can skip a part of the proof and directly apply Theorem 7 and Lemma 4.
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5. Conclusions and final remarks

We improved on Hanneke’s PAC bound for consistent learners and could
show that the closure algorithm learns intersection-closed classes with a sample
size that matches the general lower bound. To our knowledge this is the first
proof of sharp sample complexity bounds for a natural family of classes in the
realizable PAC-learning framework.

We demonstrated that the disagreement coefficient can be used to prove
non-trivial, long-sought theorems in realizable PAC-learning. We believe that
the disagreement coefficient will turn out to be helpful for other questions in
computational learning theory and hope that this letter gives motivation to
consider its application to related problems.
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