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Abstract
This thesis studies the power of unlabeled data in classification learning and
makes three main contributions:
1.) There is a common intuition, formulated as a rigorous mathematical con-

jecture by Ben-David, Lu and Pál in [BDLP08], that semi-supervised learning
and—even stronger—learning under a fixed distribution reduces the sample
complexity by a constant factor only when compared to supervised learning.
We verify this intuition for finite classes and (to a lesser extent) for classes

of finite VC-dimension, if the factor is allowed to depend on the concept class.
We can remove the dependence on the concept class, if the domain is finite
and we allow the learner to fail on a (small) subset of the possible domain
distributions.
On the other hand, we prove that the conjecture is in fact wrong for classes

of infinite VC-dimension, even if we consider the weaker variant comparing
semi-supervised with supervised learning.
2.) Balcan and Blum showed in [BB10], that one labeled example is sufficient

for semi-supervised learning in the Co-training framework under the Condi-
tional Independence Assumption. To answer the question how much of this
reduction is attributable to unlabeled data and how much is due to Co-training
alone, we investigate the reduction achievable by supervised Co-training.
To this end we prove (almost) tight sample size bounds proportional to√
1/ε, where ε denotes the accuracy parameter. Thus we see a remarkable

reduction by supervised Co-training compared to the standard setting (where
the required sample size is proportional to 1/ε), albeit not nearly as large as
the advantage provided by semi-supervised learners. We make extensive use
of a suitably defined variant of Hanneke’s disagreement coefficient [Han07],
which was developed to analyze agnostic active learning.
We prove (almost) matching worst-case bounds with purely combinatorial

parameters, that have a strong connection to Geréb-Graus model of “learning
from positive examples only” [GG89].
On a side-note, we settle an open question posed by Auer and Ortner [AO07]

about learning intersection-closed classes.
3.) We apply semi-supervised and active learning successfully on the real-

world problem of breaking “audio CAPTCHAs”, a common scheme for securing
internet services against automated attackers.
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Introduction
Over the last decades, machine learning has become a thriving field with many
practical applications. We will consider a specific machine learning problem
in this thesis, called classification: the learning algorithm is presented with a
sample of data records (for example, digital audio signals), that come together
with labels providing a classification of each record (in our example, the audio
signals could be categorized intomusical genres; note that wewill only consider
binary labels in the theoretic part of the thesis). Our goal is to find the rule
behind this classification or—if a perfect rule is not conceivable or too hard to
find—at least an acceptable approximation.
There are many real-world classification problems, where an abundance of

unlabeled data records is readily available (in our example, audio signals could
be automatically downloaded from audio and video sharing websites), while
classifying unlabeled data is expensive, as this usually requires the work of hu-
man experts. It is therefore a natural idea to use the huge amount of unlabeled
data to our advantage by providing the learner with an additional, unlabeled
sample. It is well-known that so-called active learning, where the algorithm
is allowed to request the correct labels of a part of the unlabeled sample, can
reduce the number of labels necessary to find a good classification rule substan-
tially. However, since providing the requested labels is usually expensive, as a
human expert has to assist the active learner, it would be appreciable to make
use the unlabeled sample directly. Such learning algorithms are called semi-
supervised (while learning without utilizing unlabeled data is called (fully)
supervised). If some notion of compatibility between the data distribution
and the labels exists, it is often straightforward to implement semi-supervised
learning algorithms. For example, imagine that the data clusters into a small
number of sets that are easily detectable; if you assume that each cluster is
labeled uniformly, only one labeled sample per cluster is sufficient to discover
the classification rule. It is not clear that access to unlabeled data alone pro-
vides any advantage if no compatibility assumption holds—in fact, there is a
common belief that the benefit of an unlabeled sample is insignificant in that
case.
While there are many publications that evaluate semi-supervised learning by

conducting experiments on artificial and real-world data sets, the theoretical
understanding is still far from complete. Themain topic of this thesis is to study
the question whether semi-supervised learning provably helps in classification
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Introduction

tasks—and if it does, to determine the magnitude of its benefit—both with and
without compatibility assumptions. Note that we will ignore computational
issues (with an exception in the final chapter) and concentrate on information
theoretic results.
A second, minor topic is the question, whether unlabeled data helps in real-

world classification tasks, one of which we will present in the final chapter.

Organization of the Thesis
This thesis is divided into four parts:
The first part, consisting of Chapters 1 and 2, provides an introduction to

learning theory—an analysis of machine learning from the point of view of
mathematics and theoretical computer science—and sets the stage for the
problems studied in the second and third part. Chapter 1 defines notation and
contains introductions to PAC-learning and game theory (these parts can easily
be skipped by readers familiar with these topics). Chapter 2 gives an overview
over related work and relevant results from learning theory.
In the second part, which consists of Chapters 3 and 4, we investigate the

power of unlabeled data in semi-supervised learning when no compatibility
between the data distribution and the labels is assumed. We will prove both
negative and positive results: we will show in Chapter 3, that semi-supervised
learning provides no significant advantage over fully supervised learning in
this setting for finite concept classes and (to a lesser extent) for classes of finite
VC-dimensions, while we will prove in Chapter 4 that the opposite is true for
classes of infinite VC-dimension. The latter result is remarkable, since it defies
common intuition about the usefulness of unlabeled data.
In the third part, Chapter 5, we will conduct a case study on a specific

compatibility assumption, namely Co-training under the Conditional Indepen-
dence Assumption. We will see that many labels can be saved by the sole fact
that the extra assumption holds, although this saving is not as large as the
reduction realized by a semi-supervised learner with access to unlabeled data.
One a side-note, we will settle a longstanding open question about learning
intersection-closed classes.
The fourth part, which can be read independently from the other parts

of the thesis, consists of Chapter 6 and provides an example of a practical
application of unlabeled data in machine learning. We will apply both semi-
supervised and active learning to successfully ease the breaking of so-called
“audio CAPTCHAs”, which are a popular scheme to protect internet services
from misuse by automated attackers.

xii



Organization of the Thesis

The following illustration gives an overview of the recommended possible
reading orders:

Chapter 1

Chapter 2

Part 1

Chapter 4Chapter 3

Part 2

Chapter 5

Part 3

Chapter 6

Part 4

Note that this thesis is based on the following peer-reviewed and previously
published works, which also contain most results presented here (you will find
more detailed explanations, including an overview of previously unpublished
results, at the beginning of the relevant chapters):

• “Smart PAC-Learners” [DS11] by the author and Hans Ulrich Simon

• “Unlabeled Data Does Provably Help” [DSS13] by the author, Hans Ulrich
Simon and Balázs Szörényi

• “Supervised Learning and Co-training” [DSS14] by the author, Hans Ul-
rich Simon and Balázs Szörényi

• “The Optimal PAC Bound for Intersection-closed Concept Classes” [Dar15]
by the author

• “Reducing the Cost of Breaking Audio CAPTCHAs by Active and Semi-
supervised Learning” [DMK14] by the author, Hendrik Meutzner and
Dorothea Kolossa
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Chapter 1

Basic Definitions and Useful
Results

1.1 Notation
First, we define some notation that is used throughout the thesis. Also note
the “List of Notations” on page 125.

Vectors and matrices

Vectors are written as bold lowercase letters, e.g., x, b, while matrices are
written as bold capitals, e.g., A,M . The i-th component of a vector x is
usually written as xi and the entry in the i-th row and the j-th column of
matrixM is denoted byM [i, j]
For any f : X → Y and any vector x = (x1, . . . , xm) ∈ Xm, with m > 0, we

define f(x) := (f(x1), . . . , f(xm)) ∈ Y m.

Probabilities and random variables

We denote the probability of a (measurable) set A by Pr(A). If we consider
a specific distribution P we often write P (A). The m-fold product of the
distribution P is denoted by Pm.
If x is a random variable distributed according to P , we write x ∼ P . For

any event A(x), depending on x, we write the probability that A(x) occurs as
Prx∼P (A(x)) or, shorter, asP (A(x)). For any function f , we denote the expected
value of f(x) by Ex∼P [f(x)]. If the random variable and its distribution are clear
from context, we often drop the subscript.

Big O notation

We assume that the reader is familiar with Landau’s big O notation. The
notations f = Õ(g) and g = Ω̃(f) are defined as Landau’s O and Ω, but
additionally hide logarithmic factors.

1



Chapter 1 Basic Definitions and Useful Results

1.2 The PAC-Learning Framework
This section provides a succinct introduction into Valiant’s PAC-learning frame-
work [Val84] (for a more detailed look at PAC-learning we refer the interested
reader to [KV94]). Readers familiar with this topic can easily skip this section.

Preliminaries

LetX denote a non-empty set, called the domain, and let P be any distribution
over X. We refer to the elements of X as instances. Any set C ⊆ 2X is called a
concept class and its elements are called concepts. We often identify a concept
c ∈ C with its indicator function, so that c : X → {0, 1}. Let c∗ ∈ C be some
concept, called the target concept. We refer to any H ⊆ 2X , such that C ⊆ H,
as a hypothesis class for C. The elements of H are called hypotheses. The error
rate of a hypothesis h ∈ H is given by P (h 6= c∗) := Prx∼P (h(x) 6= c∗(x)).1

Sample

A sample is a pair (x, b), such that x ∈ Xm with m > 0 and b := c∗(x). (xi, bi)
is called an example, the xi’s are called sample points and the bi’s are called
labels. We refer to an example (xi, bi) as negative if bi = 0 holds and as positive
otherwise. For this reason, we sometimes denote negative labels by “−” and
positive ones by “+”.

PAC-learner

We say that a (deterministic) algorithm L, often simply called “learner”, PAC-
learns concept class C with hypotheses from H if the following properties hold:

• The learner’s input consists of a random sample (x, b), with x ∼ Pm and
b = c∗(x), and two parameters ε, δ > 0.

• The output is a hypothesis h ∈ H.

• There exists a function m0(ε, δ), that is polynomial in 1/ε and ln(1/δ),
such that for any distribution P , any c∗ ∈ C, any ε, δ > 0 and any
m ≥ m0(ε, δ) it holds that

Pr
x∼Pm

(
P (h 6= c∗) ≤ ε

)
≥ 1− δ , (1.1)

where h is the output of the learner.

1We shortly remark that the existence of all relevant probabilities is guaranteed for “well
behaved classes” (see [BEHW89]). Without going into the details, we will always assume
that our classes are well behaved.
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1.2 The PAC-Learning Framework

We call ε the accuracy and δ the confidence parameter. A hypothesis with
an error smaller than ε is called ε-accurate and we say that the learner fails,
if her hypothesis is not ε-accurate. Note that the learner is not required to
observe that her hypothesis is ε-accurate. Inequality (1.1) indicates, that the
learner is able to produce an arbitrarily accurate hypothesis with a arbitrary
high confidence (the hypothesis is therefore “probably approximately correct”,
i.e., PAC).

Sample complexity

Let us define the sample complexity of L and C, denoted by mL
C , as the smallest

possible function for m0. Since the (ε, δ)-criterion from (1.1) must hold for all
pairs of distributions and target concepts, mL

C is valid in the worst case.
We are often interested in the sample complexity of C, denoted by m∗C, which

is given by taking the infimum over all PAC-learners (using arbitrary hypothesis
classes). Thus m∗C can be thought of as the worst-case sample complexity of
the best possible PAC-learner for C.
Note, that in the original PAC-framework as defined by Valiant, the definition

of a PAC-learner demands more than just a polynomial sample complexity.
Furthermore, the running time of Lmust also be polynomial in 1/ε and ln(1/δ)
(and usually some complexity parameters, see [KV94] for an introduction
into the computational details of PAC-learning). Since we do not consider
computational or efficiency questions in this thesis (with a minor exception in
the final chapter) and are only interested in the size of the sample complexity,
we can ignore that demand. Please also note, that all hardness results proven
in our information theoretic model are still valid in the computational one.

Consistency and the version space

A hypothesis h that agrees with a sample (x, b), i.e., that fulfills h(x) = b, is
called consistent with the sample. The set of all consistent hypotheses in H is
called the version space of (x, b):

VH(x, b) := {h ∈ H : h(x) = b}

For convenience we define the following notation for c∗ ∈ C and X ′ ⊆ X:

VH(x, c∗) := VH(x, c∗(x))
VH(X ′, c∗) := {h ∈ H : h(x) = c∗(x) for all x ∈ X ′}

The Vapnik-Chervonenkis dimension

An important combinatorial parameter for proving lower and upper bounds
on the sample complexity was defined by Vapnik and Chervonenkis [VC71]:

3



Chapter 1 Basic Definitions and Useful Results

we say that a set X ′ ⊆ X is shattered by C if for any X ′′ ⊆ X ′ there is a
concept c ∈ C such that c ∩ X ′ = X ′′ (so that concepts from C can induce
arbitrary labelings on X ′). The VC-dimension of C, denoted by VCdim(C), is
defined as the size of the largest set shattered by C or as infinite if no such set
exists.

The covering number

If the distribution P is fixed, the following parameter can provide stronger
bounds on the sample complexity: a subset C ′ ⊆ C is called an ε-cover of C
with respect to P if for any c ∈ C there exists a c′ ∈ C with P (c 6= c′) ≤ ε.
The covering number, denoted by NC,P (ε), is defined as the size of the smallest
ε-cover of C with respect to P (which can be infinite).

Variants of PAC-learners

Besides the basic definition, we consider the following special cases and variants
of PAC-learners:

Consistent learners A learner who always outputs a consistent hypothesis
is called a consistent learner.

Proper learners A learner is called proper, if she always outputs a hypothesis
from C, i.e., if H = C holds. Otherwise the learner is called improper.

Randomized learners If we allow learners to be randomized algorithms, the
outer probability in (1.1)must also be taken over the internal randomization
of the learner.

A learner that makes no use of randomization is called deterministic.

Semi-supervised learning In semi-supervised learning the learner has an
additional finite unlabeled sample at her disposal. Like in the labeled sam-
ple, the unlabeled sample points are drawn independently and distributed
according to P .

A learner that has no additional information about the distribution P is
called fully supervised or simply supervised.

Note that the size of the unlabeled sample is not added to the sample
complexity, which is defined as the number of necessary labeled examples.
Furthermore, the sample complexity of a class C in the semi-supervised
setting can never be larger than the sample complexity in the fully super-
vised setting, because a semi-supervised learner can choose to ignore her
unlabeled sample and behave just like a supervised learner.

4



1.2 The PAC-Learning Framework

Learning under a fixed distribution The domain distribution P is fixed and
the learning algorithmmay be thought of being tailored to P or receiving P
as part of her input.

Note that we can regard a learner tailored to P as a “supercharged” semi-
supervised learner equipped with an unlabeled sample so large that she
knows P perfectly well. Moreover, the sample complexity of a class C in the
fixed distribution setting can never be larger than the sample complexity
in the semi-supervised setting, because a learner who knows P can always
simulate a semi-supervised learner by generating an unlabeled sample.

We denote the sample complexity of L, C and P in this framework by mL
C,P .

If P is more benign than the worst-case distribution, this value can be much
smaller thanmL

C . We will investigate the question, whether this advantage
can only be realized by learners L that are tailored to distribution P .

Similar as before we define the sample complexity of C and P , denoted
by m∗C,P , by taking the infimum over all PAC-learners. Note that this value
can again be much smaller than m∗C.

Active learning In active learning the learner has access to an additional
unlabeled sample, similar as in semi-supervised learning, but here she is
allowed to ask an oracle for the labels of selected sample points in her
unlabeled sample.

A non-active learner is called passive.

Agnostic learning and learning under noise We assumed the existence of a
target concept c∗ ∈ C, that can explain the labels of all sample points per-
fectly well, and that the labels in the sample are undisturbed by noise. Of
course, these requirements are often not satisfied in practical applications
of machine learning.

There are several well-known variants of PAC-learning that relax these
restrictions; for example learning under noise, where each label is wrong
with a certain probability, and agnostic learning, where we do not assume
the existence of a target concept and the examples are generated by a
distribution over X × {0, 1} instead. In agnostic learning we demand that
the learner finds a hypothesis that is ε-close to the best hypothesis in C,
which may have a non-zero error.

The non-agnostic setting without noise, in which will work in this thesis, is
called the realizable setting.

Now we can characterize our original definition of PAC-learning with this
vocabulary as deterministic, fully supervised, passive and realizable. In the
case C 6= H, which we allowed, the learner is also improper.

5



Chapter 1 Basic Definitions and Useful Results

A game for proving lower bounds

To prove lower bounds on the sample complexity we often analyze the size
of the Bayes-error, which is the smallest possible error rate achievable by the
optimal learner, who proceeds according to the so-called Bayes-decision.
Furthermore, we usually consider the following game between the (deter-

ministic) learner and an “adversary”:
The adversary chooses a probability distributionD on pairs (c∗, P )where c∗ ∈
C and P is a probability distribution overX. To create a sample we first draw a
target concept c∗ and a domain distribution P according toD, then we generate
sample points x according to Pm and compute the corresponding labels b =
c∗(x). Because proofs can become simpler if the learner is given additional
information about the learning task (e.g., it may be easier to determine the
Bayes-decision), we may add auxiliary information to the learner’s input. As
usual, the learner outputs a hypothesis h. She fails if h is not ε-accurate, i.e.,
if P (h 6= c∗) > ε holds.
There are two main differences between this game and PAC-learning:

• We are switching from PAC-learning’s worst-case analysis, where the
learner has to cope with any pair (c∗, P ), to an average case analysis.

• The additional information given to the learner ismissing in PAC-learning.

Because both changes can only be advantageous to the learner, they pose no
problems for the prove of lower bounds: if the learner fails with a proba-
bility larger than δ, she will also miss the (ε, δ)-criterion of PAC-learning (as
given in (1.1)). Furthermore, Yao’s principle [Yao77] states that lower bounds
obtained by this technique are even valid for randomized learners.

1.3 Game Theory and the Minimax Theorem
In this section we give a short introduction to the theory of two-player zero-sum
games and present the Minimax Theorem (for a more detailed introduction we
refer the interested reader to [Mor94]). Readers familiar with game theory
can easily skip this section.

Two-player zero-sum games and payoff matrices

We want to model games with two players, called Alice and Bob. We assume
that the game is deterministic and that all information about the game is
open for both to see (there are no dice or hidden cards, for example). Both
players play a single move simultaneously before the outcome of the game is

6



1.3 Game Theory and the Minimax Theorem

determined. Let us say that Alice can choose betweenm different moves, while
Bob has n different moves his disposal.
When Alice plays move i and Bob plays move j, we denote Bob’s outcome

of the game by a real number A[i, j]. A higher value corresponds to a better
outcome for Bob. An analogue outcome A′[i, j] can be defined for Alice. A
game is called zero-sum, if Bob wins exactly the amount that Alice loses and
vice versa, i.e., if A[i, j] = −A′[i, j] holds for all i, j. The matrix A ∈ Rm×n is
called the payoff matrix of the game.

Mixed and pure strategies

We allow Alice and Bob to choose their moves randomly; thus Alice’s strategy
is given by a probability vector p ∈ [0, 1]m (with

∑m
i=1 pi = 1), such that the

probability of playing move i is exactly pi. Analogously, Bob’s strategy is given
by a probability vector q ∈ [0, 1]n. We refer to these randomized strategies as
mixed strategies, while strategies that pick one fixed move are called pure. The
expected gain of Bob (and the expected loss of Alice) is now given by

p>Aq . (1.2)

Thus Alice’s goal is to the minimize the value from (1.2), while Bob tries to
maximize it.

Optimal strategies and the Minimax Theorem

We now assume that one player, say Alice, makes the first draw by fixing her
mixed strategy p. Now Bob can easily optimize his strategy q based on the
choice of Alice (in fact, Bob’s optimal strategy is a pure one: he can play move
j, where j is the index of the largest component of p>A). Thus Alice’s optimal
choice in this situation is playing a mixed strategy p that minimizes the largest
component of p>A. An analogue remark applies if Bob makes the first draw.
Now John von Neumann’s famous Minimax Theorem states the following:

Theorem 1 (Minimax [vN28]). For all A ∈ Rm×n holds

min
p

max
q
p>Aq = max

q
min
p
p>Aq , (1.3)

where the minium and maximum is taken over probability vectors (i.e., p ∈
[0, 1]m, q ∈ [0, 1]n and ∑n

i=0 pi = ∑m
j=0 qj = 1).

A proof can be found in [Mor94].
Note that the left- resp. right-hand side of (1.3) models the situation where

Alice resp. Bob makes the first draw. Thus, the Minimax Theorem states that
it is irrelevant who fixes their strategy first, as long as both players play an
optimal strategy. Moreover, it follows that we can assign a unique real value to
each game, namely the one from equation (1.3).
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Chapter 1 Basic Definitions and Useful Results

1.4 A Useful Result From Probability Theory
We assume that the reader is familiar with basic probability theory including
results like the Union Bound and Markov Inequality. In this section, we present
the following “concentration bound”, which we will apply several times in the
later chapters:

Theorem 2 (Chernoff-bounds [Che52]). Let X1, . . . , Xm be a sequence of inde-
pendent, identically distributed Bernoulli random variables with P (Xi = 1) = p
for all 1 ≤ i ≤ m. Then for all 0 ≤ γ ≤ 1 the following holds:

Pr
( m∑
i=1

Xi > (1 + γ) · pm
)
≤ e−mpγ

2/3

and

Pr
( m∑
i=1

Xi < (1− γ) · pm
)
≤ e−mpγ

2/2

Thus the Chernoff-bounds state that a binomially distributed random variable
is close to its expected value with a high probability. The theorem as it is given
here is a special case of a more general result, whose proof can be found in
Chernoff’s original paper [Che52].
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Chapter 2

Related Work From Learning
Theory
This chapter serves two purposes: we will survey related work from learn-
ing theory and, at the same time, present several results about the sample
complexity—many of them classic theorems in the PAC-learning framework—
which we will apply in later chapters. Note that Chapters 5 and 6 contain
additional sections discussing related work, as these chapters have further
connections to fields not mentioned here.
This chapter contains only one previously unpublished result (see Lemma 8).

2.1 Work on Supervised Learning
The following classic results give almost tight bounds on the sample complexity
of supervised PAC-learning in the worst case:

Theorem 3 ([BEHW87]). Let C ⊆ H be finite concept and hypothesis classes.
Then C can be PAC-learned by any algorithm returning a consistent hypothesis
from H using

m =
⌈

ln |H|+ ln(1/δ)
ε

⌉
labeled examples. With the choiceH = C the learner is proper and yields the same
upper bound on the sample complexity, i.e., m∗C(ε, δ) = O((ln |C|+ ln(1/δ))/ε).
Theorem 4 ([BEHW89]). Let C ⊆ H be a concept and hypothesis class of fi-
nite VC-dimensions. Then C can be PAC-learned by any algorithm returning a
consistent hypothesis from H using

m = O

(
VCdim(H) ln(1/ε) + ln(1/δ)

ε

)

labeled examples. With the choiceH = C, the learner is proper and yields the same
upper bound on the sample complexity, i.e., m∗C(ε, δ) = O((VCdim(C) ln(1/ε) +
ln(1/δ))/ε).

9



Chapter 2 Related Work From Learning Theory

Theorem 5 ([EHKV89]). Any algorithm PAC-learning a class C of finite VC-
dimension needs at least

m∗C(ε, δ) = Ω
(

VCdim(C) + ln(1/δ)
ε

)

many labeled examples in the worst case (for small enough ε, δ > 0).

Note that the lower bound matches with the upper bound from Theorem 4
up to a logarithmic factor. It is still an open question, whether this factor of
ln(1/ε) can be overcome; see Section 5.3.5 for a positive answer in the case of
concept classes that are closed under intersection.

2.2 Work on Learning with Unlabeled Data
As mentioned in the introduciton, obtaining labeled samples is expensive in
many applications, since it often requires the work of a human expert, while
acquiring large amounts of unlabeled data is relatively cheap.
This motivates the question if it is possible to reduce the sample complex-

itym∗C by exploiting a large amount of unlabeled data, which is the main topic
of this thesis.

Active learning

This question is answered in the positive in the framework of active learning,
where the learner is allowed to ask an oracle for the true label of a part of
her unlabeled data sample. Since active learning is relatively well studied and
understood (even in the agnostic setting; see [CAL94, Das05, BBZ07, DHM07,
Han07, BBL09, BHV10, BL13]), we will turn our focus to semi-supervised learn-
ing1, where the learner has access to an additional unlabeled sample but stays
passive, i.e., she may not ask an oracle for labels. We will also investigate the
setting of “learning under a fixed distribution” as an idealized and often easier
to analyze version of semi-supervised learning.

Utilizing unlabeled data with extra assumptions

In the framework of semi-supervised learning one usually makes use of extra as-
sumptions, that provide some kind of compatibility between the distribution P
and the target concept c∗. You will find a discussion of the most popular extra

1While there are many publications on semi-supervised learning, the majority of them only
considers practical applications. We will contribute our share in Chapter 6, where we apply
semi-supervised and active learning to a real-world problem from the field of internet
security.
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2.2 Work on Learning with Unlabeled Data

assumptions in the introduction of [CSZ06]. It is known that semi-supervised
learning can reduce the need of labeled samples enormously, if a suited extra
assumption holds. For example, Balcan and Blum proved in [BB10] that only
one labeled example (and polynomially many unlabeled ones) suffices for PAC-
learning in a framework called “Co-training” if the “Conditional Independence
Assumption” holds. We will take an intensive look at this setting in Chap-
ter 5. For an analysis of semi-supervised learning in an augmented version of
PAC-learning, that is able to model many popular extra assumptions, we refer
to [BB10].

Utilizing unlabeled data without extra assumptions

As stated in the introduction, there is a common intuition that the effect of
unlabeled data is marginal if extra assumptions are absent.
Note that the lower bound from supervised PAC-learning, Theorem 5, is

still valid if the learner is allowed to know the domain distribution. So we
already see that no amount of unlabeled data can help to reduce the sample
complexity in the worst case. On the other hand, Theorem 5 does not rule out
the possibility that unlabeled data can still be helpful if the domain distribution
is more benign.
Already in 1991 Benedek and Itai proved the following upper bound on the

sample complexity in the fixed-distribution setting:

Theorem 6 ([BI91]). Let C ⊆ H be a concept and hypothesis class with a finite
covering number NH,P (ε) for all ε > 0. Then C can be PAC-learned under a fixed
distribution P using

m = O

(
ln(NH,P (ε/2)) + ln(1/δ)

ε

)

labeled examples. With the choice H = C, the learner is proper and yields the
same upper bound on the sample complexity under the fixed distribution P , i.e.,
m∗C,P (ε, δ) = O(ln(NC,P (ε/2) + ln(1/δ))/ε).

In the same paper, Benedek and Itai also showed a general lower bound on
the sample size in the fixed distribution setting (based on packing numbers).
A possible way to verify the “intuition” mentioned above would be to show that
a fully supervised PAC-learner exists whose sample complexity is in the same
order as the lower bound from Benedek and Itai. Since their lower bound does
not even match the upper bound from Theorem 6, this looks like a hopeless
approach.
In 2005, Kääriäinen [Kää05] developed a semi-supervised learning strategy,

which does not rely on extra assumptions and is able to reduce the sample
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Chapter 2 Related Work From Learning Theory

complexity by a factor of up to two. The basic idea is to search for the
center of the version space (measured by a pseudometric given by P ) instead of
returning some arbitrary consistent hypothesis. Since a reduction of the sample
complexity by a constant factor is asymptotically negligible, Kääriäinen’s result
is in accordance with the common intuition.
In 2010 Balcan and Blum showed2 that the upper bound from Theorem 6

can be transferred to the semi-supervised setting (without relying on extra
assumptions):

Theorem 7 ([BB10]). Let C ⊆ H be a concept and hypothesis class of finite
VC-dimensions and finite covering numbers. Then C can be PAC-learned in the
semi-supervised setting from

m = O

(
ln(NH,P (ε/6)) + ln(1/δ)

ε

)

labeled and

mU = O

(
VCdim(H) ln(1/ε) + ln(1/δ)

ε2

)

unlabeled examples. With the choice H = C, the learner is proper and yields
the same upper bound on the sample complexity in semi-supervised learning, i.e.,
there exists a semi-supervised learner L such that for all domain distributions P
holds mL

C,P (ε, δ) = O(ln(NC,P (ε/6) + ln(1/δ))/ε).

The conjecture of Ben-David, Lu and Pál

Ben-David, Lu and Pál formulated the “common intuition” as a rigorous math-
ematical statement. They conjectured in [BDLP08] that even knowing P per-
fectly can reduce the sample complexity by a constant factor only, i.e., for any
class C there exists a fully supervised learner L and a constant k ≥ 1 such that
for any distribution P holds

mL
C,P (ε, δ) ≤ k ·m∗C,P (ε, δ) (2.1)

for small enough ε, δ > 0.
Ben-David et al. could prove this conjecture for several basic classes over the

real line under continuous domain distributions (with k ≈ 2). Nevertheless,
the following lemma observes that (2.1) is trivially wrong. However, this is only
the case in letter but not in spirit, as a slight change in the formulation of (2.1)
yields a similar conjecture that is not so easy to falsify.

2To see the result, apply Theorem 13 from [BB10] with a constant compatibility of 1 for all
concepts and distributions.
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2.2 Work on Learning with Unlabeled Data

Lemma 8. There is a concept class C such that for all 0 < ε < 1/2 there exists a
family of distributions P such that the following holds:

1. For every P ∈ P exists a learner (tailored to P ) that always finds an ε-
accurate hypothesis without seeing any labeled examples, i.e., for all P ∈ P
and all non-negative δ holds m∗C,P (ε, δ) = 0.

2. For any fully supervised learner L and all δ < 1/36 exists a distribution P ∈
P such that mL

C,P (ε, δ) > 0.

Proof. Let X = {0, . . . , 6} and C = {∅, {1, 2, 3}, {4, 5, 6}, {1, . . . , 6}}. P consists
of the following distributions: for any i ∈ {1, 2, 3} and j ∈ {4, 5, 6} let Pi,j be the
distribution that assigns probability 1− 2ε to the point 0 and evenly distributes
the remaining probability mass of 2ε over the four pointsX\{0, i, j} (the points
i and j have zero probability mass).
To prove the first part of the lemma, let i′ ∈ {1, 2, 3} \ {i} and j′ ∈ {4, 5, 6} \
{j}. Observe that the hypothesis h = {i′, j′} is ε-accurate for any choice of
c∗ ∈ C under distribution Pi,j. Therefore, a learner that knows Pi,j can simply
output h without seeing any labeled examples.
To prove the lower bound we consider a game between the learner and

an adversary. The adversary chooses a distribution Pi,j and a target c∗ ∈ C
uniformly at random. It suffices to show that any fixed hypothesis h ⊆ X fails
to achieve ε-accuracy with a probability of at least 1/36. We can easily show
the existence of a “bad pair” (c∗, Pi,j) for any fixed h:

• If h contains no points from {1, 2, 3}, we include {1, 2, 3} in c∗ and choose
i arbitrarily.

• If h contains one point i′ from {1, 2, 3}, we include {1, 2, 3} in c∗ and
let i = i′.

• If h contains two points i′, i′′ from {1, 2, 3}, we exclude {1, 2, 3} from c∗

and choose i ∈ {1, 2, 3} such that i′ 6= i 6= i′′.

• If h contains {1, 2, 3} completely, we exclude {1, 2, 3} from c∗ and choose
i arbitrarily.

In any case, the error rate of h on {1, 2, 3} is at least ε. An analogous remark
applies to h on {4, 5, 6}, so that the overall error rate of h is at least 2ε. This
concludes the proof, since the probability of drawing a bad pair (c∗, Pi,j) is at
least 1/|C × P| = 1/36.

In light of Lemma 8, we will allow the fully supervised learner in (2.1) to be
twice as inaccurate as the learner tailored to the domain distribution, i.e., the
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Chapter 2 Related Work From Learning Theory

conjecture now states: for any class C there exists a fully supervised learner L
and a constant k ≥ 1 such that for any distribution P holds

mL
C,P (2ε, δ) ≤ k ·m∗C,P (ε, δ) (2.2)

for small enough ε, δ > 0.
We call the constant k from (2.2) the performance ratio. As we will show

in the following two chapters, the altered conjecture is true for many concept
classes, but not for all.
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Chapter 3

Where Unlabeled Data Does Not
Help
This chapter is based on the following article resp. conference paper:

• “Smart PAC-Learners” [DS11]1, which is a joint work of the author with
Hans Ulrich Simon (please note that this article is partly based on an
earlier conference paper by Hans Ulrich Simon [Sim09], which proved
the existence of PAC-learners with a universal constant performance ratio
over finite domains for special classes with an additional property only)

• “Unlabeled Data Does Provably Help” [DSS13]2, which is a joint work of
the author with Hans Ulrich Simon and Balázs Szörényi

All results in this chapter were originally published in these two works.

3.1 Introduction
In this chapter we investigate the conjecture (2.2), that there exists a fully
supervised learner whose label consumption exceeds the label consumption of
the best learner with full prior knowledge of the domain distribution at most
by a factor k(C) that depends on C only, as opposed to a dependence on ε or δ.
Furthermore, we will also examine the possibility to remove the dependence
of k on the class C.

3.1.1 Main Results
Finite classes and classes with finite VC-dimension

The following result, whose proof is found in Section 3.2, confirms conjec-
ture (2.2) to a large extent for finite classes, and to a somewhat smaller extent
1This article was supported by the Deutsche Forschungsgemeinschaft Grant SI 498/8-1.
2This paper was supported by the bilateral Research Support Programme between Germany
(DAAD 50751924) and Hungary (MÖB 14440).
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Chapter 3 Where Unlabeled Data Does Not Help

for classes of finite VC-dimension:

Theorem 9. Let C be a concept class over domain X that contains the constant
zero- and the constant one-function. Then:

1. If C is finite, there exists a proper and fully supervised PAC-learning algo-
rithm L such that, for every domain distribution P ,

mL
C,P (2ε, δ) = O(ln |C|) ·m∗C,P (ε, δ) .

2. If the VC-dimension of C is finite, there exists a proper and fully supervised
PAC-learning algorithm L such that, for every domain distribution P ,

mL
C,P (2ε, δ) = O(VCdim(C) · ln(1/ε)) ·m∗C,P (ε, δ)

= Õ(VCdim(C)) ·m∗C,P (ε, δ) .

Learners with universal performance ratios

For classes over finite domainsX and an inequality slightly different from (2.2),
we can show the existence of proper and fully supervised learners, that achieve
a performance ratio k, which has no dependence on C. To this end, it will be
convenient to think of the concept class C, the sample size m and the accuracy
parameter ε as fixed, respectively, and to figure out the smallest value for δ
such that m examples suffice to meet the (ε, δ)-criterion of PAC-learning. Let
δ∗P (ε,m) denote the smallest value for δ that can be achieved by a learner who
is specialized to P and, for any learner L, let δLP (ε,m) denote the smallest
value of δ such that m examples are sufficient to meet the (ε, δ)-criterion from
inequality (1.1) provided that L was exposed to the domain distribution P .
We aim at an inequality of the form

δLP (2ε,m) ≤ k · δ∗P (ε,m) (3.1)

where k denotes a constant not even depending on C.
Because of this independence, the statement is stronger than the result from

Theorem 9. However, the result, that we can actually prove, has one important
limitation (besides the finiteness of X), which makes it weaker and therefore
incomparable to Theorem 9: inequality (3.1) is not verified for all distribu-
tions P but for a volume of approximately 1 − 2/k, say when measured with
the uniform distribution over the |X|-dimensional probability simplex (whose
points represent distributions over X). Actually the final result is somewhat
more general: we can fix any measure µ on the |X|-dimensional probability
simplex (expressing which domain distributions we consider as particularly
important), and still achieve validity of (3.1) for a volume of approximately
1 − 2/k of all domain distributions. Clearly, the design of learner L changes
when µ changes.
The formal statement is found in Theorem 19.
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3.2 Proof of Theorem 9

3.2 Proof of Theorem 9
We start with the following lower bound on m∗C,P (ε, δ):

Lemma 10. Let C be a concept class and let P be a distribution on domain X.
For any ε > 0, let

dεeC,P = min{ε′| (ε′ ≥ ε) ∧ (∃c, c′ ∈ C : P (c 6= c′) = ε′}

where, by convention, the minimum of an empty set equals∞. With this notation,
the following holds:

1. If d2εeC,P ≤ 1, then m∗C,P (ε, δ) ≥ 1.

2. Let γ = 1− d2εeC,P . If d2εeC,P < 1, then

m∗C,P (ε, δ) ≥ log1/γ
1
2δ = Ω

(
log1/γ

1
δ

)
. (3.2)

3. If d2εeC,P ≤ 1/4, then

m∗C,P (ε, δ) ≥
⌊

ln(1/(2δ))
2d2εeC,P

⌋
= Ω

(
ln(1/δ)
d2εeC,P

)
. (3.3)

Proof. It is easy to see that at least one labeled example is needed if d2εeC,P ≤ 1.
Let us now assume that d2εeC,P < 1. Let c, c′ ∈ C be chosen such that P (c 6=
c′) = d2εeC,P . The adversary picks c and c′ as target concept with probability
1/2, respectively. With a probability of (1 − d2εeC,P )m, none of the labeled
examples hits the symmetric difference of c and c′. Since P (c 6= c′) ≥ 2ε, the
learner has no hypothesis at her disposal that is ε-accurate for c and c′. Thus, if
none of the examples distinguishes between c and c′, the learner will fail with
a probability of 1/2. We can conclude that the learner fails with an overall
probability of at least 1

2(1− d2εeC,P )m = 1
2γ

m.
Setting this probability less than or equal to δ and solving for m leads to the

lower bound (3.2). If d2εeC,P ≤ 1/4, a straightforward computation shows that
1
2γ

m is bounded from below by 1
2 exp(−2d2εeC,P · m). Setting this expression

less than or equal to δ and solving for m leads to the lower bound (3.3).

We are ready now for the proof of Theorem 9:

Proof. Weuse the notation from Lemma 10. We first present themain argument
under the (wrong!) assumption that dεeC,P is known to the learner. At the
end of the proof, we explain how a fully supervised learning algorithm can
compensate for not knowing P . The first important observation, following
directly from the definition of dεeC,P , is that, in order to achieve an accuracy
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of ε, it suffices to achieve an accuracy dεeC,P with a hypothesis from C. Thus, for
the purpose of Theorem 9, it suffices to have a supervised proper learner that
achieves accuracy d2εeC,P with confidence δ. We proceed with the following
case analysis:

Case 1: d2εeC,P ≤ 1/4.
There is a gap of O(ln |C|) only between the upper bound from Theorem 3
(with d2εeC,P in the role of ε) and the lower bound (3.3). Returning a
consistent hypothesis, so that Theorem 3 applies, is appropriate in this
case.

Case 2: 1/4 < d2εeC,P < 15/16.
We may argue similarly as in Case 1 except that the upper bound from
Theorem 3 is compared to the lower bound (3.2). (Note that γ = θ(1) in
this case.) As in Case 1, returning a consistent hypothesis is appropriate.

Case 3: 15/16 < d2εeC,P < 1.
In this case 0 < γ = 1 − d2εeC,P < 1/16. The learner will exploit the
fact that one of the hypotheses ∅ and X is a good choice. She returns
hypothesis X if label “1” has the majority within the labeled examples,
and hypothesis ∅ otherwise. Let c∗, as usual, denote the target concept.
If γ < P (c∗) < 1 − γ, then both of ∅ and X are d2εeC,P -accurate. Let us
assume that P (c∗) ≤ γ. (The case P (c∗) ≥ 1−γ is symmetric.) The learner
will fail only if, despite of the small probability γ for label “1”, these labels
have the majority. It is easy to see that the probability for this to happen
is bounded by (m/2)

(
m
m/2

)
γm/2 and, as seen by an application of Stirling’s

Formula, also bounded by 23m/2γm/2 = (8γ)m/2.
Setting the last expression less than or equal to δ and solving form reveals
that O(log1/γ(1/δ)) many labeled examples are enough. This matches the
lower bound (3.2) modulo a constant factor.

Case 4: d2εeC,P = 1.
This is a trivial case where each labeled example almost surely makes
inconsistent any hypothesis h ∈ C of error at least ε. The learner may
return any hypothesis that is supported by at least one labeled example.

Case 5: d2εeC,P =∞.
This is another trivial case where any concept from C is 2ε-accurate with
respect to any other concept from C. The learner needs no labeled example
and may return any h ∈ C.

In any case, the performance ratio is bounded by O(ln |C|). We finally have
to explain how this can be exploited by a supervised learner L who does not
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have any prior knowledge of P . The main observation is that, according to the
bound in Theorem 3, the condition

m >

⌈
ln(|C|/δ)

15/16

⌉
(3.4)

indicates that the sample size is large enough to achieve an accuracy below
15/16 so that returning a consistent hypothesis is the appropriate action (as in
Cases 1 and 2 above). If, on the other hand, condition (3.4) is violated, then
L will set either h = ∅ or h = X depending on which label holds the majority
(which would also be an appropriate choice in Cases 3 and 4 above). It is
not hard to show that this procedure leads to the desired performance, which
concludes the proof for the first part of Theorem 9.
As for the second part, one can use an analogous argument that employs
Theorem 4 instead of Theorem 3.

3.3 Existence Proof of Learners with Universal
Performance Ratios

Throughout this section—as already mentioned in the introduction—we think
of C, m and ε as fixed, and we consider the quantities δLP (2ε,m) and δ∗P (ε,m)
instead of mL

C,P (2ε, δ) and m∗C,P (ε, δ).
Since X is now a finite domain, let d := |X| and X = {1, . . . , d}. Let

N denote the number of concepts and let C = {c1, . . . , cN}. Similarly, let
L1, . . . ,LM denote the list of all proper learning functions, i.e., functions that
map Xm×{0, 1}m to C. A learning function L is said to be consistent if it maps
every sample to a hypothesis from the corresponding version space.
If a proper deterministic learner ignores the parameters ε and δ in her input,

she can be identified with a learning function (remember that we set aside
computational issues). While the learners that we consider here in fact ignore
ε and δ in their inputs, they are, however, randomized. Each-one of these
can be identified with a probability distribution over the set of all learning
functions. A randomized learner (or her strategy) is called consistent if she
puts probability mass 1 on consistent learning functions.

3.3.1 Organization of This Section
The proof of existence of PAC-learners with universal constant performance
ratios is quite involved. We will therefore present an overview of this section:
Section 3.3.2 is devoted to learning under a fixed distribution P . This setting is
cast as a zero-sum game between two players, the learner and her opponent,
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such that the Minimax Theorem from game theory applies. This leads to a
nice characterization of δ∗P = δ∗P (ε,m). It is furthermore shown that, when the
opponent makes his draw first, there is a strategy for the learner that, although
it does not at all depend on P , does not perform much worse than the best
strategy that is specialized to P .
In the remaining sections, distribution P is not fixed, but chosen by an

adversary, who picks a vector z of parameters from a set ∆ and plays the
distribution Pz. Ideally, we would like to design a learner who performs well
in comparison to a learner with full prior knowledge of Pz for all choices of
z ∈ ∆. This (as seen in Chapter 4) impossible endeavor is briefly described
in terms of an appropriately defined zero-sum game in Section 3.3.3. After a
short discussion of some measurability issues in Section 3.3.4, we pursue a less
ambitious goal in Section 3.3.5, modeled again as a zero-sum game between the
learner and her opponent, and show that there is a learner who performs well
in comparison to a learner with full prior knowledge of Pz for most choices of
z ∈ ∆. The total probability of the region containing the “bad choices” of z can
be made as small as we like at the expense of a slightly degraded performance
on the “good choices”. Moreover, the underlying probability measure on ∆ can
be specified by a “user” (who can try to put high probability mass on realistic
measures), and the strategy of the learner can be chosen such as to adapt to
this specification.
Before dipping into technical details, we would like to provide the reader

with a survey on the various zero-sum games—each one given by a payoff-
matrix—which are relevant in the sequel:

1. The basic building stone is the matrix Aε,m
P , as defined in Section 3.3.2.

The corresponding zero-sum game models PAC-learning under the fixed
distribution P .

2. When switching to classical PAC-learning with arbitrary distributions, it
looks natural to analyze a block-matrix that reserves one block Aε,m

Pz
for

every z ∈ ∆. It will however be more clever to insert a scaling factor
1/δ∗z in block z where δ∗z = δ∗Pz

(ε,m) is the best possible expected failure-
rate of a learner with full prior knowledge of Pz: this will force the
learner to choose a strategy that achieves a small ratio between her own
expected failure-rate and δ∗z. The payoff-matrix obtained after scaling is
denoted R. A learner playing successfully the R-game would achieve a
small “worst performance ratio”.

3. Since it is not possible to find a good strategy for the learner in the R-
game, we switch to the R̄-game. The payoff-matrix R̄ results from R
basically by averaging over all z ∈ ∆. A learner playing successfully the
R̄-game achieves a small “average performance ratio”. We shall find a
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good strategy for the learner in the R̄-game, and this will finally lead us
to our main result.

3.3.2 Learning Under a Fixed Distribution Revisited
In this section, the domain distribution P is fixed and known to the learner. We
shall describe PAC-learning under distribution P as a zero-sum game between
two players: the learner who makes the first draw and her opponent who
makes the second draw. This will offer the opportunity to apply the Minimax
Theorem and to arrive at the “dual game” with the opponent making the first
draw. Details follow.
For every ε > 0, i = 1, . . . ,M , j = 1, . . . , N , x ∈ Xm, and b ∈ {0, 1}m, let

Iε,x,bP [i, j] be the Bernoulli variable indicating whether the hypothesis Li(x, b)
is ε-inaccurate w.r.t. target concept cj and domain distribution P , i.e.,

Iε,x,bP [i, j] =
{

1 if P (Li(x, b) 6= cj) > ε
0 otherwise . (3.5)

Now, let

Aε,m
P [i, j] := Ex∈Pm

[
I
ε,x,cj(x)
P [i, j]

]
=
∑
x

Pm(x)Iε,x,cj(x)
P [i, j] (3.6)

= Pr
x∼Pm

(Li(x, cj(x)) is ε-inaccurate for cj w.r.t. P ) . (3.7)

If P, ε,m are obvious from context, we omit these letters as subscripts or
superscripts in what follows. A randomized learner is given by a vector p ∈
[0, 1]M that assigns a probability pi to every learning function Li (so that∑M
i=1 pi = 1). Thus, we may identify learners with mixed strategies for the

row-player in the zero-sum game associated withA. We may view the column-
player in this game as an opponent of the learner. A mixed strategy for the
opponent is given by a vector q ∈ [0, 1]N that assigns an à-priori probability
qj to every possible target concept cj (so that

∑N
j=1 qj = 1). In the sequel,

Aj denotes the j-th column of A. If the learners plays strategy p and her
opponent plays strategy q (or the pure strategy j, resp.), the former has to pay
an amount of p>Aq (or an amount of p>Aj, resp.) to the latter.
This game models PAC-learning under distribution P in the sense that the

following holds for given parameters m, ε, δ: there is a probabilistic learning
strategy (= distribution over the learning functions that map a labeled sample
of size m to a hypothesis) that, regardless of the choice of the target concept,
leads to an ε-accurate hypothesis with a probability 1− δ (or more) of success
if and only if the row-player in the game with payoff-matrix A = Aε,m

P has a
mixed strategy p such that for every pure strategy j of the opponent (i.e., for
every choice of the target concept) p>Aj ≤ δ.
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Recall the Minimax Theorem, which states that

min
p

max
q
p>Aq = max

q
min
p
p>Aq . (3.8)

In the sequel, we denote the optimal value in (3.8) by δ∗P (ε,m). In order to
establish a relation between δ∗P (ε,m) and strategies for learners without prior
knowledge of P , we proceed as follows:

• We switch to the dual game with the opponent making the first draw.

• We consider a slightly modified dual game where the opponent makes
the first draw, a labeled sample of sizem is drawn at random afterwards,
and finally the learner picks a hypothesis (pure strategy) or a distribution
over hypotheses (mixed strategy).

• We describe a good strategy in the modified dual game that can be played
without prior knowledge of P .

Consider the dual game with the opponent drawing first. Since a mixed
strategy for the learner is a distribution over learning functions (mapping a
labeled sample to a hypothesis), we may equivalently think of the learner as
waiting for a random labeled sample (x, b) and then playing a mixed strategy
over C that depends on (x, b). In order to formalize this intuition, we consider
the new payoff-matrix Ã = Ã

ε

P given by

Ã[i, j] =
{

1 if ci is ε-inaccurate for cj w.r.t. P
0 otherwise .

We associate the following game with Ã:

1. The opponent selects a vector q ∈ [0, 1]N specifying à-priori probabilities
for the target concept. Note that this implicitly determines

• the probability
Q(b|x) =

∑
j:cj(x)=b

qj

of labeling a given sample x by b,

• and the à-posteriori probabilities

Q(j|x, b) =
{ qj

Q(b|x) if cj(x) = b

0 otherwise
(3.9)

for target concept cj given the labeled sample (x, b).
For sake of a compact notation, let q̃(x, b) denote the vector whose j-th
component is Q(j|x, b).
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2. A labeled sample (x, b) is produced at random with probability

Pr(x, b) = Pm(x)Q(b|x) . (3.10)

3. The learner chooses a vector p̃(x, b) ∈ [0, 1]N (that may depend on P, q
and (x, b)) specifying her mixed strategy w.r.t. payoff-matrix Ã. We say
that the learner’s strategy p̃ is consistent if, for every (x, b), p̃(x, b) puts
probability mass 1 on the version space for (x, b).

4. The learner suffers loss p̃(x, b)>Ãq̃(x, b) so that her expected loss, aver-
aged over all labeled samples, evaluates to

∑
x,b Pr(x, b)p̃(x, b)>Ãq̃(x, b).

In the sequel, the games associated with A and Ã, respectively, are simply
called A-game and Ã-game, respectively.

Lemma 11. Let q ∈ [0, 1]N be an arbitrary but fixed mixed strategy for the
learner’s opponent. Then the following holds:

1. Every mixed strategy p ∈ [0, 1]M for the learner in the A-game can be
mapped to a mixed strategy p̃ for the learner in the Ã-game so that

p>Aq =
∑
x,b

Pr(x, b)p̃(x, b)>Ãq̃(x, b) . (3.11)

Moreover, p̃ is a consistent strategy for the Ã-game if p is a consistent
strategy for the A-game.

2. The mapping p 7→ p̃ is surjective, i.e., every mixed strategy for the learner
in the Ã-game has a pre-image. Moreover, one can always find a consistent
strategy p as a pre-image of a consistent strategy p̃.

Proof. Recall thatM is the number of learning functions of the form L : Xm ×
{0, 1}m → C. Thus, every probability vector p ∈ [0, 1]M is a probability measure
on the discrete product space Ω = C×· · ·×C with one factor C for every labeled
sample (x, b) ∈ Xm × {0, 1}m. Recall that C = {c1, . . . , cN}. Thus, every
probability vector p̃(x, b) ∈ [0, 1]N is a probability measure on the discrete
space C which can be identified with factor (x, b) of Ω. We define the mapping
p 7→ p̃ by setting p̃(x, b) equal to the marginal measure obtained by restricting
p to factor (x, b) of Ω, i.e.,

p̃i′(x, b) =
∑

i:Li(x,b)=ci′
pi (3.12)

The following computation verifies (3.11):

p>Aq
(3.6)=

∑
x

Pm(x)
N∑
j=1

M∑
i=1
Ix,cj(x)[i, j]piqj
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=
∑
x,b

Pm(x)
∑

j:cj(x)=b

M∑
i=1
Ix,b[i, j]piqj

=
∑
x,b

Pm(x)
∑

j:cj(x)=b

N∑
i′=1

∑
i:Li(x,b)=ci′

Ix,b[i, j]︸ ︷︷ ︸
=Ã[i′,j]

piqj

=
∑
x,b

Pm(x)
∑

j:cj(x)=b

N∑
i′=1

Ã[i′, j]qj
∑

i:Li(x,b)=ci′
pi

(3.12)=
∑
x,b

Pm(x)
N∑
i′=1

∑
j:cj(x)=b

Ã[i′, j]p̃i′(x, b)qj

(3.9)=
∑
x,b

Pm(x)Q(b|x)
N∑
i′=1

N∑
j=1
Ã[i′, j]p̃i′(x, b)Q(j|x, b)

(3.10)=
∑
x,b

Pr(x, b)p̃(x, b)>Ãq̃(x, b)

In order to show that p 7→ p̃ is surjective, assume that a measure p̃(x,y) on
C is given for every labeled sample (x, b) and choose p as the corresponding
product measure so that, for every i = 1, . . . , N ,

pi =
∏
x,b

p̃Li(x,b)(x, b) . (3.13)

Clearly, the marginal measure obtained by restricting p to factor (x, b) of Ω
coincides with themeasure p̃(x, b)we started with. In other words, the product
measure is a pre-image of p̃.
As far as consistency is concerned, finally note the following. If p puts

probability mass 1 on consistent learning functions, then p̃, defined according
to (3.12), puts probability mass 1 on the version space for (x, b). Conversely, if p̃
puts probabilitymass 1 on the version space for (x, b), then p, defined according
to (3.13), puts probability mass 1 on consistent learning functions.

In the sequel, we list some consequences of Lemma 11. For instance, the
lemma immediately implies that the optimal value in theA-game (whereA =
Aε,m
P ) coincides with the optimal value in the Ã-game (where Ã = Ã

ε

P ), i.e.,

δ∗P (ε,m) = min
p

max
q
p>Aq

= max
q

∑
x,b

(
Pr(x, b) · min

p̃(x,y)

[
p̃(x,y)>Ãq̃(x, b)

]) . (3.14)
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Remark Notice that (3.14) offers the opportunity to prove (non-constructive-
ly) the existence of a good learning strategy for the A-game with the learner
making the first draw, by presenting a good (sample-dependent) learning strat-
egy for the Ã-game with the learner making the second draw.
The next two results concern “trivial domain distributions” whose prior

knowledge leads to zero-loss in the A-game.

Corollary 12. If δ∗P (ε,m) = 0, then the following holds: for every x ∈ Xm such
that Pm(x) > 0, and for every b ∈ {0, 1}m, there exists a hypothesis h∗ ∈ C that
is ε-accurate for every hypothesis in the version space for (x, b).

Proof. Assume that there exists an x ∈ Xm such that Pm(x) > 0, and there
exists a b ∈ {0, 1}m such that

∀h∗ ∈ C,∃c ∈ C : c(x) = b ∧ P (h∗ 6= c) > ε . (3.15)

We have to show that this assumption leads to the conclusion δ∗P (ε,m) > 0.
To this end, pick x and b such that Pm(x) > 0 and such that (3.15) is valid.
Let q be the uniform distribution on C. According to (3.10), we may conclude
that Pr(x, b) > 0. An inspection of (3.14) now reveals that δ∗P (ε,m) > 0, as
desired.

Corollary 13. If δ∗P (ε,m) = 0, then every consistent learner suffers loss 0 in the
A2ε,m
P -game.

Proof. According to Lemma 11, it suffices to show that every strategy p̃(x, b) for
the Ã-game that puts probability mass 1 on the version space for (x, b) suffers
loss 0 in the Ã-game. According to Corollary 12, there exists a hypothesis
h∗ that is ε-accurate for every hypothesis in the version space V := VC(x, b).
This clearly implies, that every hypothesis in V is 2ε-accurate for every other
function in V . Thus, putting probability mass 1 on V leads to loss 0.

We close this section with a result that prepares the ground for our analysis
of general PAC-learners in Section 3.3:

Lemma 14. Let ε > 0 be a given accuracy, and let m ≥ 1 be a given sample size.
For every probability vector q ∈ [0, 1]N , and every domain distribution P , the
following holds: ∑

x,b

Pr(x, b)q̃(x, b)>Ã2ε
P q̃(x, b) ≤ 2δ∗P (ε,m) (3.16)

Proof. The left hand-side in (3.16) represents the learners loss in the Ã
2ε
P -game

when the opponent plays strategy q (the à-priori probabilities for the target
concepts) and the learner plays strategy q̃(x, b) on sample (x, b). Recall that
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. h∗

Figure 3.1: The polygon represents the version space for (x, b). The circle
represents the hypotheses that are ε-close to h∗ with respect to P .
The shaded area represents the loss induced by h∗ on sample (x, b).

q̃(x, b) is the collection of à-posteriori probabilities for the target concepts.
Since the à-posteriori probabilities outside the version space V := VC(x, b) are
zero, only target concepts in V can contribute to the learner’s loss. In the
remainder of the proof, we simply write Ã

ε
instead of Ã

ε

P , and Ã
ε

i denotes the
i-th row of this matrix. Given q and (x, b), the term Ã

ε

i q̃(x, b) represents the
loss suffered by a learner with hypothesis ci in the Ã

ε

P -game. This loss equals
the total à-posteriori-probability of the hypotheses from the version space that
are not ε-close to ci w.r.t. domain distribution P . It is minimized by picking a
hypothesis h∗ = ci∗(x,b) ∈ C which maximizes the total à-posteriori probability
of hypotheses that are ε-close to h∗ w.r.t. P . With this notation, it follows that∑

x,b

Pr(x, b)Ãε

i∗(x,b)q̃(x, b) ≤ δ∗P (ε,m) (3.17)

with equality if the strategy q of the learner’s opponent is optimal. The
situation is visualized in Figure 3.1. We are now prepared to verify (3.16).
Assume that, given q and (x, b), the learner applies strategy q̃(x, b) instead of
choosing the best hypothesis h∗. There are two “unlucky cases”:

• The learners random hypothesis falls into the shaded area in Figure 3.1.

• The opponent’s random target concept falls into this shaded area.

Each of the unlucky events happens with a probability that equals the total
à-posteriori probability of the hypotheses in the shaded area, i.e. it happens
with probability Ã

ε

i∗(x,b)q̃(x, b), respectively. If none of the unlucky events
occurs, then the learner’s hypothesis and the target concept fall into the circle
in Figure 3.1 so that they are 2ε-close to each other w.r.t. P . Our discussion
shows that

q̃(x, b)>Ã2ε
q̃(x, b) ≤ 2Ãε

i∗(x,b)q̃(x, b) ,

which, in view of (3.17), yields (3.16).
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It is important to note that no knowledge of P is required to play the strategy
p̃ = q̃ in the Ã-game (with the opponent making the first draw). Nevertheless,
as made precise in Lemma 14, this is a reasonably good strategy for any fixed
underlying domain distribution. Note furthermore that a learner with strat-
egy q̃(x, b) is consistent, since the à-posteriori probabilities assign probability
mass 1 to the version space for (x, b).
The puzzled reader might ask why we are not done with our design of

a learner with a universal constant performance ratio: we ended-up with a
good strategy for the learner that can be played without prior knowledge of
the domain distribution. So what? The problem is, however, that so far we
considered a game that models PAC-learning under a fixed distribution. A
game that models general PAC-learning would correspond to a payoff-matrix
that decomposes into blocks with one block per domain distribution.3 It turns
out, unfortunately, that this considerably increases the power of the opponent.
In particular, he could play a mixed strategy that fixes

• a probability measure µ on the d-dimensional probability simplex (recall
that X = {1, . . . , d})

∆ := {z ∈ [0, 1]d : z1 + · · ·+ zd = 1} , (3.18)

where every z ∈ ∆ represents a measure Pz such that Pz(x) = zx, i.e.,
putting probability mass zx on the x-th element from X, for x = 1, . . . , d,

• conditional à-priori probabilities q(j|z) for choosing target concept cj
provided that Pz is the underlying domain distribution.

In this general setting, the à-posteriori probabilities, associated with the hy-
potheses after having seen a labeled sample (x, b), previously denoted q̃(x, b),
are now conditioned on z as well and therefore denoted q̃(x, b|z). Conse-
quently, the loss suffered by a learner playing strategy p̃ formally looks as
follows (compare with (3.14)):

Ez∼µ

∑
x,b

Pr(x, b|z)p̃(x, b)>Ã2ε
Pz
q̃(x, b|z)

 (3.19)

According to Lemma 14, the learner can favorably play strategy p̃ = q̃ in the
fixed-distribution setting. As can be seen from (3.19), there is no uniform good
choice for p̃ anymore in the general setting since q̃ is conditioned to z. For this
reason, we are not done yet.

3Ignore for the moment the fact that there are infinitely many blocks. That wouldn’t pose
a problem because the Minimax Theorem applies even when the pure strategies form an
infinite but compact set.
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3.3.3 Towards a Small Worst Performance Ratio
In this section, we consider a gamewith a payoff-matrixR that is defined block-
wise so that, for every z ∈ ∆, R(z) denotes the block reserved for distribution
Pz. Every block has M rows (one row for every learning function) and N
columns (one column for every possible target concept). Before we present
the definition of R(z), we fix some notation.
Recall from the previous section that

A2ε,m
Pz

[i, j] = Pr
x∼Pmz

(Li(x, cj(x)) is 2ε-inaccurate for cj w.r.t. Pz) .

When parameters ε,m are obvious from context, we shall simply write A(z)

instead of A2ε,m
Pz

. The j-th column of this matrix is then written as A(z)
j . With

this notation, the following holds: if the learner chooses learning function
Li with probability pi, she will fail to deliver a 2ε-accurate hypothesis with
probability

max
(z,j)∈∆×[N ]

p>A
(z)
j

in the worst case. Recall that δ∗z = δ∗Pz
(ε,m) denotes the best possible expected

failure-rate of a learner with full prior knowledge of Pz. Thus,

maxj∈[N ] p
>A

(z)
j

δ∗z

measures howwell the learner with “strategy” p performs in relation to the best
learner with full prior knowledge of Pz. It is therefore reasonable to choose
the block-matrix R(z) as follows:

R(z)[i, j] :=


1

δ∗Pz
(ε,m) ·A

2ε,m
Pz

[i, j] if δ∗Pz
(ε,m) 6= 0

0 otherwise

With the convention 0/0 = 1, the quantity

ρp(ε,m) := max
(z,j)∈∆×[N ]

p>R
(z)
j = max

(z,j)∈∆×[N ]

p>A
(z)
j

δ∗z

is called the worst performance ratio of strategy p.4 The value

ρ∗(ε,m) := min
p
ρp(ε,m)

is the best possible worst performance ratio. Note that it coincides with the
smallest loss suffered by the learner in the game with payoff-matrix R. A
very strong result would be ρ∗(ε,m) ≤ k for some constant k. Since this is
impossible, as we will see in Chapter 4, we shall pursue a weaker goal in the
following.
4Note that, according to Corollary 13, δ∗z = 0 implies that, for every consistent strategy p,
p>A

(z)
j /δ∗z = 0/0 = 1.
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3.3.4 Some Measurability Issues
Before we turn our attention to PAC-learning again, we have to clarify some
measurability issues first. Let (Ω,A, µ) be an arbitrary measure space, and
let f(ω) be a numerical function in variable ω ∈ Ω. The following facts are
well-known:

• f is measurable if and only if

∀α ∈ R : {ω ∈ Ω : f(ω) ≥ α} ∈ A . (3.20)

• The sum and the product of two measurable functions is measurable.

• The reciprocal of a strictly positive (or strictly negative, resp.) measurable
function is measurable.

• The infimum (or supremum, resp.) of a sequence of measurable functions
is measurable.

• IfΩ is a Borel set equippedwith the Borel-algebra and f(ω) is a continuous
function in ω ∈ Ω, then f is measurable.

These closure properties have the following implications:

Corollary 15. Let Ω be a Borel set equipped with the Borel-algebra. Let K be a
finite or countably infinite set and, for every k ∈ K, let Ωk be a Borel-set such
that Ω = ∪k∈KΩk. Let f(ω) be a numerical function in ω ∈ Ω that is continuous
on every Ωk. Then f is measurable.

Proof. For every α ∈ R, consider the decomposition

{ω ∈ Ω : f(ω) ≥ α} =
⋃
k∈K
{ω ∈ Ωk : f(ω) ≥ α} .

Since f is continuous on every Ωk, the right hand-side is a countable union
of Borel-sets and therefore a Borel-set itself. Thus, f satisfies (3.20) and is a
measurable function.

Corollary 16. Let the d-dimensional probability simplex ∆ be equipped with the
Borel-algebra. Then, for every choice of ε,m,x, b, i, j, Iε,x,bPz

[i, j], Aε,m
Pz

[i, j], and
δ∗z are measurable functions in z ∈ ∆.

Proof. Since

Aε,m
Pz

[i, j] =
∑
x

Pm
z (x)Iε,x,cj(x)

Pz
[i, j] and δ∗z = min

p
max
q
p>Aε,m

Pz
q ,
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it suffices to show that Iε,x,bPz
[i, j] is a measurable function in z ∈ ∆. For any

X ′ ⊆ X, with X = {1, . . . , d}, consider the hyperplane

HX′ :=
{
z :

∑
x∈X′

zx = ε
}

and the halfspaces

H+
X′ :=

{
z ∈ ∆ :

∑
x∈X′

zx > ε
}
, H−X′ :=

{
z ∈ ∆ :

∑
x∈X′

zx ≤ ε
}
.

These halfspaces decompose ∆ into finitely many cells where every single cell
can be written as an intersection of ∆ with finitely many halfspaces (which
clearly yields a Borel-set). An inspection of (3.5) shows that the discontinuities
of Iε,x,bPz

[i, j] occur on the hyperplane

HX′ such that X ′ = {x ∈ X : Li(x, b)(x) 6= cj(x)}

only and that Iε,x,bPz
[i, j] is continuous on every single cell of the mentioned

decomposition. According to Corollary 15, Iε,x,bPz
[i, j] is a measurable function

in z ∈ ∆.

3.3.5 The Average Performance Ratio
Let µ denote an arbitrary but fixed probability measure on ∆ w.r.t. the al-
gebra of d-dimensional Borel-sets. For every ζ > 0, consider the following
decomposition of ∆:

∆0 = {z ∈ ∆ : δ∗z = 0}
∆1(ζ) = {z ∈ ∆ : 0 < δ∗z < ζ}
∆2(ζ) = {z ∈ ∆ : δ∗z ≥ ζ}

Note that these sets are Borel-sets since δ∗z is a measurable function according
to Corollary 16. Since probability measures are continuous from above, we get

lim
ζ→0

µ(∆1(ζ)) = µ

⋂
ζ>0

∆1(ζ)
 = µ(∅) = 0 . (3.21)

In our discussion of PAC-learning, it is justified to focus on domain distributions
Pz such that z ∈ ∆2(ζ) for the following reasons:

• Distributions Pz such that z ∈ ∆0 do not pose any problem to a consistent
learner. Compare with Corollary 13.
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• Distributions Pz such that z ∈ ∆1(ζ) might pose a problem to PAC-
learners but the probability mass assigned to them by µ can be made
arbitrarily small according to (3.21).

Let µ′ be the probability measure induced by µ on ∆2(ζ). Consider the
followingM ×N payoff-matrix:

R̄
ζ [i, j] := Ez∼µ′

[
R(z)[i, j]

]
= 1
µ(∆2(ζ)) ·

∫
∆2(ζ)

R(z)[i, j] dµ

Note that the integral exists because, for every z ∈ ∆2(ζ), δ∗Pz
(ε,m) ≥ ζ so that

R(z)[i, j] = 1
δ∗Pz

(ε,m) ·A
2ε,m
Pz

[i, j]

is bounded by 1/ζ and measurable according to Corollary 16. The quantity

ρ̄p(ε,m) := max
j∈[N ]

p>R̄
ζ

j

is called the average performance ratio of strategy p (where the target concept
is still chosen in a worst-case-fashion but the domain distribution is chosen at
random according to µ′). According to the Minimax Theorem, the following
holds:

min
p

max
q
p>R̄

ζ
q = max

q
min
p
p>R̄

ζ
q (3.22)

Clearly, the optimal value in (3.22) coincides with the best possible average per-
formance ratio. Equation (3.22) offers the opportunity to (non-constructively)
show the existence of a “good” learning strategy with the learner making the
first draw, by presenting a “good” learning strategy with the learner making
the second draw, where “good” here means “achieving a small average perfor-
mance ratio”. (Compare with the remark to Equation (3.14).)

Lemma 17. For every mixed strategy q of the opponent in the R̄
ζ
-game, there

exists a consistent mixed strategy p for the learner such that p>R̄
ζ
q ≤ 2.

Proof. From the decomposition (3.11), we get the following decomposition
of p>R̄

ζ
q:

p>R̄
ζ
q = p>

(
Ez∼µ′

[
R̄

(z)
])
q

= Ez∼µ′
[

1
δ∗z
p>A(z)q

]

= Ez∼µ′

 1
δ∗z

∑
x,b

Pr(x, b|z)p̃(x, b)Ã(z)
q̃(x, b)
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Here, δ∗z = δ∗Pz
(ε,m), Pr(x, b|z) = Pm

z (x)Q(b|x), Ã(z) = Ã
2ε
Pz
, and the quan-

tities Q(b|x), q̃, p̃ are derived from q and p, respectively, as explained in Sec-
tion 3.3.2. According to Lemma 14 (applied to P = Pz),∑

x,b

Pr(x, b|z)q̃(x, b)Ã(z)
q̃(x, b) ≤ 2δ∗z . (3.23)

According to Lemma 11, there exists a mixed strategy p for the learner such
that p̃ = q̃. With this choice of p, we get

p>R̄ζq = Ez∼µ′

 1
δ∗z

∑
x,b

Pr(x, b|z)p̃(x, b)Ã(z)
q̃(x, b)

 (3.23)
≤ 2 ,

as desired.

Corollary 18. For every probability measure µ on ∆, there exists a consistent
mixed strategy for the learner with an average performance ratio of at most 2.

Proof. The Minimax Theorem (applied to the submatrix of R̄
ζ
with rows cor-

responding to consistent learning functions) combined with Lemma 17 yields
the result.

Corollary 18 talks about the average performance ratio which, by definition,
is the performance ratio averaged over ∆2(ζ) only. Furthermore, it does not
explicitly bound the probability mass of domain distributions Pz for which the
supervised learner performs considerably worse than the learner with full prior
knowledge of Pz. The next result, the main result in this chapter, fills these
gaps:

Theorem 19. For every probability measure µ on ∆ and for every k > 1, γ > 0,
there exists a mixed strategy p for the learner such that, for j = 1, . . . , N ,

µ
({
z ∈ ∆ : p>R(z)

j ≥ 2k
})

<
1
k

+ γ .

Proof. For sake of brevity, let E := {z ∈ ∆ : p>R(z)
j ≥ 2k}. With this notation,

µ(E) is bounded from above by

µ (E|∆0) · µ(∆0) + µ (E|∆1(ζ)) · µ(∆1(ζ)) + µ (E|∆2(ζ)) · µ(∆2(ζ)) .

The first term contributes 0 because of Corollary 13. The second-one contributes
at most µ(∆1(ζ)) which is smaller than γ for every sufficiently small ζ. The
third-one contributes at most 1/k according to Corollary 18 combined with
Markov’s inequality. Thus, Prz∼µ(E) < 1/k + γ, as desired.
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According to Theorem 19, there exists a mixed strategy p for a learner with-
out any prior knowledge of the domain distribution such that, in comparison
to the best learner with full prior knowledge of the domain distribution, a per-
formance ratio of 2k is achieved for the “vast majority” of distributions. The
total probability mass of distributions (measured according to µ) not belong-
ing to the “vast majority” is bounded by 1/k + γ (where γ may be chosen as
small as we like). So Theorem 19 is the result that we had announced in the
introduction.

3.4 Conclusions and Open Questions
The most pressing open questions will be answered in the next chapter. How-
ever, there are still several interesting problems:

• The performance ratio for classes of finite VC-dimension in Theorem 9
has a (logarithmic) dependence on ε. We do not knowwhether it possible
to remove that dependence.

• Theorem 9 is only valid for classes that contain the constant zero- and the
constant one-function. It is an open question whether this requirement
can be dropped.

• For every class over a finite domain, we have shown the mere existence
of a learner whose average performance ratio is bounded by 2. It would
be interesting to gain more insight how this strategy actually works and
under which conditions it can be implemented efficiently.

• In the second part of the present chapter, we restricted ourselves to finite
domains X for ease of technical exposition (e.g., compactness of the
|X|-dimensional probability simplex). We conjecture however that this
restriction can be weakened considerably.

• In the present chapter, we restricted ourselves to the realizable setting. It
is an open question whether corresponding results hold in more relaxed
settings, like agnostic learning or learning with noise.
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Chapter 4

Where Unlabeled Data Does Help
This chapter is based on the paper “Unlabeled Data Does Provably Help”
[DSS13]1, which is a joint work of the author with Hans Ulrich Simon and
Balázs Szörényi. All results in this chapter were originally published in this
paper.

4.1 Introduction
The existing analysis of the semi-supervised setting can be summarized roughly
as follows:

• The benefit of unlabeled samples can be enormous if the target concept
and the domain distribution satisfy some suitable extra assumptions (see
[BB10]).

• On the other hand, the benefit seems to be marginal if we do not impose
any extra-assumptions (see Chapter 3 and [BDLP08]).

These findings perfectly match with the common belief expressed in conjec-
ture (2.2), that an extra assumption, i.e., some kind of compatibility between
the target concept and the domain distribution, is needed for adding horse-
power to semi-supervised algorithms. However, the results of the second type
are not yet fully convincing:

• The paper [BDLP08] provides some upper bounds on the label complexity
in the fully supervised setting and some lower bounds, that match up to
a small constant factor, in the semi-supervised setting (or even in the
setting with a distribution P that is known to the learner). These bounds
however are established only for some special concept classes over the
real line. It is unclear whether they generalize to a broader variety of
concept classes.

1This paper was supported by the bilateral Research Support Programme between Germany
(DAAD 50751924) and Hungary (MÖB 14440).
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• Theorem 9 in Chapter 3 shows that the conjecture is true for arbitrary
finite classes and (up to logarithmic factors) for classes of finite VC-
dimension. This of course leaves open the case of classes with an infinite
VC-dimension. Furthermore, it would be interesting to know if the per-
formance ratio in Theorem 9 must depend on C.

• In the second part of Chapter 3 we analyzed arbitrary concept classes
over finite domains and, in Theorem 19, showed the existence of a purely
supervised learning algorithm with a universal constant performance
ratio for the “vast majority” of domain distributions. This however does
not exclude the possibility that there still exist “bad distributions” leading
to a poor performance of the learner.

In this chapter, we reconsider the question whether unlabeled samples can
be of significant help to a learner even when we do not impose any extra-
assumptions on the PAC-learning model. A comparably old paper, [DKRZ94],
indicates that an affirmative answer to this question is thinkable (despite of the
fact that it was written a long time before semi-supervised learning became
an issue). In [DKRZ94] it is shown that there exists a concept class C∞ and a
family P∞ of domain distributions such that the following holds:

1. For each P ∈ P∞, C∞ is properly PAC-learnable under the fixed distribu-
tion P .

2. C∞ is not properly PAC-learnable under unknown distributions taken
from P∞.

These results point into the right direction for our purpose, but they are not
precisely what we want:

• Although “getting a large unlabeled sample” comes close to “knowing
the domain distribution”, it is not quite the same. (In fact, one can show
that C∞, with domain distributions taken from P∞, is not PAC-learnable
in the semi-supervised setting.)

• The authors of [DKRZ94] do not show that C∞ is not PAC-learnable under
unknown distributions P taken from P∞. In fact, their proof uses a target
concept that almost surely (w.r.t. P ) assigns 1 to every instance in the
domain. But the (proper!) learner must not return the constant one-
function of error 0 because of her commitment to hypotheses from C∞.

4.1.1 Main Results
Can we generalize Theorem 9 to concept classes C of infinite VC-dimension
provided that the domain distribution is taken from a family P such that

36



4.1 Introduction

m∗C,P (ε, δ) < ∞ for all P ∈ P? This question will be answered in the negative
by the following result (proved in Section 4.3):

Theorem 20. There exists a concept class C∗ over domain {0, 1}∗ and a family P∗
of domain distributions such that the following holds:

1. There exists a semi-supervised algorithm L such that, for all P ∈ P∗,

mL
C∗,P (ε, δ) = O

(
1
ε2 + ln(1/δ)

ε

)
.

This implies the same upper bound on m∗C∗,P for all P ∈ P∗.

2. For every fully supervised algorithm L and for all ε < 1/2, δ < 1:

sup
P∈P∗

mL
C∗,P (ε, δ) =∞ .

Does there exist a universal constant performance ratio k (not depending
on C) such that we get a result similar to Theorem 9 but with k(C) replaced by
k? Is it possible that the “bad domain distributions” occurring in Theorem 19
are avoidable and just an artifact of our analysis? The following result (proved
in Section 4.3) shows that, even for classes of finite VC-dimension, such a
universal constant does not exist and that the bad distributions in Theorem 19
can not be avoided:

Theorem 21. There exists a sequence (Cn)n≥1 of concept classes over domains
({0, 1}n)n≥1 such that limn→∞VCdim(Cn) = ∞ and a sequence (Pn)n≥1 of do-
main distribution families such that the following holds:

1. There exists a semi-supervised algorithm L that PAC-learns (Cn)n≥1 under
any unknown distribution and, for all P ∈ Pn,

mL
Cn,P (ε, δ) = O

(
1
ε2 + ln(1/δ)

ε

)
.

This implies the same upper bound on m∗Cn,P for all P ∈ Pn.

2. For every fully supervised algorithm L and all ε < 1/2, δ < 1:

sup
n≥1,P∈Pn

mL
Cn,P (ε, δ) =∞ .

Some comments are in place here:

• Since the class C∗ from Theorem 20 has a countable domain, namely
{0, 1}∗, C∗ occurs (via projection) as a subclass in every concept class
that shatters a set of infinite cardinality. A similar remark applies to the
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sequence (Cn)n≥1 and concept classes that shatter finite sets of arbitrary
size. Thus every concept class of infinite VC-dimension contains sub-
classes that are significantly easier to learn in the semi-supervised setting
of the PAC-model (in comparison to the full supervised setting).

• An error bound ε = 1/2 is trivially achieved by random guesses for
the unknown label. Let α and β be two arbitrary small, but strictly
positive, constants. Theorems 20 and 21 imply that even the modest task
of returning, with a success probability of at least α, a hypothesis of error
at most 1/2− β cannot be achieved in the fully supervised setting unless
the number of labeled examples becomes arbitrarily large.

• Theorem 20 proves that the conjecture (2.2) by Ben-David et al. is false.
Indeed, the theorem shows that even the performance ratio between
the sample complexity of fully supervised and semi-supervised learners
(instead of learners in the fixed distribution setting, as considered by
Ben-David et al.), is not always finite. Furthermore, Theorem 21 implies
that the results from [BDLP08] for simple classes on the real line do not
generalize to arbitrary finite classes, unless we allow the performance
ratio to become arbitrarily large.

• Cn is not an artificially constructed or exotic class: it is in fact the class of
non-negated literals over n boolean variables, which occurs as a subset
of many popular concept classes (e.g., monomials, decision lists, halfs-
paces). The class C∗ is a natural generalization of Cn to the set of boolean
strings of arbitrary length.

• The classes C∗,P∗ from Theorem 20, defined in Section 4.3, are close rel-
atives of the classes C∞,P∞ from [DKRZ94], but the adversary argument
that we have to employ is much more involved than the corresponding
argument in [DKRZ94] (where the learner was assumed to be proper
and had been fooled mainly because of her commitment to hypotheses
from C∞).

4.2 Prerequisites From Probability Theory
LetX be an integer-valued random variable. As usual, a most likely value a for
X is called amode ofX. In this chapter, the largest integer that is a mode ofX is
denoted mode(X). As usual,X is said to be unimodal if Pr(X = x) is increasing
with x for all x ≤ mode(X), and decreasing with x for all x ≥ mode(X).
Let Ω be a space equipped with a σ-algebra of events and with a probability

measure P . For any sequence (An)n≥1 of events, lim supn→∞An is defined
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as the set of all ω ∈ Ω that occur in infinitely many of the sets An, i.e.,
lim supn→∞An = ∩∞n=1 ∪∞m=n Am. We briefly remind the reader of the Borel-
Cantelli Lemma:

Lemma 22 ([Fel68]). Let (An)n≥1 be a sequence of independent events, and let
A = lim supn→∞An. Then P (A) = 1 if

∑∞
n=1 P (An) = ∞, and P (A) = 0

otherwise.

Corollary 23. Let (An)n≥1 be a sequence of independent events with the property∑∞
n=1 P (An) = ∞ and let Bk,n be the set of all ω ∈ Ω that occur in at least k of

the events A1, . . . , An. Then, for any k ∈ N, limn→∞ P (Bk,n) = 1.
Proof. Note that Bk,n ⊆ Bk,n+1 for every n. Since probability measures are con-
tinuous from below, it follows that limn→∞ P (Bk,n) = P (∪∞n=1Bk,n). Since, ob-
viously, lim supn→∞An ⊆ ∪∞n=1Bk,n, an application of the Borel-Cantelli Lemma
yields the result.

The following result, which is a variant of the Central Limit Theorem for
triangular arrays, is known in the literature as the Lindeberg-Feller Theorem:

Theorem 24 ([Chu74]). Let (Xn,i)n∈N,i∈[n] be a (triangular) array of random
variables such that

1. E[Xn,i] = 0 for all n ∈ N, i = 1, . . . , n.

2. Xn,1, . . . , Xn,n are independent for every n ∈ N.

3. lim
n→∞

n∑
i=1

E[X2
n,i] = σ2 > 0.

4. For each ε > 0, lim
n→∞

sn(ε) = 0 where sn(ε) =
n∑
i=1

E[X2
n,iI(|Xn,i| ≥ ε)].

Then it holds that

lim
n→∞

P
(
a <

1
σ
·
n∑
i=1

Xn,i < b
)

= ϕ(b)− ϕ(a) ,

where ϕ denotes the density function of the standard normal distribution.

An easy padding argument shows that this theorem holds “mutatis mutandis”
for triangular arrays of the form (Xnk,i) where i = 1, . . . , nk and (nk)k≥1 is
an increasing and unbounded sequence of positive integers. (The limes is
then taken for k → ∞.) We furthermore note that, for the special case of
independent Bernoulli variablesXn,i with probability pi of success, Theorem 24
applies to the triangular array (Xn,i − pi)/σn where σ2

n = ∑n
i=1 pi(1 − pi) with

limn→∞ σ
2
n =∞. A similar remark applies to the more general case of bounded

random variables.
The following result is an immediate consequence of Theorem 24 (plus the

remarks thereafter):
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Lemma 25. Let l(k) = o(
√
k). Let (nk)k≥1 be an increasing and unbounded

sequence of positive integers. Let (pk,i)k∈N,i∈[nk] range over all triangular arrays of
parameters in [0, 1] such that

∀k ∈ N :
nk∑
i=1

pk,i(1− pk,i) ≥ k . (4.1)

Let (Xk,i)k∈N,i∈[nk] be the corresponding triangular array of row-wise independent
Bernoulli variables. Then the function h given by

h(k) = sup
(pk,i)

sup
s∈{0,...,nk}

P

(∣∣∣ nk∑
i=1

Xk,i − s
∣∣∣ < l(k)

)

approaches 0 as k approaches infinity.

Proof. Assume for sake of contradiction that lim supk→∞ h(k) > 0. Then there
exist (pk,i) satisfying (4.1) and sk ∈ {0, . . . , nk} such that

lim sup
k→∞

P

(∣∣∣ nk∑
i=1

Xk,i − sk
∣∣∣ < l(k)

)
> 0 . (4.2)

The random variable Sk = ∑nk
i=1Xk,i has mean µk = ∑nk

i=1 pk,i and variance
σ2
k = ∑nk

i=1 pk,i · (1 − pk,i) ≥ k. The Lindeberg-Feller Theorem applied to the
triangular array

(
Xk,i−pi
σk

)
yields

lim
k→∞

P
(
a <

Sk − µk
σk

< b
)

= ϕ(b)− ϕ(a) . (4.3)

For Sk to hit a given interval of length 2l(k) (like the interval [sk− l(k), sk+ l(k)]
in (4.2)) it is necessary for (Sk−µk)/σk to hit a given interval of length 2l(k)/σk.
Note that limk→∞ l(k)/σk = 0 because σk ≥

√
k and l(k) = o(

√
k). Thus the

hitting probability approaches 0 as k approaches infinity. This contradicts
to (4.2).

For ease of later reference, we let k(β) for β > 0 be a function such that
h(k) ≤ β for all k ≥ k(β). Note that such a function must exist according to
Lemma 25.

Corollary 26. With the notation and assumptions from Lemma 25, the following
holds: the probability mass of the mode of

∑nk
i=1Xk,i is at most β for all k ≥ k(β).

The following result implies the unimodality of binomially distributed ran-
dom variables:

Lemma 27 ([KG71]). Every sum of independent Bernoulli variables (with possibly
different probabilities of success) is unimodal.
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4.3 Proof of Theorems 20 and 21
Throughout this section, we set Xn = {0, 1}n and X∗ = {0, 1}∗. We will
identify a finite string x ∈ X∗ with the infinite string that starts with x and
ends with an infinite sequence of zeros. C∗ denotes the family of functions
ci : X∗ → {0, 1}, i ∈ N ∪ {0}, given by c0(x) = 0 and ci(x) = xi for all i ≥ 1.
Note that ci(x) = 0 for all i > |x|. Cn denotes the class of functions obtained
by restricting a function from C∗ to the subdomain Xn. For every i ≥ 1, let
pi = 1/ log2(3+ i). For every permutation σ of 1, . . . , n, let Pσ be the probability
measure on Xn obtained by setting xσ(i) = 1 with probability pi (resp. xσ(i) = 0
with probability 1 − pi) independently for i = 1, . . . , n. Pn = {Pσ} denotes
the family of all such probability measures on Xn. Note that Pσ can also be
considered as a probability measure on X∗ (that is centered on Xn). P∗, a
family of probability measures on X∗, is defined as ∪n≥1Pn.

Lemma 28. 1. C∗ is properly PAC-learnable under any fixed distribution Pσ ∈
P∗ from O(1/ε2 + ln(1/δ)/ε) labeled examples.

2. For any (unknown) Pσ ∈ P∗, C∗ is properly PAC-learnable in the semi-
supervised setting from O(ln(n/δ)/ε) unlabeled and O(1/ε2 + ln(1/δ)/ε)
labeled examples. Here, n denotes the smallest index such that Pσ ∈ Pn.

3. There exists a semi-supervised algorithm L that PAC-learns Cn under any
unknown domain distribution. Moreover, for all P ∈ Pn, mL

Cn,P (ε, δ) =
O(1/ε2 + ln(1/δ)/ε).

Proof. 1. Let σ be a permutation of 1, . . . , n. For all i > n it holds ci = ∅
almost surely w.r.t. Pσ. For all 22/ε − 3 ≤ i ≤ n it holds Pσ(cσ(i) 6= ∅) =
Pσ(cσ(i)) = pi ≤ ε/2. Thus, setting N = d22/εe − 4, {∅, cσ(1), . . . , cσ(N)}
forms an ε/2-covering of C∗ with respect to Pσ. An application of Theo-
rem 6 now yields the result.

2. The very first unlabeled example reveals the parameter n such that the
unknown measure Pσ is centered onXn. Note that, for every i ∈ [n], xi =
1 with probability pσ−1(i). It is an easy application of the Chernoff-bound
(combined with the Union-bound) to see that O(ln(n/δ)/ε) unlabeled
examples suffice to retrieve (with probability 1− δ/2 of success) an index
set I ⊂ [n] with the following properties: on one hand, I includes all
i ∈ [n] such that pσ−1(i) ≥ ε/2. On the other hand, I excludes all i ∈ [n]
such that pσ−1(i) ≤ ε/8. Consequently {∅}∪{ci : i ∈ I} is an ε/2-covering
of Cn with respect to Pσ and its size is bounded by 1 + |I| ≤ 28/ε. Another
application of Theorem 6 now yields the result.
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3. The third part in Lemma 28 is an immediate consequence of Theorem 7
and the fact that, as proved above, NCn(ε/6) = 2O(1/ε) (regardless of the
value of n).

Lemma 29. Let L be a fully supervised algorithm designed to PAC-learn C∗ under
any unknown distribution taken from P∗. For every finite sample size m and for
all α, β > 0, an adversary can achieve the following: with a probability of at least
1− α the hypothesis returned by L has an error of at least 1/2− β.2

Proof. The proof will run through the following stages:

1. We first fix some technical notations and conditions (holding in probabil-
ity) which the proof builds on.

2. Then we specify the strategy of the learner’s adversary.

3. We argue that, given the strategy of the adversary, the learner has prob-
ably almost no advantage over random guesses.

4. We finally verify the technical conditions.

Let us start with Stage 1. (Though somewhat technical it will help us to provide
a precise description of the subsequent stages.) LetM ∈ {0, 1}(m+1)×(N\{1}) be
a random matrix (with columns indexed by integers not smaller than 2) such
that the entries are independent Bernoulli variables where the variableM [i, j]
has probability pj = 1/ log2(3+ j) < 1/2 of success. LetM(n) denote the finite
matrix composed of the first n− 1 columns ofM . Let k = max{d1/αe, k(2β)}
where k(β) is the function from the remark right after Lemma 25. In Stage 4
of the proof, we will show that there exists n = nk ∈ N such that, with
probability at least 1 − 1/k, the following conditions are valid for each bit
pattern b ∈ {0, 1}m+1:

(A) b ∈ {0, 1}m+1 coincides with at least 4k2 columns ofM (n).

(B) Let b′ ∈ {0, 1}m be the bit pattern obtained from b by omission of the final
bit. Call column j ≥ 2 ofM(n) “marked” if its firstm bits yield pattern b′.
Let I ⊆ {2, . . . , n} denote the set of indices for marked columns. Then,∑
i∈I pi ≥ 2k so that

∑
i∈I pi(1− pi) ≥ k (because pi < 1/2).

The strategy of the adversary (Stage 2 of the proof) is as follows: he sets
n = nk, picks a permutation σ of 1, . . . , n uniformly at random, chooses domain
distribution Pσ, and selects the target concept c∗ = ct such that t = σ(1). In the
sequel, probabilities are simply denoted P (·). Note that the component xt of
an example x can be viewed as a fair coin since P (xt = 1) = p1 = 1/ log2(4) =
1/2. The learning task resulting from this setting is related to the technical
definitions and conditions from Stage 1 as follows:
2Loosely speaking, the learner has “probably almost no advantage over random guesses”.
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• The first m rows of the matrixM (n) are the components σ(2), . . . , σ(n)
of the m labeled examples.

• The bits of b′ ∈ {0, 1}m are the t-th components of the m labeled ex-
amples. These bits are perfectly random, and they are identical to the
classification labels.

• The set I ⊆ {2, . . . , n} points to all marked columns of M(n), i.e., it
points to all columns ofM (n) which are duplicates of b′.

• Rowm+1 ofM represents an unlabeled test point that has to be classified
by the learner.

The adversary passes also the set J = {σ(i) : i ∈ I ∪ {1}}, with the under-
standing that index t of the target concept is an element of J , and the set
I ⊆ {2, . . . , n} as additional information to the learner. This maneuver marks
the end of Stage 2 in our proof.
We now move on to Stage 3 of the proof and explain why the strategy of the
adversary leads to a poor learning performance (thereby assuming that con-
ditions (A) and (B) hold). Note that, by symmetry, every index in J has the
same à-posteriori probability to coincide with t. Because the learner has no
way to break the symmetry between the indices in J before she sees the test
point x, the best prediction for the label of x does not depend on the individual
bits in x but only on the number of ones in the bit positions from J , i.e., it only
depends on the value of

Y ′ =
∑
j∈J

xj = xσ(1) +
∑
i∈I

xσ(i) = xσ(1) + Y

where
Y =

∑
i∈I

xσ(i) =
∑
i∈I
M [m+ 1, i] .

Note that the learner knows the distribution of Y (given by the parameters
(pi)i∈I) since the set I had been passed on to her by the adversary. For sake
of brevity, let ` = xσ(1) denote the classification label of the test point x.
Given a value s of Y ′ (and the fact that the à-priori probabilities for ` = 0
and ` = 1 are equal), the Bayes-decision is in favor of the label ` ∈ {0, 1}
which maximizes P (Y ′ = s|`). Clearly, P (Y ′ = s|` = 1) = P (Y = s − 1)
and P (Y ′ = s|` = 0) = P (Y = s). Thus, the Bayes-decision is in favor
of ` = 0 if and only if P (Y = s) ≥ P (Y = s − 1). Since Y is a sum of
independent Bernoulli variables, we may apply Lemma 27 and conclude that Y
has a unimodal distribution. It follows that the Bayes-decision is the following
threshold function: be in favor of ` = 0 iff Y ′ ≤ mode(Y ). The punchline of this
discussion is as follows: the Bayes-decision is independent of the true label `
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unless Y hits its mode (so that Y ′ = Y + ` is either mode(Y ) or mode(Y ) + 1).
It follows that the Bayes-error is at least (1 − P (Y = mode(Y )))/2. Because
of Condition (B) and the fact that k ≥ k(2β), we may apply Corollary 26 and
obtain P (Y = mode(Y )) ≤ 2β so that the Bayes-error is at least 1/2− β.
We finally enter Stage 4 of the proof and show that conditions (A) and (B) hold
with a probability of at least 1− α provided that n = nk is large enough. Let b
range over all bit patterns from {0, 1}m+1. Consider the events

• Ar(b): b ∈ {0, 1}m+1 coincides with the r-th column ofM .

• Bk,n(b): b ∈ {0, 1}m+1 coincides with at least k columns ofM (n).

It is easy to see that
∑∞
r=1 P (Ar(b)) = ∞. Applying the Borel-Cantelli Lemma

to the events (Ar(b))r≥1 and Corollary 23 to the events (B4k2,n(b))k,n≥1, we
arrive at the following conclusion. There exists nk(b) ∈ N such that, for
all n ≥ nk(b), the probability of B4k2,n(b) is at least 1 − 1/(2m+3k). We set
n = nk = maxb nk(b). Then, the probability of B4k2,n = ⋂

b∈{0,1}m+1 B4k2,n(b) is
at least 1−1/(4k). In other words: with a probability of at least 1−1/(4k), each
b ∈ {0, 1}m+1 coincides with at least 4k2 columns ofM (n). Thus condition (A)
is violated with a probability of at most 1/(4k).
We move on to condition (B). With p = ∑

i∈I pi, we can decompose P (B4k2,n)
as follows:

P (B4k2,n) = P (B4k2,n | p < 2k) · P (p < 2k) + P (B4k2,n | p ≥ 2k) · P (p ≥ 2k)

Note that, according to the definitions of B4k2,n(b) and B4k2,n, event B4k2,n

implies that Y ≥ 4k2 because there must be at least 4k2 occurrences of 1 in
row m+ 1 and in the marked columns ofM(n). On the other hand, E[Y ] = p.
According to Markov’s inequality, P (Y ≥ 4k2|p < 2k) ≤ (2k)/(4k2) = 1/(2k).
Thus, P (B4k2,n) ≤ 1/(2k)+P (p ≥ 2k). Recall that, according to condition (A),
1− 1/(4k) ≤ P (B4k2,n). Thus, P (p ≥ 2k) ≥ 1− 1/(4k)− 1/(2k) = 1− 3/(4k).
Since k ≥ 1/α, we conclude that the probability to violate one of the condi-
tions (A) and (B) is bounded by 1/k ≤ α.

We are now ready to complete the proofs of our main results. Theorem 20 is
a direct consequence of the second statement in Lemma 28 and of Lemma 29.
The first part of Theorem 21 is a direct consequence of the third statement in
Lemma 28. As for the second part, an inspection of the proof of Lemma 29
reveals that the adversary argument uses a “finite part” Cn of C∗ only (with n
chosen sufficiently large).
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4.4 Conclusions and Open Questions
As we have seen in this chapter, it is impossible to show in full generality that
unlabeled samples have a marginal effect only in the absence of any extra
assumptions. The following open questions remain:

• It would be interesting to explore which distributions are similar in this
respect to the artificial distribution familiesP∗ andPn that were discussed
in this chapter.

• We would like to know if the bounds of Theorem 9 are tight (either for
special classes or for the general case).

• Like in the previous chapter, we restricted ourselves to the realizable
setting. Again, it would be interesting to extend our results to more
relaxed settings, like the agnostic learning or learning with noise.
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Chapter 5

A Case Study: Co-training and the
Conditional Independence
Assumption
This chapter is based on the following two articles:

• “Supervised Learning and Co-training” [DSS14]1, which is a joint work of
the author with Hans Ulrich Simon and Balázs Szörényi

• “TheOptimal PACBound for Intersection-closed Concept Classes” [Dar15]1,
published solely by the author of this thesis

The results in this chapter were originally published in the two articles given
above, with the following exceptions: the results from Section 5.3.2 and Sec-
tion 5.5 were previously unpublished; the main results from the part “Combi-
natorial bounds for classes with small (co-)singleton sizes” in Section 5.4.3 and
from Section 5.4.5, which is a joint work with Balázs Szörényi, were mentioned
in the former article, but remained unproven (i.e, the relevant proof details,
such as definitions, lemmas and—of course—the proofs themselves, were not
published before).

5.1 Introduction
As mentioned in Chapter 2, in the framework of semi-supervised learning, it
is usually assumed that there is a kind of compatibility between the target
concept and the domain distribution, expressed in an extra assumption. As
the results in Chapter 3 have shown, this intuition is supported in so far as for
most classes that are relevant in practice there exist purely supervised learning
strategies which can compete fairly well against semi-supervised learners (or
even against learners with full prior knowledge of the domain distribution).
1This article was supported by the bilateral Research Support Programme between Germany
(DAAD 50751924) and Hungary (MÖB 14440).
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In this chapter, we go one step further and consider the following general
question: given a particular extra assumption which makes semi-supervised
learning quite effective, howmuch credit must be given to the extra assumption
alone? In other words, to which extent can labeled examples be saved by
exploiting the extra assumption in a purely supervised setting? We provide a
first answer to this question in a case study which is concerned with the model
of Co-training under the Conditional Independence Assumption [BM98].
To this end, we compute general (almost tight) upper and lower bounds

on the sample size needed to achieve the success criterion of PAC-learning
in the realizable case within the model of Co-training under the Conditional
Independence Assumption in a purely supervised setting. The upper bounds
lie significantly below the lower bounds for PAC-learning without Co-training.
Thus, Co-training saves labeled data even when not combined with unlabeled
data. On the other hand, the saving is much less radical than the known
savings in the semi-supervised setting.
Note that a similar study for the popular Cluster Assumption was done by

Singh, Nowak and Zhu in [SNZ08]. They show that the value of unlabeled
data under their formalized Cluster Assumption varies with theminimalmargin
between clusters.

5.1.1 Co-training and the Conditional Independence
Assumption

The results from Chapter 3 give a justification of using extra assumptions in
the semi-supervised framework in order to make real use of having access to
unlabeled data. Co-training under the Conditional Independence Assumption
aims at this direction. The co-training model was introduced by Blum and
Mitchell in [BM98], and has an extensive literature in the semi-supervised
setting, especially from an empirical and practical point of view. (For the formal
definition see Section 5.2.) A theoretical analysis of Co-training under the
Conditional Independence Assumption [BM98], and the weaker α-expanding
Assumption [BBY04], was accomplished by Balcan and Blum in [BB10]. They
work in Valiant’s model of PAC-learning [Val84] and show that one labeled
example is enough for achieving the success criterion of PAC-learning provided
that there are sufficiently many unlabeled examples.2

This chapter complements their results: we also work in the PAC model and
prove sample complexity bounds, but in our case the learner has no access to

2This is one of the results which impressively demonstrate the striking potential of prop-
erly designed semi-supervised learning strategies although the underlying extra assump-
tions are somewhat idealized and therefore not likely to be strictly satisfied in practice.
See [BBY04, WZ10] for suggestions of relaxed assumptions.
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unlabeled data. As far as we know, our work is the first that studies Co-training
in a fully supervised setting. Assuming Conditional Independence, our sample
complexity bound is much smaller than the standard PAC bound (which must
be solely awarded to Co-training itself), while it is still larger than Balcan and
Blum’s (which must also be awarded to the use of unlabeled data). See Section
5.1.3 for more details.

5.1.2 Related Work
This chapter touches several related fields besides of Semi-supervised learning
and Co-training. Let us review these connections:

Agnostic active learning Wemake extensive use of a suitably defined variant
of Hanneke’s disagreement coefficient. (See Section 5.3.4 for a comparison of
the two notions.) The disagreement coefficientwas first used in learning theory,
without calling it by this name, by Giné and Koltchinskii in a paper on agnostic
learning in 2006 [GK06], which was based on the work of Alexander [Ale86,
Ale87]. It was independently discovered by Hanneke in 2007 [Han07] to
analyze the sample complexity of agnostic active learning.
To our knowledge the work presented in this chapter is, besides a remark

about classical PAC-learning in Hanneke’s thesis [Han09] (which we will im-
prove upon in Section 5.3.5), the first use of the disagreement coefficient
outside of agnostic learning. Furthermore, our work doesn’t depend on results
from the active learning community, which makes the prominent appearance
of the disagreement coefficient even more remarkable.

Learning from positive examples only Another unsuspected connection that
emerged from our analysis relates our work to the “learning from positive
examples only” model from [GG89]. As already mentioned, we can upper
bound the product of the VC-dimension and the disagreement coefficient by
a combinatorial parameter that is strongly connected to Geréb-Graus’ “unique
negative dimension”. Furthermore, we derive worst-case lower bounds that
make use of this parameter.

PAC-learning intersection-closed classes On a side-note, we will answer an
open question of Auer and Ortner [AO07] in Section 5.3.5 in the positive.
Since Valiant introduced the PAC-learning framework in [Val84], it is an open

problem to give sharps bounds on the number of labeled examples necessary
to successfully learn in the realizable setting. Obviously, the best known worst-
case lower and upper bounds (see Theorems 4 and 5) leave a gap of ln(1/ε).
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Warmuth conjectured in [War04] that the factor of ln(1/ε) in the upper bound
can be overcome. He furthermore conjectured that this can be achieved by the
one-inclusion graph algorithm, which—in the case of concept classes that are
closed under intersection—collapses to the closure algorithm, whose output is
the smallest consistent hypothesis.
For some special intersection-closed classes, which possess an additional

combinatorial property, Auer and Ortner provided a proof of the conjecture
in [AO07]. Wewill show, by using the disagreement coefficient, thatWarmuth’s
conjecture is indeed true for all intersection-closed classes.
To our knowledge this is the first proof of sharp bounds on the sample com-

plexity for a natural family of classes in the realizable PAC-learning framework.
As a related result, Balcan and Long [BL13] could recently provide sharp bounds
for efficiently learning halfspaces under special domain distributions.

5.1.3 Main Results
This chapter is a continuation of the line of research from the first chapters,
aiming at investigating the problem: how much can the learner benefit from
knowing the underlying distribution. We investigate this problem focusing on
a popular assumption in the semi supervised literature. Our results are purely
theoretical, which also stems from the nature of the problem (while we also
provide experimental results, the experiments are conducted on artificial data
only).
As mentioned above, the model of Co-training under the Conditional In-

dependence Assumption was introduced in [BM98] as a setting where semi
supervised can be superior to fully supervised learning. Indeed, in [BB10] it
was shown that a single labeled example suffices for PAC-learning in the real-
izable case if unlabeled data is available. Recall Theorem 4, which states that
supervised, realizable PAC-learning without any extra assumption requires d/ε
labeled examples (up to logarithmic factors) where d denotes the VC-dimension
of the concept class and ε is the accuracy parameter. The step from d/ε to just
a single labeled example is a giant one. In this chapter, we show however that
part of the credit must be assigned to just the Co-training itself. More specifi-
cally, we show that the number of sample points needed to achieve the success
criterion of PAC-learning in the purely supervised model of Co-training under
the Conditional Independence Assumption has a linear growth in

√
d1d2/ε (up

to some hidden logarithmic factors) as far as the dependence on ε and on
the VC-dimensions of the two involved concept classes is concerned. Note
that, as ε approaches 0,

√
d1d2/ε becomes much smaller than the well-known

lower bound Ω(d/ε) from Theorem 5 on the number of examples needed by a
traditional (not co-trained) PAC-learner.

50



5.1 Introduction

5.1.4 Organization of This Chapter
The remainder of the chapter is structured as follows.
Section 5.2 clarifies the notations and formal definitions that are used through-

out the chapter and mentions some elementary facts.
In Section 5.3 we study a suitably defined variant of Hanneke’s disagreement

coefficient. The results of Section 5.3 seem to have implications for active
learning andmight be of independent interest. We now provide amore detailed
view of the content of Section 5.3:

• Section 5.3.1 presents a fundamental inequality that relates our variant
of Hanneke’s disagreement coefficient [Han07] to a purely combinatorial
parameter, s(C), which is closely related to the “unique negative dimen-
sion” from [GG89]. This will later lead to the insight that the product
of the VC-dimension of a (suitably chosen) hypothesis class and a (suit-
ably defined) disagreement coefficient has the same order of magnitude
as s(C).

• Furthermore, in Sections 5.3.1 and 5.3.2 we look into the question how
to choose a hypothesis class H in such a way that the afore-mentioned
product of the VC-dimension and our disagreement coefficient is mini-
mized.

• Section 5.3.3 investigates how a concept class can be padded so as to
increase the VC-dimension while keeping the disagreement coefficient
invariant. The padding can be used to lift lower bounds that hold for
classes of low VC-dimension to increased lower bounds that hold for some
classes of arbitrarily large VC-dimension.

• Section 5.3.4 compares our variant of the disagreement coefficient with
Hanneke’s definition.

• Section 5.3.5 contains a remark in which we shortly leave the frame-
work of Co-training and answer an open question about PAC-learning
intersection closed classes.

In Section 5.4 we can finally give the our main results concerning the sample
complexity of supervised Co-training. Again, a more detailed look at this
section is in order:

• Section 5.4.1 presents some general upper bounds in terms of the relevant
learning parameters (including ε, the VC-dimension, and the disagree-
ment coefficient, where the product of the latter two can be replaced by
the combinatorial parameters from Section 5.3).
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• Section 5.4.2 shows that all general upper bounds from Section 5.4.1 are
(nearly) tight.

• Section 5.4.3 gives (almost) matching upper and lower bounds in com-
pletely combinatorial terms. Interestingly, the learning strategy that is
best from the perspective of a worst-case analysis has one-sided error.

• Section 5.4.4 presents improved bounds for classes with special proper-
ties.

• Section 5.4.5 considers a generalization of the framework to sample points
given by k-tuples.

• Section 5.4.6 shows a negative result in the more relaxed model of Co-
training with α-expansion.

Section 5.5 provides experimental results on artificial data generated accord-
ing to the worst-case distribution used to prove the lower bound on the sample
complexity.
The closing Section 5.6 contains some final remarks and open questions.

5.2 Preliminaries – Co-training and the
Disagreement Coefficient

In Co-training [BM98], it is assumed that there is a pair of concept classes, C1
and C2, and that random sample points come in pairs (x1, x2) ∈ X1×X2. More-
over, the domain distribution P , according to which the random sample points
are generated, is perfectly compatible with the target concepts, say c∗1 ∈ C1 and
c∗2 ∈ C2, in the sense that c∗1(x1) = c∗2(x2) with probability 1. (For this reason,
we sometimes denote the target label as c∗(x1, x2).) As in [BM98, BB10], our
analysis builds on the Conditional Independence Assumption: x1, x2, consid-
ered as random variables that take “values” in X1 and X2, respectively, are
conditionally independent given the label. As in [BB10], we perform a PAC-
style analysis of Co-training under the Conditional Independence Assumption.
But unlike [BB10], we assume that there is no access to unlabeled examples.
The resulting model is henceforth referred to as the “PAC Co-training Model
under the Conditional Independence Assumption”.

Definition 30. Let C be a concept class over domain X and H ⊇ C a hypothesis
class over the same domain.
For any V ⊆ C, the disagreement region of V is given by

DIS(V ) := {x ∈ X : ∃h, h′ ∈ V s.t. h(x) 6= h′(x)} .

52



5.2 Preliminaries

We define the following variants of disagreement coefficients:

θ(C,H|P,X ′, c∗) := P (DIS(VC(X ′, c∗)))
suph∈VH(X′,c∗) P (h 6= c∗)

θ(C,H|P, c∗) := sup
X′

θ(C,H|P,X ′, c∗)

θ(C,H) := sup
P,c∗

θ(C,H|P, c∗)

In the degenerate case that both denominator and numerator are zero, we define
θ(C|P,X ′, c∗) := 1. For sake of brevity, we omit H in the case H = C, e.g.,
θ(C) := θ(C, C).
Note that

θ(C,H) ≤ θ(C) ≤ |C| − 1 . (5.1)

The first inequality is obvious from C ⊆ H and c∗ ∈ C, the second follows from

DIS(VC(X ′, c∗)) =
⋃

h∈VC(X′,c∗)\{c∗}
{x : h(x) 6= c∗(x)}

and an application of the union bound. Moreover, in the case |C| ≥ 2 it holds
that

1 ≤ θ(C,H) , (5.2)

which can be seen by considering distributions P whose support is a subset of
the disagreement region (note that a non-empty disagreement region always
exists for X ′ = ∅, if |C| ≥ 2).
To become more familiar with these definitions we present the following

example:

Example 31. Let X be R2 and let C = H be the class of closed homogeneous
half planes. The target concept c∗ is illustrated in Figure 5.1 by the hatched line.
The learner now receives a sample X ′, which consists of finitely many points (we
have eight in our example), chosen randomly according to distribution P . Let us
assume in this example, that P is the uniform distribution on [−1, 1]× [−1, 1]. A
positive or negative label, produced by c∗, is attached to each sample point, which
we represent in Figure 5.1 by “+” and “−”.
VC(X ′, c∗), which is not shown explicitly in the figure, consists of all homogeneous

half planes covering all positively labeled points from X ′ while excluding the
negative ones. One arbitrarily chosen hypothesis h from VC(X ′, c∗), which the
learner may pick as her answer, is shown in the left image. The error of the
hypothesis h is the weight of the shaded area, on which h and c∗ differ, measured
by P .
The disagreement region, which consists of all points where some hypothesis

from VC(X ′, c∗) disagrees with the target c∗, is shown in the right-hand part of
Figure 5.1.
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c∗
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h(x) 6= c∗(x)
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Figure 5.1: An illustration of c∗, X ′, h, the error of h (left-hand side) and the
disagreement region (right-hand side) for Example 31. The hatched
sides indicate the half planes c∗ and h.
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Figure 5.2: This drawing depicts the concepts {0, 1} and {0} in SF7. Each
concept in SFn consists of the kernel 0 and at most one of the petals
from 1 to n. The class is named after the sunflower and fulfills
the well-known definition of “sunflower” in combinatorics, but is
otherwise unrelated.

The disagreement coefficient θ(C,H|P,X ′, c∗) is the ratio of the size of the
disagreement region, measured again by P , and the largest possible error of a
half plane consistent with the sample.

We will now calculate θ for the following class, which will be useful for
proving lower bounds in section 5.4.2:

SFn = {{0}, {0, 1}, {0, 2}, . . . , {0, n}}

See Figure 5.2 for a visualization of SFn.

Lemma 32. θ(SFn) = n.

Proof. Let P be uniform on X = {1, . . . , n} and let X ′ = c∗ = {0}. Then
V := VSFn(X ′, c∗) = SFn and DIS(V ) = {1, . . . , n} has probability mass 1.
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Thus,

θ(SFn) ≥ θ(SFn, SFn|P,X ′, c∗) = P (DIS(V ))
suph∈V P (h 6= c∗) = 1

1/n = n .

Conversely, θ(SFn) ≤ |SFn| − 1 = n (according to (5.1)).

The main usage of this disagreement coefficient is as follows. First note
that we have P (DIS(VC(X ′, c∗))) ≤ θ(C,H) · suph∈VH(X′,c∗) P (h 6= c∗) for ev-
ery choice of P,X ′, c∗. This inequality holds in particular when X ′ consists
of m points in X chosen independently at random according to P . Accord-
ing to the classical sample size bound of Theorem 4, there exists a sam-
ple size m = Õ(VCdim(H)/ε) such that, with probability at least 1 − δ,
suph∈VH(X′,c∗) P (h 6= c∗) ≤ ε. Thus, with probability at least 1 − δ (taken
over the set of random sample points X ′), P (DIS(VC(X ′, c∗))) ≤ θ(C,H) · ε.
This discussion is summarized in the following lemma:

Lemma 33. There exists a sample size m = Õ(VCdim(H)/ε) such that the
following holds for every probability measure P on domain X and for every
target concept c∗ ∈ C. With probability 1− δ, taken over a random sample set X ′

of size m, P (DIS(VC(X ′, c∗))) ≤ θ(C,H) · ε.

This lemma indicates that one should choose H so as to minimize θ(C,H) ·
VCdim(H). Note that making H more powerful leads to smaller values of
θ(C,H) but comes at the price of an increased VC-dimension. See Sections 5.3.1
and 5.3.2 for a discussion about the optimal choice of H.
We say that H contains hypotheses with plus-sided errors (or minus-sided

errors, resp.) w.r.t. concept class C if, for every X ′ ⊆ X and every c∗ ∈ C,
there exists h ∈ VH(X ′, c∗) such that h(x) = 0 (h(x) = 1, resp.) for every
x ∈ DIS(VC(X ′, c∗)). A sufficient (but, in general, not necessary) condition
for a class H making plus-sided errors only (or minus-sided errors only, resp.)
is being closed under intersection (or closed under union, resp.). See also
Theorem 40 and its proof.

Lemma 34. Let C ⊆ H. If H contains hypotheses with plus-sided errors and
hypotheses with minus-sided errors w.r.t. C, then θ(C,H) ≤ 2.

Proof. Consider a fixed but arbitrary choice of P,X ′, c∗. Let hmin be the hy-
pothesis in VH(X ′, c∗) that errs on positive examples of c∗ only, and let hmax
be the hypothesis in VH(X ′, c∗) that errs on negative examples of c∗ only. We
conclude that DIS(VC(X ′, c∗)) ⊆ {x : hmin(x) 6= hmax(x)}. From this and the
triangle inequality, it follows that

P (DIS(VC(X ′, c∗))) ≤ P (hmin 6= hmax) ≤ P (hmin 6= c∗) + P (hmax 6= c∗) .

The claimmade by the lemma is now obvious from the definition of θ(C,H).
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Figure 5.3: The shaded areas represent hypotheses with plus- and minus-sided
errors. Note that the disagreement region, as seen in Figure 5.1, lies
inside of the minus-sided hypothesis and outside of the plus-sided
one.

Example 35. Since POWERSET, the class consisting of all subsets of a finite set
X, and HALFINTERVALS, the class consisting of sets of the form (−∞, a) with
a ∈ R, are closed under intersection and union, we obtain θ(POWERSET) ≤ 2
and θ(HALFINTERVALS) ≤ 2.
Let the class C consist of both the open and the closed homogeneous half planes,

let H be the class of unions and intersections of two half planes from C and let
X = R2 \ {0}. It is easy to see that H contains hypotheses with plus-sided errors
(the smallest pie slice with apex at 0 that includes all positive examples in a sample;
see Figure 5.3) and hypotheses with minus-sided errors (the complement of the
smallest pie slice with apex at 0 that includes all negative examples in a sample)
w.r.t. C. Thus, θ(C,H) ≤ 2. Note that H is neither closed under intersection nor
closed under union.

5.3 A Closer Look at the Disagreement Coefficient

5.3.1 A Combinatorial Upper Bound
Definition 36. Let s+(C) denote the largest number of instances in X such that
every binary pattern on these instances with exactly one “+”-label can be realized
by a concept from C. In other words: s+(C) denotes the cardinality of the largest
singleton subclass3 of C. If C contains singleton subclasses of arbitrary size, we
define s+(C) as infinite.

3A singleton subclass of C is a set C′ ⊆ C such that for each h ∈ C′ there exists an x ∈ h that
is not contained in any other h′ ∈ C′. The singleton class of size n is defined as the set
Csng = {{x} : x ∈ X} = {{1}, {2}, . . . , {n}} over the domain X = {1, . . . , n}.
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X X
1 2 3 4 1 2 3 4

c1 + − − − c1 − + + +
Csng c2 − + − − Cco−sng c2 + − + +

c3 − − + − c3 + + − +
c4 − − − + c4 + + + −

Figure 5.4: The class of singletons Csng and co-singletons Cco−sng over the do-
main X = {1, 2, 3, 4}.

Let C+ denote the class of all unions of concepts from C. As usual, the empty
union is defined to be the empty set.

See the left-hand side of Figure 5.4 for an illustration of a singleton class.

Lemma 37. C ⊆ C+, C+ is closed under union, and VCdim(C+) = s+(C). More-
over, if C is closed under intersection, then C+ is closed under intersection too, and
θ(C, C+) ≤ 2 so that VCdim(C+) · θ(C, C+) ≤ 2s+(C).
Proof. By construction, C ⊆ C+ and C+ is closed under union. From this it
follows that s+(C) ≤ VCdim(C+). Consider now instances x1, . . . , xd that are
shattered by C+. Thus, for every i = 1, . . . , d, there exists a concept hi in C+ that
contains xi but none of the other d−1 instances. Therefore, by the construction
of C+, C must contain some hypothesis h′i smaller than hi satisfying h′i(xi) = 1.
We conclude that VCdim(C+) ≤ s+(C). For the remainder of the proof, assume
that C is closed under intersection. Consider two setsA,B of the formA = ∪iAi
and B = ∪jBj where all Ai and Bj are concepts in C. Then, according to the
distributive law, A ∩ B = ∪i,jAi ∩ Bj. Since C is closed under intersection,
Ai ∩ Bj ∈ C ⊆ C+. We conclude that C+ is closed under intersection. Closure
under intersection and union implies that C+ contains hypotheses with plus-
sided errors and hypotheses with minus-sided errors w.r.t. C. According to
Lemma 34, θ(C, C+) ≤ 2.

We aim at a similar result that holds for arbitrary (not necessarily intersec-
tion-closed) concept classes. To this end, we proceed as follows.

Definition 38. Let s−(C) denote the largest number of instances in X such that
every binary pattern on these instances with exactly one “−”-label can be realized
by a concept from C. In other words: s−(C) denotes the cardinality of the largest
co-singleton subclass4 of C. If C contains co-singleton subclasses of arbitrary size,
4A co-singleton subclass of C is a set C′ ⊆ C such that for each h ∈ C′ there exists an x 6∈ h
that is contained in every other h′ ∈ C′. The co-singleton class of size n is defined as the
set Cco−sng = {X \ {x} : x ∈ X} over the domain X = {1, . . . , n}.
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we define s−(C) as infinite.
Let C− denote the class of all intersections of concepts from C. As usual, the

empty intersection is defined to be the full set X.
Furthermore, we define

s(C) := 4 ·max{s+(C), s−(C)} .

See the right-hand side of Figure 5.4 for an illustration of a co-singleton class.

By duality, Lemma 37 translates into the following result:

Corollary 39. C ⊆ C−, C− is closed under intersection, and VCdim(C−) = s−(C).
Moreover, if C is closed under union, then C− is closed under union too, and
θ(C, C−) ≤ 2 so that VCdim(C−) · θ(C, C−) ≤ 2s−(C).
We now arrive at the following general bound:

Theorem 40. LetH := C+∪C−. Then, C⊆H, VCdim(H)≤2 max{s+(C), s−(C)},
and θ(C,H) ≤ 2 so that VCdim(H) · θ(C,H) ≤ s(C).
Proof. C ⊆ H is obvious. The bound on the VC-dimension is obtained as
follows. If m instances are given, then, by Lemma 37 and Corollary 39, the
number of binary patterns imposed on them by concepts from H = C+ ∪ C− is
bounded by Φs+(C)(m) + Φs−(C)(m) where

Φd(m) =
{

2m if m ≤ d∑d
i=0

(
m
i

)
otherwise

is the upper bound from Sauer’s Lemma [Sau72]. Note that Φd(m) < 2m−1

for m > 2d. Thus, for m > 2 max{s+(C), s−(C)}, Φs+(C)(m) + Φs−(C)(m) <
2m−1 + 2m−1 = 2m. We can conclude that VCdim(H) ≤ 2 max{s+(C), s−(C)}.
Finally note that θ(C,H) ≤ 2 follows from Lemma 34 and the fact that, because
of Lemma 37 and Corollary 39, H = C+ ∪ C− contains hypotheses with plus-
sided errors and hypotheses with minus-sided errors.

Please note that the parameter s−(C) was originally introduced by Mihály
Geréb-Graus in [GG89] as the “unique negative dimension” of C. He showed
that it characterizes PAC-learnability from positive examples alone.

Example 41. Let us continue with the classes from Example 35. As noted before,
POWERSET and HALFINTERVALS are closed under union and intersection, and
we yield C+ = C− = C for both classes. Yet they differ strongly in their singleton
sizes: the power set over n elements contains both a singleton and a co-singleton
class of size n, so we have s+(POWERSET) = s−(POWERSET) = n, while the class
of half intervals only satisfies s+(HALFINTERVALS) = s−(HALFINTERVALS) = 1.
The latter is due to the fact that for any two points on the real line no half interval
can assign a negative label to the lower point and a positive label to the higher
one simultaneously.
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Figure 5.5: Using four fixed points, one can find the singletons of size four as a
subclass of the open, homogeneous half planes. A co-singleton class
of size four is induced by the complementary, closed half planes.

Now, let C denote the class of both the open and the closed homogeneous half
planes again. We have already seen the classes C− and C+ in Example 35: clearly,
C− consists of all open and closed pie slices with apex 0 and C+ consists of the
complements of such pie slices (see Figure 5.3). It is also easy to see that both s+

and s− are at least four (see Figure 5.5). We can see that four is also an upper
bound for s+ (analogous for s−), because for any choice of five half planes each of
which contains at least one of five previously fixed points it holds that one of the
points is contained by at least two of the half planes.
Let us conclude with two new examples: the class SFn and the class INTERVALS,

which consists of the closed and open intervals over R.
Since SFn is closed under intersection, we yield C−(SFn) = SFn. On the other

hand, constructing all possible unions results in the power set over {1, . . . , n},
thus C+(SFn) = {{0}∪S : S ⊆ {1, . . . , n}}. This stark difference is also reflected
in the singleton and co-singleton sizes: because the elements {1, . . . , n} form a
singleton class of size n, the singleton size s+(SFn) is n, while the co-singleton size
s−(SFn) is just one.
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The INTERVALS are even more extreme in this regard. This class is also closed
under intersection, thus C− = INTERVALS, and the co-singleton size s− is ob-
viously just two. However, the set of all unions is a intricate set of infinite
VC-dimension and, because each element in the set N can be covered solitarily by
a small interval, the singleton size s+ of the INTERVALS is also infinite.

5.3.2 About the Optimal Choice of H
In light of Lemma 33 one should chooseH in such away tominimizeVCdim(H)·
θ(C,H). We are interested in bounding the possible reduction by combinatorial
parameters, i.e., we want to give an upper bound to

VCdim(C) · θ(C)
VCdim(H) · θ(C,H) . (5.3)

To avoid trivial cases, we will only consider classes C with |C| ≥ 2, so that for
any H ⊇ C holds VCdim(C) ≥ 1 and θ(C,H) ≥ 1 .
We prove the following bound on θ(C):

Lemma 42. For any class C holds the inequality θ(C) ≤ s+(C) + s−(C) ≤ s(C)/2.

Proof. We only have to prove the first inequality (the second one is trivial). For
any X ′ ⊆ X and c∗ ∈ C let DIS− be the part of the disagreement region that
lies outside of the target concept c∗:

DIS−(VC(X ′, c∗)) := {x ∈ X : c∗(x) = 0,∃h ∈ VC(X ′, c∗) s.t. h(x) = 1}

We want to cover this set with hypothesis from the version space. Note that
the probability mass of the largest intersection of a hypothesis with DIS− is
at most suph∈VC(X′,c∗) P (h 6= c∗) for an arbitrary domain distribution P . Thus
every cover of DIS− must at least use the following number of hypotheses:

θ+ := P (DIS−(VC(X ′, c∗)))
suph∈VC(X′,c∗) P (h 6= c∗)

Since each element in a minimal cover contains at least one point which is not
covered by any other element, we can conclude that C contains a singleton
subclass of size θ+, i.e., θ+ ≤ s+(C). Analogously, C contains a co-singleton
subclass of size θ−, with a suitably defined θ−. The result follows from θ(C) =
supP,X′,c∗(θ+ + θ−).

We can now upper bound the ratio (5.3) easily:

VCdim(C)
VCdim(H)︸ ︷︷ ︸

≤1

· θ(C)
θ(C,H) ≤

s(C)/2
1
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Thus, the the maximal reduction achievable by choosingHwell is of order s(C).
This bound is tight in the sense as there are classes that realize this ratio up to
a constant factor:

Example 43. Let X be the set {1, . . . , 2n} and let C be the following combination
of a power set and singletons:

C = {A ∪ {b} : A ⊆ {1, . . . , n}, b ∈ {n+ 1, . . . , 2n}}
It is easily to see that s(C) = Θ(n) and VCdim(C) · θ(C) = Θ(n) ·Θ(n) = Θ(n2),
while VCdim(H) · θ(C,H) = Θ(n) ·Θ(1) = Θ(n) with the choice H = 2X .

5.3.3 Invariance of the Disagreement Coefficient Under
Padding

For every domain X, let X(i) and X [k] be given by

X(i) = {(x, i) : x ∈ X} and X [k] = X(1) ∪ · · · ∪X(k) .

For every concept h ⊆ X, let

h(i) = {(x, i) : x ∈ h} .
For every concept class C over domain X, let

C[k] := {h(1)
1 ∪ · · · ∪ h

(k)
k : h1, . . . , hk ∈ C} .

Loosely speaking, C[k] contains k-fold “disjoint unions” of concepts from C. It
is obvious that VCdim(C[k]) = k · VCdim(C). The following result shows that
the disagreement-coefficient is invariant under k-fold disjoint union:

Lemma 44. For all k ≥ 1: θ(C[k],H[k]) = θ(C,H).
Proof. The probability measures P on X [k] can be written as convex combina-
tions of probability measures on the X(i), i.e., P = λ1P1 + · · · + λkPk where
Pi is a probability measure on X(i), and the λi are non-negative numbers that
sum-up to 1. A sample set S ⊆ X [k] decomposes into S = S(1) ∪ · · · ∪ S(k) with
S(i) ⊆ X(i). An analogous remark applies to concepts c ∈ C[k] and hypotheses
h ∈ H[k]. Thus,

θ(C[k],H[k]|P, S, c) = P (DIS(VC[k](S, c)))
suph∈VH[k] (S,c) P (h 6= c)

=
∑k
i=1 λi

=:ai︷ ︸︸ ︷
Pi(DIS(VC(i)(S(i), c(i))))∑k

i=1 λi sup
h

(i)
i ∈VH(i) (S(i),c(i))

Pi(h(i) 6= c(i))

︸ ︷︷ ︸
=:bi

≤ θ(C,H) .
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The last inequality holds because, obviously, ai/bi ≤ θ(C(i),H(i)) = θ(C,H). On
the other hand, ai/bi can be made equal (or arbitrarily close) to θ(C,H) by
choosing Pi, S(i), c(i) properly.

5.3.4 Comparison to Hanneke’s Disagreement Coefficient
Hanneke’s original definition of the disagreement coefficient is as follows:

Definition 45 (Hanneke [Han07]). For r > 0 and c∗ ∈ C, let B(c∗, r) be the ball
of radius r around concept c∗, i.e. B(c∗, r) := {c ∈ C : P (c 6= c∗) ≤ r}. Then
Hanneke’s disagreement coefficient is defined as

θH(C|P, c∗) := sup
r>0

P (DIS(B(c∗, r)))
r

.

Taking the supremum over all c∗ ∈ C and all distributions P over X yields the
distribution independent disagreement coefficient

θH(C) := sup
P,c∗

θH(C|P, c∗) .

We would like to compare our variant of the disagreement coefficient with
Hanneke’s definition:

Lemma 46. For any class C, any c∗ ∈ C, any X ′ ⊆ X and any distribution P
holds

θ(C|P,X ′, c∗) ≤ θH(C|P, c∗) .

Proof. Let r∗ = supc∈VC(X′,c∗) P (c 6= c∗). Obviously, the version space is con-
tained in a ball of radius r∗, thus:

θ(C|P,X ′, c∗) = P (DIS(VC(X ′, c∗)))
r∗

≤ P (DIS(B(c∗, r∗)))
r∗

≤ θH(C|P, c∗) .

The following two observations demonstrate that our disagreement coeffi-
cient can indeed be much smaller than Hanneke’s.

Lemma 47. For any class C over X it holds that VCdim(C) ≤ θH(C) ≤ |X|.
Proof. The first inequality is trivial for classes of VC-dimension zero, since θH
is non-negative. Now let X ′ ⊆ X be a set of size d ≥ 1 shattered by C and
let P be the uniform distribution over X ′. Then θH(C|c∗, P ) ≥ d holds for all
c∗ ∈ C: let r∗ = 1/d, so that X ′ ⊆ DIS(B(c∗, r∗)). Since P (X ′) = 1, it follows
that θH(C|P, c∗) ≥ 1/(1/d) = d.
The second inequality is trivial for infinite X. Note that θH(C) ≤ |X| holds

for finite X, because DIS(B(c∗, r)) ⊆ {x ∈ X : P ({x}) ≤ r}.
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Lemma 48. Let C be a concept class, c∗ ∈ C, P a domain distribution and
X ′ ⊆ X. If a concept c̃ ∈ VC(X ′, c∗) exists, that errs on the whole disagreement
region almost surely under P , then θ(C|P,X ′, c∗) = 1.

Proof. From supc∈VC(X′,c∗) P (c 6= c∗) ≥ P (c̃ 6= c∗) ≥ P (DIS(VC(X ′, c∗))) follows
that θ(C|P,X ′, c∗) ≤ 1. On the other hand, the error of a concept from the
version space can never be larger than the probability mass of the disagreement
region. Thus it holds that θ(C|P,X ′, c∗) ≥ 1.

Example 49. Let X 6= ∅ be a finite set and let C = 2X . From Lemmas 47 and 48
follows θH(C) = |X| ≥ 1 = θ(C).

5.3.5 A Remark on PAC-learning Intersection-closed Classes
In this section we will shortly set our goal of analyzing supervised Co-training
aside and prove a tight upper bound on the sample complexity of learning
intersection-closed classes in the PAC-learning framework without extra as-
sumptions. This answers Warmuth’s conjecture [War04] mentioned in Sec-
tion 5.1.2 in the positive.
While the main application of Hanneke’s disagreement coefficient θH is in the

field of agnostic active learning, Hanneke also proved the following theorem
for the passive, realizable framework:

Theorem 50 (Hanneke [Han09]). Let C be a concept class of VC-dimension d,
P a distribution over X, x ∼ Pm a random sample of size m and c∗ ∈ C. Then
for any δ > 0 it holds with probability ≥ 1− δ for all h ∈ VC(x, c∗)

P (h 6= c∗) ≤ 24
m

(
d ln(880 θH(C|P, c∗)) + ln 12

δ

)
.

Thus the sample complexity m∗C is upper bounded by O
(

1
ε
(d ln θH(C) + ln 1

δ
)
)
.

This bound is realized by any consistent, proper learning algorithm.

Combining Hanneke’s result with our definition of the disagreement coeffi-
cient yields the following improved theorem, where we can replace θH by θ:

Theorem 51. Let C be a concept class of VC-dimension d, P a distribution over
X, x ∼ Pm a random sample of size m and c∗ ∈ C. Then for any δ > 0 it holds
with probability ≥ 1− δ for all h ∈ VC(x, c∗)

P (h 6= c∗) ≤ 24
m

(
d ln(880 θ(C|P, c∗)) + ln 12

δ

)
.

Thus the sample complexitym∗C is upper bounded by O
(

1
ε
(d ln θ(C) + ln 1

δ
)
)
. This

bound is realized by any consistent, proper learning algorithm.
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Proof. By carefully reading the proof of Theorem 50 in [Han09, Theorem 2.23
on page 51f], one can see that θH(C|P, c∗) may safely be replaced by θ(C|P, c∗).
Since the proof of Theorem 51 is therefore the same as Hanneke’s proof for
Theorem 50—except for this minor change—we will only provide a rough
proof sketch for the sake of completeness:
We want to prove the following statement by induction on m: “For all δ > 0

it holds with a probability of at least 1− δ over the draw of x ∼ Pm that

sup
h∈VC(x,c∗)

P (h 6= c∗) ≤ 24
m

(
d ln(880 θ(C|P, c∗)) + ln 12

δ

)
.”

For m ≤ d the statement is obvious, since the error is upper bounded by 1
(and θ(C|P, c∗) ≥ 1 always). For the inductive step from m/2 to m we denote
by Vm and Vm/2 the version spaces after drawing m or m/2 points of the
sample, respectively. Note that Vm ⊆ Vm/2 and therefore suph∈Vm P (h 6= c∗) ≤
suph∈Vm/2

P (h 6= c∗).
Let DIS := DIS(Vm/2). If P (DIS) ≤ 8

m
· ln 3

δ
, we are finished. In the other

case a Chernoff-bound shows that at least n := m/4·P (DIS) sample points from
the second m/2 draws lie in DIS with a probability of at least 1− δ/3. We can
regard these n points as a random sample drawn according to P conditioned
on DIS and apply a standard PAC bound from Blumer et al. [BEHW89] (in
fact a step in the proof of Theorem 4), showing that suph∈Vm P (h 6= c∗) is
upper bounded by P (DIS) · 4

n

(
d ln 2en

d
+ ln 12

δ

)
with a probability of at least

1 − δ/3. To handle the occurrence of n inside the logarithm, we note that
n ≤ m/4·θ(C|P, c∗)·suph∈Vm/2

P (h 6= c∗) by the definition of θ, i.e., Definition 30.
After using the inductive assumption (with the probability of success set to
1− δ/3) and some simplifying we arrive at the desired statement.

We can now give the main result of this section:

Theorem 52. Let C be an intersection-closed concept class of VC-dimension d.
Then the sample complexity of C is upper bounded by

m∗C = O

(
d+ ln(1/δ)

ε

)
,

which matches the general lower bound and is therefore optimal. The closure
algorithm realizes this bound.

Proof. The idea of the proof is similar to that of the inductive step from the
proof of Theorems 50 and 51.
Let c∗ ∈ C and P be a distribution over X and let x ∼ Pm be a random

sample of size m > 0. By h := ∩c∈VC(x,c∗)c we denote the closure algorithm’s
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hypothesis after seeing the sample (x, c∗(x)). We will prove that P (h 6= c∗) ≤
48
m

(d ln 880 + ln 24
δ

) holds with a probability of at least 1 − δ over the draw of
the sample.
Partition X into X+ := c∗ and X− := X \ c∗. Note that the cases P (X+) = 0

and P (X−) = 0 are trivial: in the former case P (h 6= c∗) is zero and in the
latter case we can skip a part of the proof and directly apply Theorem 51 and
Lemma 48. Therefore we will assume P (X+), P (X−) > 0 and let P+ and P−

denote P conditioned on X+ and X−. That is, for any X ′ ⊆ X we define:

P+(X ′) := P (X ′ ∩X+)/P (X+)
P−(X ′) := P (X ′ ∩X−)/P (X−)

Since h only errs on positively labeled points it holds that

P (h 6= c∗) = P+(h 6= c∗) · P (X+) + P−(h 6= c∗)︸ ︷︷ ︸
=0

·P (X−) . (5.4)

Thus, if P (X+) ≤ 48
m

(d ln 880 + ln 24
δ

) we are already finished. So assume the
opposite.
Let m+ denote the number of elements in the sample that lie in X+. Obvi-

ously, m+ is binomially distributed with an expected value of m · P (X+). By
our assumption P (X+) is larger than 48

m
(d ln 880 + ln 24

δ
) ≥ 8

m
· ln 2

δ
. From a

Chernoff-bound follows that

m+ ≥ m

2 · P (X+) (5.5)

holds with a probability of at least 1− δ/2.
The hypothesis class H of the closure algorithm is the class C− from Defi-

nition 38, which contains all intersections, even over infinitely many concepts
from C. As Auer and Ortner have shown in [AO07], for intersection-closed
classes C holds VCdim(C−) = VCdim(C) = d. Thus, by Theorem 51 it holds
with a probability of at least 1− δ/2 that

P+(h 6= c∗) ≤ 24
m+

(
d ln(880 θ(C|P+, c∗)) + ln 24

δ

)
. (5.6)

Since h errs on the whole disagreement region under P+ for any sample,
Lemma 48 yields θ(C|c∗, P+) = 1.
We now obtain the desired result by plugging (5.6) and (5.5) in (5.4) and

observing that the overall probability of failure is at most δ/2 + δ/2 = δ.

We briefly note that a corresponding theorem holds for union-closed classes
(by taking the complement of each concept over X).
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5.4 Supervised Learning and Co-training
Let p+ = P (c∗ = 1) denote the probability of seeing a positive example of c∗.
Similarly, p− = P (c∗ = 0) denotes the probability of seeing a negative example
of c∗. Let P (·|+), P (·|−) denote probabilities conditioned to positive or to nega-
tive examples, respectively. The error probability of a hypothesis h decomposes
into conditional error probabilities according to

P (h 6= c∗) = p+ · P (h 6= c∗|+) + p− · P (h 6= c∗|−) . (5.7)

In the PAC-learning framework, a sample size that, with high probability,
bounds the error by ε typically bounds the plus-conditional error by ε/p+ and
the minus-conditional error by ε/p−. According to (5.7), these conditional
error terms lead to an overall error that is bounded by ε, indeed. For this
reason, the hardness of a problem in the PAC-learning framework does not
significantly depend on the values of p+, p−. As we will see shortly, the sit-
uation is much different in the PAC Co-training Model under the Conditional
Independence Assumption where small values of pmin := min{p+, p−} (though
not smaller than ε) make the learning problem harder. Therefore, we refine
the analysis and present our bounds on the sample size not only in terms of
distribution-independent quantities like θ, ε and the VC-dimension but also in
terms of pmin. This will lead to learning policies that take advantage of “benign
values” of pmin. In the following subsections, we present (almost tight) upper
and lower bounds on the sample size in the PAC Co-training Model under the
Conditional Independence Assumption.
Let us first fix somemore notation that is used in subsequent sections. V1 ⊆ C1

and V2 ⊆ C2 denote the version spaces induced by the labeled sample within the
concept classes, respectively, and DIS1 = DIS(V1), DIS2 = DIS(V2) are the
corresponding disagreement regions. The VC-dimension of H1 is denoted d1;
the VC-dimension of H2 is denoted d2. θ1 = θ(C1,H1) and θ2 = θ(C2,H2).
θmin = min{θ1, θ2} and θmax = max{θ1, θ2}. s+

1 = s+(C1), s+
2 = s+(C2),

s−1 = s−(C1), and s−2 = s−(C2). The learner’s empirical estimates for p+, p−, pmin
(inferred from the labeled random sample) are denoted p̂+, p̂−, p̂min, respec-
tively. Let h1 ∈ VH1 and h2 ∈ VH2 denote two hypotheses chosen according to
some arbitrary but fixed learning rules.

5.4.1 General Upper Bounds on the Sample Size
Three resolution rules

According to the Conditional Independence Assumption, a pair (x1, x2) for the
learner is generated at random as follows:
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1. With probability p+ commit to a positive example, and with probability
p− = 1− p+ commit to a negative example of c∗.

2. Conditioned to “+”, (x1, x2) is chosen at random according to P (·|+) ×
P (·|+). Conditioned to “−”, (x1, x2) is chosen at random according to
P (·|−)× P (·|−).

The error probability of the learner is the probability for erring on an un-
labeled “test-instance” (x1, x2). Note that the learner has a safe decision if
x1 /∈ DIS1 or x2 /∈ DIS2. As for the case x1 ∈ DIS1 and x2 ∈ DIS2, the situ-
ation for the learner is ambiguous, and we consider the following resolution-
rules, the first two of which depend on the hypotheses h1 and h2:

R1: If h1(x1) = h2(x2), then vote for the same label. If h1(x1) 6= h2(x2), then
go with the hypothesis that belongs to the class with the disagreement
coefficient θmax.

R2: If h1(x1) = h2(x2), then vote for the same label. If h1(x1) 6= h2(x2), then
vote for the label that occurred less often in the sample (i.e., vote for “+”
if p̂− ≥ 1/2, and for “−” otherwise).

R3: If p̂− ≥ 1/2, then vote for label “+”. Otherwise, vote for label “−”. (These
votes are regardless of the hypotheses h1, h2.)

The choice applied in rules R2 and R3 could seem counterintuitive at first.
However, p̂+ > p̂− means that the learner has more information about the be-
havior of the target concept on the positive instances than on the negative ones,
indicating that the positive instances in the disagreement regions might have
smaller probability than the negative ones. This choice is also in accordance
with the common strategy applied in the “learning from positive examples
only” model, which outputs a negative label if in doubt, although the learner
has never seen any negative examples.

Theorem 53. The number of labeled examples sufficient for learning (C1, C2) in
the PAC Co-training Model under the Conditional Independence Assumption by
learners applying one of the rules R1, R2, R3 is given asymptotically as follows:

Õ
(√

d1d2
ε
· θmin
pmin

)
if rule R1 is applied

Õ
(√

d1d2
ε
·max

{
1

pmin
, θmax

})
if rule R2 is applied

Õ
(√

d1d2
ε
· θ1θ2

)
if rule R3 is applied

(5.8)

Proof. By an application of Chernoff-bounds, Õ(1) examples are sufficient to
achieve that (with high probability) the following holds: if pmin < 1/4, then
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p̂min < 1/2. Assume that this is the case. For reasons of symmetry, we may
assume furthermore that θ1 = θmax and p̂− ≥ 1/2 so that p− ≥ 1/4. Please
recall that the rules R1 to R3 are only applied if x1 ∈ DIS1 and x2 ∈ DIS2.
Assume first that ambiguities are resolved according to rule R1. Note that

the sample size specified in (5.8) is, by Theorem 4, sufficient to bound (with
high probability) the error rate of hypotheses h1, h2, respectively, as follows:

ε1 =
√
d1

d2
· pmin
θmin

· ε and ε2 =
√
d2

d1
· pmin
θmin

· ε

If R1 assigns a wrong label to (x1, x2), then, necessarily, h1 errs on x1 and x2 ∈
DIS2. Thus the error rate induced by R1 is bounded (with high probability)
as follows:

P (h1(x1) = 0 ∧ x2 ∈ DIS2|+)p+ + P (h1(x1) = 1 ∧ x2 ∈ DIS2|−)p−

≤ 1
pmin

·
(
P (h1(x1) = 0|+)p+ · P (x2 ∈ DIS2|+)p+

+ P (h1(x1) = 1|−)p− · P (x2 ∈ DIS2|−)p−
)

≤ 1
pmin

·
(
P (h1(x1) = 0|+)p+ + P (h1(x1) = 1|−)p−

)
︸ ︷︷ ︸

≤ε1

·
(
P (x2 ∈ DIS2|+)p+ + P (x2 ∈ DIS2|−)p−

)
︸ ︷︷ ︸

≤θ2ε2=θminε2

≤ θmin
pmin

· ε1ε2

= ε

The first inequality in this calculation makes use of Conditional Independence
and the third applies Lemma 33.
As for rule R2, the proof proceeds analogously. We may assume that (with

high probability) the error rate of hypotheses h1, h2, respectively, is bounded
as follows:

ε1 =
√
d1

2d2
·min

{
pmin,

1
8θmax

}
· ε and ε2 =

√
d2

2d1
·min

{
pmin,

1
8θmax

}
· ε

If R2 assigns a wrong label to (x1, x2), then

(h1(x1) = h2(x2) = 0 ∧ c∗(x1, x2) = 1)
∨ (x1 ∈ DIS1 ∧ h2(x2) = 1 ∧ c∗(x1, x2) = 0)
∨ (x2 ∈ DIS2 ∧ h1(x1) = 1 ∧ c∗(x1, x2) = 0) .
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Thus, the error rate induced by R2 is bounded (with high probability) as
follows:

P (h1(x1) = h2(x2) = 0|+)p+ + P (x1 ∈ DIS1 ∧ h2(x2) = 1|−)p−
+ P (x2 ∈ DIS2 ∧ h1(x1) = 1|−)p−

≤ 1
p+
· P (h1(x1) = 0|+)p+︸ ︷︷ ︸

≤ε1

·P (h2(x2) = 0|+)p+︸ ︷︷ ︸
≤ε2

+ 1
p−︸︷︷︸
≤4

·
(
P (x1 ∈ DIS1|−)p−︸ ︷︷ ︸

≤θ1ε1

·P (h2(x2) = 1|−)p−︸ ︷︷ ︸
≤ε2

+ P (x2 ∈ DIS2|−)p−︸ ︷︷ ︸
≤θ2ε2

·P (h1(x1) = 1|−)p−︸ ︷︷ ︸
≤ε1

)

≤ 1
pmin

· ε1ε2 + 4ε1ε2 · (θ1 + θ2)

≤
(

1
pmin

+ 8θmax
)
· ε1ε2

≤ 2 ·max
{

1
pmin

, 8θmax
}
· ε1ε2

≤ ε

As for rule R3, sample size Õ
(√

d1d2
ε
· θ1θ2

)
is sufficient to bound (with high

probability) the error rate of h1, h2, respectively, as follows:

ε1 = 1
2 ·
√
d1

d2
· 1
θ1θ2

· ε and ε2 = 1
2 ·
√
d2

d1
· 1
θ1θ2

· ε

If R3 assigns a wrong label to (x1, x2), then x1 ∈ DIS1, x2 ∈ DIS2, and the
true label is “−”. Thus the error rate induced by R3 is bounded (with high
probability) as follows:

P (x1 ∈ DIS1 ∧ x2 ∈ DIS2|−)p−

= 1
p−︸︷︷︸
≤4

·P (x1 ∈ DIS1|−)p−︸ ︷︷ ︸
≤θ1ε1

·P (x2 ∈ DIS2|−)p−︸ ︷︷ ︸
≤θ2ε2

≤ 4θ1θ2ε1ε2

≤ ε

This concludes the proof of the theorem.
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0 1
θ1θ2

θmin
θmax

1

R3 R2 R1 p̂min

Figure 5.6: The resolution rules used by the Combined Rule in dependence
on p̂min according to (5.9).

The Combined Rule

We now describe a strategy named “Combined Rule” that uses rules R1, R2,
R3 as sub-routines. Given (x1, x2) ∈ DIS1 × DIS2, it proceeds as follows: if
ε > 2/(θ1θ2) and p̂+ < ε/2 (or p̂− < ε/2, resp.), it votes for label “−” (or for
label “+”, resp.). If ε ≤ 2/(θ1θ2) or p̂min := min{p̂+, p̂−} ≥ ε/2, then it applies
the rule 

R1 if θmin
θmax
≤ p̂min

R2 if 1
θ1θ2
≤ p̂min <

θmin
θmax

R3 if p̂min < 1
θ1θ2

. (5.9)

See Figure 5.6 for a visualization of these cases.

Theorem 54. If the learner applies the Combined Rule, then

Õ
(√

d1d2
ε
· θmin
pmin

)
if θmin

θmax
≤ pmin

Õ
(√

d1d2
ε
· θmax

)
if 1

θmax
≤ pmin <

θmin
θmax

Õ
(√

d1d2
ε
· 1
pmin

)
if 1

θ1θ2
≤ pmin <

1
θmax

Õ
(√

d1d2
ε
· θ1θ2

)
if pmin < 1

θ1θ2

(5.10)

labeled examples are sufficient for learning C1, C2 in the PAC Co-training Model
under the Conditional Independence Assumption.

Proof. We first would like to note that, according to (5.10), we have at least

Õ

√min{θ1θ2, 1/pmin}
ε

 (5.11)

labeled examples at our disposal. Furthermore, as illustrated in Figure 5.7,
the upper bound from (5.10) is a continuous function in pmin (even for pmin =
θmin/θmax, 1/θmax, 1/(θ1θ2)).
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0 1
θ1θ2

1
θmax

θmin
θmax

1

√
d1d2
ε
· θmin

√
d1d2
ε
· θmax

√
d1d2
ε
· θ1θ2

pmin

upper bound on m

Figure 5.7: The sample complexity upper bound from (5.10) for the Combined
Rule.

We proceed by case analysis:

Case 1: 4/ε < min{2θ1θ2, 1/pmin} so that pmin < ε/4 and ε > 2/(θ1θ2).
Then (5.11) is at least Õ(1/ε) in order of magnitude. We can apply Chernoff-
bounds and conclude that, with high probability, p̂min < ε/2. But then the
Combined Rule outputs the empirically more likely label, which leads to
error rate pmin ≤ ε/4.

Case 2: 2θ1θ2 ≤ min{4/ε, 1/pmin} so that pmin ≤ 1/(2θ1θ2) and ε ≤ 2/(θ1θ2).
Then, (5.11) is at least Õ(θ1θ2). We can apply Chernoff-bounds and conclude
that, with high probability, p̂min ≤ 1

θ1θ2
. But then rule R3 is applied which,

according to Theorem 53, leads to the desired upper bound on the sample
size.

Case 3: 1/pmin ≤ min{4/ε, 2θ1θ2}.
Now (5.11) is at least Õ(1/pmin). We can apply Chernoff-bounds and con-
clude that, with high probability, p̂min and pmin differ by factor 2 only. If the
Combined Rule outputs the empirically more likely label, then p̂min < ε/2
and, therefore, the resulting error rate pmin is bounded by ε. Let us
now assume that p̂min ≥ ε/2 so that the Combined Rule proceeds ac-
cording to (5.9). If the learner could substitute the (unknown) pmin for
p̂min within (5.9), we could apply Theorem 53 and would be done. But
since, as mentioned above, (5.10) is a continuous function in pmin, even the
knowledge of p̂min is sufficient.
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5.4.2 Lower Bounds on the Sample Size
A lower bound archetype

In this section, we prove a lower bound on the sample complexity for the class
SFn from Lemma 32. Note that all lower bounds obtained for SFn immediately
generalize to concept classes containing SFn as subclass.
All other lower bounds in this chapter apply Lemma 55 directly or use the

same proof technique.

Lemma 55. Let n1, n2 ≥ 1, and let Cb = SFnb+2 so that θb = nb + 2 for b =
1, 2. Then, for every pmin ≤ 1/(θ1θ2) and every sufficiently small ε > 0, the
number of examples needed to learn C1, C2 in the PAC Co-training Model under
the Conditional Independence Assumption is at least Ω(

√
n1n2/ε).

Proof. Let “+” be the (a-priori) less likely label, i.e., p+ = pmin, let C1 be a
concept class over domain X1 = {a0, a1, . . . , an1+2} (with a0 in the role of the
center-point belonging to every concept from C1), and let C2 be a concept class
over domain X2 = {b0, b1, . . . , bn2+2}, respectively. Let ε1 = ε2 = ε. Obviously,

p+ = pmin ≤
1

(n1 + 2)(n2 + 2) = 1
θ1θ2

. (5.12)

Consider the following malign scenario:

• Index s is uniformly chosen at random from X1 \ {0, 1}. It represents a
randomly chosen target concept c∗1 = {a0, as} ∈ C1. Similarly, index t is
uniformly chosen at random from X2 \ {0, 1} and represents a randomly
chosen target concept c∗2 = {b0, bt} ∈ C2. We define P (as|+) =

√
ε1/p+

and P (bt|+) =
√
ε2/p+. In the sequel, points as and bt are called “secret”:

if one of them occurs in the sample, the learner will have enough knowl-
edge to be error-free on test-points. Note that the secret points have a
high chance to remain hidden from the learner (i.e., to not occur in the
sample) but still have too much probability mass for being neglected.

• P (a0|+) = 1−P (as|+) and P (b0|+) = 1−P (bt|+). Note that a0, a positive
example for every concept in C1, is a redundant instance that absorbs a
high fraction of the total probability mass. The analogous remark applies
to b0.

• P (a1|−) = 1 − 4 ·
√
n1ε1/n2 and P (b1|−) = 1 − 4 ·

√
n2ε2/n1. The effect

of assigning much probability mass to a1 and b1 is that many negative
examples different from a1 or b1 will not find their way into the sample.
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• The instances from X1 \ {a0, a1, as} evenly share a minus-conditional
probability mass of 1 − P (a1|−). The instances from X2 \ {b0, b1, bt}
evenly share a minus-conditional probability mass of 1− P (b1|−).

Let us assume that the sample size satisfies m ≤ m0 for

m0 =
√
n1n2

40 ·
√

1/ε .

We will show that, with a probability of at least 1/2, an error rate of at least ε
is unavoidable. To this end, we proceed as follows: Let Z1 count the number of
sample points that hitX1\{a0, a1, as} (the “interesting points” inX1, besides as)
and let Z2 count the number of sample points that hit X2 \ {b0, b1, bt} (the
“interesting points” in X2, besides bt). Then the following holds:

• We can bound the expectation of Zb for b = 1, 2 (recall that ε1 = ε2 = ε):

E[Zb] ≤ (1− p+) · 4 ·
√
nbεb/n3−b ·

√
n1n2

40 ·
√

1/ε ≤ nb
10

By the Markov-inequality it follows that the probability that Zb > nb/2 is
at most pb = 1/5.

• Using Equation (5.12) the expected number of occurrences of as (or bt,
resp.) in the sample can be upper bounded by

p+ ·
√
ε1/p+ ·

√
n1n2

40 ·
√

1/ε = √n1n2p+/40 ≤ 1/40 .

Consequently, as does not occur in the sample with probability p3 = 1/40.
The same holds for bt with probability p4 = 1/40.

Denote by H1 (resp. H2) the subset of X1 \ {a0, a1, as} (resp. X2 \ {b0, b1, bt})
consisting of all those points that do not occur in the sample. According to
the above calculations, the probability that H1 and H2 contain at least half
of the possible points, and neither as nor bt occurs in the sample, is at least
1− p1 − p2 − p3 − p4 > 1/2. In the rest of the proof we assume that this holds.
Before we analyze the Bayes-error, we assume, to the advantage of the

learner, that not only the labeled sample is revealed but also the probabili-
ties p+, P (a0|+), P (b0|+), P (H1|−), P (H2|−), and the fact that s (or t, resp.)
was chosen uniformly at random from {2, . . . , n1 + 2} (or from {2, . . . , n2 + 2},
resp.). Let E+ (or E−, resp.) denote the set of instance-pairs which are labeled
“+” (or labeled “−”, resp.). For b = 1, 2, let Ub ⊆ Xb be the set of points in
Xb that did not occur in the sample, and let U = U1 × U2. For test-instances
(x1, x2) /∈ U , the learner can infer the label from the information provided by
the sample.
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How is the situation for test-instances from U? The crucial observation is that
the plus- and the minus-conditional à-posteriori probabilities assign precisely
the same value to each pair in U . This might look wrong at first glance because,
for example, U1 = H1 ∪ {as} and as is the only positive example in U1. Thus,
P (as|+) = 1− P (a0|+) > 0 whereas P (x1|+) = 0 for every x1 ∈ H1. But recall
that s had been chosen uniformly at random from {2, . . . , n1 + 2}. Thus, the
à-posteriori distribution of the random variable as (reflecting the perspective
of the learner after its evaluation of the labeled random sample) is uniform
on U1. The arguments for X2 and for negative examples are similar. Thus,
by symmetry, the plus- and minus-conditional à-posteriori probabilities assign
the same value to every point in U so that the Bayes-decision on instances
(x1, x2) ∈ U takes the following mutually equivalent forms:

• Vote for the label with the higher à-posteriori probability given (x1, x2).

• Always vote for the label with the higher à-posteriori probability given U
(the information that the test-instance belongs to U).

• If P (E+ ∩ U) ≥ P (E− ∩ U) vote always for “+”, otherwise vote always
for “−”.

Clearly, the resulting Bayes-error equals min{P (E+ ∩ U), P (E− ∩ U)}. It can
be bounded from below as follows:

P (U ∩ E+) ≥ p+ ·
(√

ε

p+

)2

= ε ,

because
√

ε
p+

coincides with the plus-conditional probability of as and bt, re-
spectively. A similar computation shows that

P (U ∩ E−) ≥ (1− p+)︸ ︷︷ ︸
≥1/2

·(2
√
n1ε1/n2) · (2

√
n2ε2/n1) ≥ 2ε .

Thus, the Bayes-error is at least ε.

The following corollary demonstrates the use of the padding argument to
boost lower bounds of the type used in Lemma 55 to classes with arbitrary
VC-dimensions:

Corollary 56. Let n1, n2, d1, d2 ≥ 1, and, for b = 1, 2, let Cb = SFnb+2 so that
θ(Cb) = θ(C[db]

b ) = nb + 2. Then, for every pmin ≤ 1/(θ1θ2) and every sufficiently
small ε > 0, the number of examples needed to learn C[d1]

1 , C[d2]
2 in the PAC

Co-training Model under the Conditional Independence Assumption is at least
Ω(
√
d1d2n1n2/ε).
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Proof. θ(Cb) = θ(C[db]
b ) follows from Lemma 44.

Amalicious scenario for the classes C[db]
b is obtained by installing themalicious

scenario from the proof of Lemma 55 (with minor modifications that will be
explained below) for each of the d1 many copies of C1, X1 and for each of the
d2 many copies of C2, X2:

• The role of the secret point as is now played by the secret points (as(i), i)
for i = 1, . . . , d1. Here, s(i) is uniformly chosen at random from {2, . . . ,
n1 + 2}. The analogous remark applies to bt.

• Instead of setting ε1 = ε2 = ε, we set

ε1 =
√
d1

d2
· ε and ε2 =

√
d2

d1
· ε .

• The plus- and minus-conditional probabilities for elements of X(i)
1 , i =

1, . . . , d1, are given by the same formulas as the probabilities for the
corresponding elements of X1 except for a scaling factor of 1/d1 (for
reasons of normalization). But note that these formulas are given in
terms of (the redefined) ε1. The analogous remark applies to the plus-
and minus-conditional probabilities for elements of X(j)

2 , j = 1, . . . , d2.

Let us assume that the sample size satisfies

m ≤
√
d1d2n1n2

40 ·
√

1/ε

In comparison to Lemma 55, the sample size is scaled-up by factor
√
d1d2. We

will show that, with a probability of at least 1/2, an error rate of at least ε/4 is
unavoidable (which, after consistently replacing ε by 4ε, would settle the proof
for the theorem). To this end, we proceed as follows:

• Z
(i)
1 counts the number of sample points that hit X(i)

1 \ {(a0, i), (a1, i),
(as(i), i)}, and Z

[d1]
1 = ∑d1

i=1 Z
(i)
1 . The hitting probability (except for

scaling-factor 1/d1 and the redefinition of ε1 the same as in the proof
of Lemma 55) is

1
d1

(1− p+) · 4 ·
√
n1ε1

n2
= 1√

d1d2
(1− p+) · 4 ·

√
n1ε

n2
.

The number of trials is m. Thus,

E[Z(i)
1 ] = 1√

d1d2
(1− p+) · 4 ·

√
n1ε

n2
·m ≤ n1

10 .
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In other words, E[Z(i)
1 ] has the same upper bound as E[Z1]. We may now

conclude that E[Z [d1]
1 ] ≤ d1n1/10. Thus, with a probability of at least

1− 1/5, Z [d1]
1 ≤ d1n1/2, which is assumed in the sequel. Note that d1n1 is

the number of interesting negative examples in X [d1]
1 . Thus at least half

of them remain hidden from the learner. Their total minus-conditional
probability mass is therefore at least 2 ·

√
n1ε1/n2 (the same as in the

proof of Lemma 55).

• The fact that E[Z(i)
1 ] has the same upper bound as E[Z1] is no accident:

compared to Lemma 55, the upper bound on the sample size scales-up by
factor

√
d1d2 and the hitting probabilities for events in X(i) scale-down

by the same factor. For this reason, we obtain similar considerations for
random variable Z2 and may conclude that, with a probability of at least
1− 1/5, half of the interesting negative examples in X [d2]

2 remain hidden
from the learner. Their total negative-conditional probability mass is
therefore at least 2 ·

√
n2ε2/n1 (the same as in the proof of Lemma 55).

• Similarly, we get that the expected number of sample points that hit
{a(i)

s(i)| i = 1, . . . , d1} is bounded by d1/40. Thus, with a probability of at

least 1 − 1/20, at least half of the secret points in X
[d1]
1 remain hidden

from the learner. Their total plus-conditional probability mass is at least
1/2·

√
ε1/p+ (half of the probability mass of the secret point as in the proof

of Lemma 55). Analogously with probability at least 1 − 1/20, at least
half of the secret points in X [d2]

2 remain hidden from the learner. Their
total plus-conditional probability mass is therefore at least 1/2 ·

√
ε2/p+.

Let U denote the set of test-instances from X
[d1]
1 × X

[d2]
2 such that none of

its two components occurred in the sample. By symmetry (as in the proof
of Lemma 55), the plus- and minus-conditional probabilities assign the same
value to any point in U , respectively. Let E+ (or E−, resp.) denote the set of
test-instances which are labeled “+” (or labeled “−”, resp.). As in in the proof
of Lemma 55, the Bayes-error is given by min{P (E+ ∩U), P (E− ∩U)}, and an
easy calculation (similar to the calculation in in the proof of Lemma 55) shows
that it is bounded from below by ε/4.5

5Factor 4 is lost in comparison to Lemma 55 because now half of the secret points in X [d1]
1

and X [d2]
2 , respectively, might occur in the sample, whereas we could assume that as and

bt remained hidden from the learner in the proof of Lemma 55.
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Ω
(√

1
ε
· θmin
pmin

)
Ω
(√

1
ε
· θmax

)
Ω
(√

1
ε
· 1
pmin

)
C1 SFkn+2 SFkn+2 SFn+2
C2 co(SFn+2) co(SFn+2) SFn+2

pmin ∈
[

1
k
, 1

2

] [
1

kn+2 ,
n+2
kn+2

] [
1

(n+2)2 ,
1

n+2

]
X1 {a0, . . . , akn+2} {a0, . . . , akn+2} {a0, . . . , an+2}
X2 {b0, . . . , bn+2} {b0, . . . , bn+2} {b0, . . . , bn+2}
c∗1 {a0, as} {a0, as} {a0, as}
c∗2 X2 \ {b0, bt} X2 \ {b0, bt} {b0, bt}

P (as|+) 2
√

ε
np+

2
√

kε
n

√
ε
p+

bt P (bt|−) = 4
√

εp+
n

P (bt|−) = 4
√

ε
kn

P (bt|+) =
√

ε
p+

P (a1|−) 1−
√

nε
p+

1−
√
knε 1− 8n · √εp+

b1 P (b1|+) = 1−
√

nε
p+

P (b1|+) = 1− 1
p+

√
nε
k

P (b1|−) = 1− 8n · √εp+

m0
1

32
√

n
εp+

1
32

√
kn
ε

1
80

√
1
εp+

E[Z1] p− · (1− P (a1|−)) ·m p− · (1− P (a1|−)) ·m p− · (1− P (a1|−)) ·m
≤ kn

32 ≤ kn
32 ≤ n

10
by Markov p1 = P

(
Z1 >

kn
2

)
< 1

16 p1 = P
(
Z1 >

kn
2

)
< 1

16 p1 = P
(
Z1 >

n
2

)
< 1

5
E[Z2] p+ · (1− P (b1|+)) ·m p+ · (1− P (b1|+)) ·m p− · (1− P (b1|−)) ·m

≤ n
32 ≤ n

32 ≤ n
10

by Markov p2 = P
(
Z1 >

n
2

)
< 1

16 p2 = P
(
Z1 >

n
2

)
< 1

16 p2 = P
(
Z1 >

n
2

)
< 1

5
E[#as occurrence] p+ · P (as|+) ·m ≤ 1

16 p+ · P (as|+) ·m ≤ kp+
16 ≤

1
8 p+ · P (as|+) ·m ≤ 1

80
P (as occurs) p3 ≤ 1

16 p3 ≤ 1
8 p3 ≤ 1

80
E[#bt occurrence] p− · P (bt|−) ·m ≤ 1

8 p− · P (bt|−) ·m ≤ 1
8 p− · P (bt|+) ·m ≤ 1

80
P (bt occurs) p4 ≤ 1

8 p4 ≤ 1
8 p4 ≤ 1

80
p1 + p2 + p3 + p4 ≤ 0.5 ≤ 0.5 ≤ 0.5

P (U ∩ E+) p+ · P (as|+) 1−P (b1|+)
2 p+ · P (as|+) 1−P (b1|+)

2 p+ · P (as|+)P (bt|+)
≥ ε ≥ ε ≥ ε

P (U ∩ E−) p− · 1−P (a1|−)
2 P (bt|−) p− · 1−P (a1|−)

2 P (bt|−) p− · 1−P (a1|−)
2

1−P (b1|−)
2

≥ ε ≥ ε ≥ ε

Table 5.1: Overview of the necessary modifications to the proof of Lemma 55 to
prove Theorem 57. Assume that n, k ≥ 2.

Matching lower bounds for Theorem 54

Next we will provide lower bounds matching the upper bounds from the last
section. Actually, Corollary 56 is a first result of this kind because the lower
bound in this result matches with the upper bound in Theorem 54 when
pmin ≤ 1/(θ1θ2). We list here some more results of this kind which together
witness that all upper bounds mentioned in Theorem 54 are fairly tight. The
proof technique is the same as for the “archetypical” lower bounds.
For any concept class C over domain X, the class co(C) is given by

co(C) = {X \ A| A ∈ C} .

Clearly, VCdim(C) = VCdim(co(C)) and θ(C) = θ(co(C)).
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Theorem 57. For sufficiently small ε > 0 at least

Ω
(√

d1d2
ε
· θmin
pmin

)
for C1 = SFθ1 , C2 = co(SFθ2) and θmin

θmax
≤ pmin

Ω
(√

d1d2
ε
· θmax

)
for C1 = SFθ1 , C2 = co(SFθ2) and 1

θmax
≤ pmin <

θmin
θmax

Ω
(√

d1d2
ε
· 1
pmin

)
for C1 = C2 = SFθ1 and 1

θ1θ2
≤ pmin <

1
θmax

Ω
(√

d1d2
ε
· θ1θ2

)
for C1 = SFθ1 , C2 = SFθ2 and pmin < 1

θ1θ2

many examples are needed to learn C[d1]
1 , C[d2]

2 in the PAC Co-training Model under
the Conditional Independence Assumption.

Proof. Note that the lower bound Ω (d1d2θ1θ2/ε) is already proved in Corollary
56. Table 5.1 contains the necessary modifications to the proof of Lemma 55 to
obtain the rest of the desired results in case d1 = d2 = 1. The general versions
then can be proved from these along the line of Corollary 56.

Notice that the lower bounds in Theorem 57 nicely match with the general
upper bounds given in Theorem 54.

5.4.3 Purely Combinatorial Bounds
In this section we will derive upper and lower bounds that are given in purely
combinatorial parameters, i.e., without referring to disagreement coefficients
or to pmin. Therefore, these bounds will be optimal in the worst case.
To this end we proceed as follows: first we give (almost) tight upper and

lower bounds with succinct proofs, which unfortunately leave open the case of
classes with (co-)singleton sizes smaller than three. We will close this gap in
the final part of this section using a tedious case distinction rewarding us with
(almost) tight bounds for all classes.

A combinatorial general upper bound

There is an alternative analysis for rule R3 which yields the following purely
combinatorial upper bound on the sample size:

Theorem 58. The number of labeled examples sufficient for learning (C1, C2) in
the PAC Co-training Model under the Conditional Independence Assumption by
learners applying rule R3 is given asymptotically as:

O

√max{s+
1 s

+
2 , s

−
1 s
−
2 }

ε
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Proof. As in the proof of Theorem 53, we assume that p̂min < 1/2 holds if
pmin < 1/4. And again, we may assume that θ1 = θmax and p̂− ≥ 1/2 so that
p− ≥ 1/4.
From p̂− ≥ 1/2 follows that R3 assigns label “+” to every instance x1 ∈ DIS1

(resp. to every instance x2 ∈ DIS2). We can also achieve this behavior by
choosing h1 (resp. h2) as the union of all hypotheses from the version space
and assigning the label “+” to (x1, x2) exactly if both h1 and h2 agree on a
positive label. Recall that, according to our definition of C+

1 , C+
2 , h1 ∈ C+

1 and
h2 ∈ C+

2 . Recall furthermore that VCdim(C+
1 ) = s+

1 and VCdim(C+
2 ) = s+

2 .

Thus, by Theorem 4, sample size Õ
(√

s+
1 s

+
2

ε

)
is sufficient to bound (with high

probability) the error rate of h1, h2, respectively, as follows:

ε1 = 1
2 ·

√√√√s+
1
s+

2
· ε and ε2 = 1

2 ·

√√√√s+
2
s+

1
· ε

An error of rule R3 can occur only when h1 errs on x1 and h2 errs on x2,
which implies that the true label of (x1, x2) is “−”. According to conditional
independence, the probability for this to happen is bounded as follows:

P (h1 errs on x1 and h2 errs on x2)

= P (h1 errs on x1 and h2 errs on x2|−)p−

= 1
p−
· P (h1 errs on x1|−)p− · P (h2 errs on x2|−)p−

= 1
p−
· P (h1 errs on x1) · P (h2 errs on x2)

≤ 4 · ε1 · ε2

= ε

By symmetry, assuming that p̂− < 1/2, the upper bound Õ
(√

s−1 s
−
2 /ε

)
on the

sample size holds. Thus the bound Õ
(√

max{s+
1 s

+
2 ,s
−
1 s
−
2 }

ε

)
takes care of all values

for p̂−.

Note that, in the case p̂− < 1/2, finding h1 ∈ C−1 (resp. h2 ∈ C−2 ), which is
the smallest consistent hypothesis in C1, is possible using negative examples
only. This shows a strong connection to the results by Geréb-Graus in [GG89],
where it was shown that Õ

(
s−(C)/ε

)
many positive examples are sufficient

(and necessary) to PAC-learn a class C from positive examples alone.
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A combinatorial worst-case lower bound

Here comes the lower bound that is tight from the perspective of a worst-case
analysis, which is making use of rather small values of pmin. It matches nicely
with the upper bound from Theorem 58:

Theorem 59. Assume that 3 ≤ s+
b , s

−
b <∞ for b = 1, 2. Then the following holds:

for every sufficiently small ε > 0, the number of examples needed to learn C1, C2
in the PAC Co-training Model under the Conditional Independence Assumption is
at least Ω

(√
max{s+

1 s
+
2 , s

−
1 s
−
2 }/ε

)
.

Proof. We show first that each learner needs at least Ω
(√

s+
1 s

+
2 /ε

)
many labels

in the worst case. By duality we also get the bound of Ω
(√

s−1 s
−
2 /ε

)
. Now

taking the maximum of both cases yields the theorem.
The former bound can be proved as follows: in the proof of Lemma 55, we

may set p+ = pmin = ε. Thus the probability assigned to the redundant points
a0 and b0 is now 0, respectively. Removal of the redundant point in a class
of type SF will lead to the class of singletons. Thus, the proof of Lemma 55
with the special setting p+ = pmin = ε shows that at least Ω

(√
n1n2/ε

)
many

examples are needed for every pair C1, C2 of concept classes such that, for
b = 1, 2, Cb contains a singleton subclass of size nb + 2.

Note that Theorem 59 implies a weak converse of Theorem 40 where we
have shown that VCdim(H) · θ(C,H) ≤ s(C) for H = C+ ∪ C−. More precisely
s(C) = Õ

(
VCdim(H) · θ(C,H)

)
must hold for every H ⊇ C because, otherwise,

the lower bound in Theorem 59 would exceed the upper bound for rule R3 in
Theorem 58 with C1 = C2 = C.

Combinatorial bounds for classes with small (co-)singleton sizes

As noted in the introduction to this section, the matching combinatorial bounds
from Theorem 58 and Theorem 59 do not hold for classes with (co-)singleton
sizes smaller than three. We will show in the following that it is possible to
drop this restriction and yield tight combinatorial bounds on the sample size
that hold for all classes.
We will ignore the following two trivial cases: if |Cb| = 1 or |Xb| = 1 for (at

least) one b, then m = 0 or m = 1 examples are sufficient for learning. We
will therefore assume in this section that |Xb|, |Cb| ≥ 2. Thus it also holds that
s+
b , s

−
b > 0.

First, we define two properties that characterize classes that are not trivial to
learn: a class C over domain X has the property S+ if it contains two concepts
c, c̃ such that there are instances x, x̃ ∈ X with c(x) = c̃(x) = 0 and c(x̃) 6= c̃(x̃).
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Analogously, a class C over domain X has the property S− if it contains two
concepts c, c̃ such that there are instances x, x̃ ∈ X with c(x) = c̃(x) = 1 and
c(x̃) 6= c̃(x̃).
A few remarks about these properties are in order:

• Note that S+ holds if s+ is at least three (of course, the same is true for
S− and s−). Furthermore, every class with VCdim(C) ≥ 2 satisfies both
properties.

• Since we assume |Xb|, |Cb| ≥ 2, we will always find an x̃ ∈ Xb and two
concepts c, c̃ ∈ Cb such that c(x̃) 6= c̃(x̃). If property S+ is not satisfied,
then c and c̃ must never agree on a negative label, i.e., for all x ∈ Xb

holds that c(x) = 1 or c̃(x) = 1. Note that c and c̃ may still agree on
positive labels in this case.

We will show that the property S+ in both C1 and C2 is necessary and
sufficient for a term of

√
s+

1 s
+
2 /ε in the sample complexity bounds, while the

property S− is necessary and sufficient for a term of
√
s−1 s

−
2 /ε. Thus we have

the following matching upper and lower bounds for the sample complexity (up
to logarithmic factors):

S+ holds for both classes otherwise

S− holds
for both classes

√
max{s+

1 s
+
2 , s

−
1 s
−
2 }/ε

√
s−1 s

−
2 /ε

otherwise
√
s+

1 s
+
2 /ε 1

Lemma 60. If neither property S+ nor property S− is satisfied by both C1 and C2,
then only one labeled example is sufficient and necessary to learn under the
Conditional Independence Assumption.

Proof. Note that if a class does not satisfy S+ then one negatively labeled
example is sufficient to learn the target concept exactly. The same holds for
the dual with just one positive example. Therefore, if neither S+ nor S− is
satisfied by both C1 and C2, then just one example is sufficient and, because of
our assumption |Cb| > 1, also necessary to learn exactly.

We will now generalize the combinatorial bound from Theorem 59 to any
pair of classes with property S+ (resp. S−):

Theorem 61. Assume that s+
b <∞ for b = 1, 2 and both Cb satisfy S+. Then the

following holds: for every sufficiently small ε > 0, the number of examples needed
to learn C1, C2 in the PAC Co-training Model under the Conditional Independence
Assumption is at least Ω

(√
s+

1 s
+
2 /ε

)
.
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Proof. We consider three cases:

Case 1: For s+
1 , s

+
2 ≥ 3 we apply Theorem 59.

Case 2: For s+
1 ≥ 3, s+

2 < 3 it suffices to prove a bound of m = Ω
(√

s+
1 /ε

)
.

Let C1 be the class of singletons over X1 = {0, . . . , n1 + 1} such that n1 =
s+

1 − 2 > 0. Because property S+ holds, we can identify C2 with the class
{∅, {1}} over domain X2 = {0, 1}.
Choose t1 uniformly at random from X1 \ {0} and let the target for the
first class be c∗1 = {t1}. Choose the target c∗2 for the second class uniformly
at random from {∅, {1}}. Assume ε < 1/(16n1) and let the distribution P
satisfy:

• P (x1 = 0|−) = 1−4√n1ε. The rest of the minus-conditional probabil-
ity mass is evenly distributed over the remaining n1 negative instances,
i.e., X1 \ {0, t1}.

• If c∗2 = ∅, we set:
p+ = 0, P (x2 = 1|−) = 4

√
ε/n1 and P (x2 = 0|−) = 1− 4

√
ε/n1.

• If c∗2 = {1}, we set:
p+ = ε and P (x1 = t1|+) = P (x2 = 1|+) = P (x2 = 0|−) = 1.

Assume that m ≤ 1/40 ·
√
n1/ε. Now the following holds:

• The expected number of positive examples is 0 in the case c∗2 = ∅
and p+ · m ≤ 1/40 · √εn1 < 1/160 in the case c∗2 = {1}. Therefore,
regardless of the target concept, positive examples will only occur in
the sample with a probability less than 1/160.

• Let X ′1 ⊆ X1 \ {0, t1} denote the instances from the first class that
occurred in the sample (these are the “interesting” negative examples
for the first class). The expected number of negative examples, such
that x1 6= 0 holds, is p− · 4 ·

√
εn1 ·m ≤ n1/10. Thus, by the Markov-

inequality, the probability that |X ′1| ≥ n1/2 holds is at most 1/5.
• The expected number of negative examples such that x2 = 1 (these

are the “interesting” negative examples for the second class) is 0 in
the case c∗2 = {1} and p− · 4 ·

√
ε/n1 ·m ≤ 10 in the case c∗2 = ∅. Thus

interesting negative examples for the second class will only occur in
the sample with a probability of at most 1/10.

Consequently, with a probability of at least 1−1/160−1/5−1/10 > 1/2 the
learner will only see examples that have a negative label, are uninteresting
for the second class and contain less than n1/2 interesting examples for the
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first class. Note that the bound on the probability of this event is valid for
any choice of c∗2.

We will assume in the following that the event occurs. Note that the learner
is unable to differentiate between the cases p+ = 0 and p+ = ε, i.e., she can
not determine whether c∗2 = ∅ or c∗2 = {1} holds. Furthermore, because of
symmetry, the learner can only guess t1 randomly out of X1 \ (X ′1∪{0}). It
follows that the plus- and minus-conditional à-posteriori probabilities for
pairs of the form (x1, 1), such that x1 ∈ X1 \ (X ′1∪{0}), are equal. Thus the
Bayes-decision will assign the same label to all such pairs, of which there
are more than n1/2. We do not have to derive the actual Bayes-decision,
as it is easy to see that the learner will fail in any case:

If she prefers the negative label, there is a probability of 1/2 that the target
concept is c∗2 = {1} and the error rate will be at least p+ = ε. On the other
hand, if she votes for the positive label, c∗2 = ∅ holds with a probability of
1/2 and the error rate will be at least p− · n1/2 · 4√n1ε

n1
· 4
√
ε/n1 = 8ε ≥ ε

by conditional independence. Therefore, the Bayes-error is at least ε with
a probability larger than 1/2 · 1/2 = 1/4.

Case 3: For the last case (s+
1 , s

+
2 < 3) it suffices to show a lower bound of

m = Ω(ε−1/2). This can be done as follows:

Because the property S+ holds for both classes, we can identify both C1
and C2 with the set {∅, {1}} over domain X1 = X2 = {0, 1}. We choose
c∗ ∈ {∅, {1}} uniformly at random and let c∗1 = c∗2 = c∗. Let P be the
following distribution:

• If c∗ = ∅, we set p+ = 0, P (x1 = 1|−) = P (x2 = 1|−) =
√
ε and

P (x1 = 0|−) = P (x2 = 0|−) = 1−
√
ε.

• If c∗ = {1}, we set p+ = ε, P (x1 = 1|+) = P (x2 = 1|+) = 1 and
P (x1 = 0|−) = P (x2 = 0|−) = 1.

If we assumem = o(ε−1/2), it is easy to see that with a high probability (for
both choices of c∗) the sample contains the pair (0, 0) only. Therefore, the
learner is unaware of the true label of the pair (1, 1).
If she decides to assign a positive label to the instance (1, 1) and c∗ = ∅
holds, the error rate is at least (by conditional independence) p− ·

√
ε ·
√
ε =

ε. On the other hand, if the learner chooses a negative label and c∗ = {1}
holds, the error rate is at least p+ = ε. Note that the probability of failure
is at least 1/2 in both cases.

Thus we need at least Ω(ε−1/2) many examples to learn successfully.

Please note that the dual case “sb < ∞ and properties S− hold” leads to a
dual bound with s−b instead of s+

b . Thus, if both classes satisfy S+ and S−, we
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achieve the combinatorial lower bound m = Ω
(√

max{s+
1 s

+
2 , s

−
1 s
−
2 }/ε

)
from

Theorem 59 again.
We will now prove a matching upper bound. As a first step, we will have a

short glance at one-sided errors (Section 5.4.4 provides a more detailed look
at this topic):

Lemma 62. Let Cb for b ∈ {1, 2} be two concept classes over Xb. Let resolution
rule R+ be the following: in the case x1 ∈ DIS1 and x2 ∈ DIS2 we return the
label “+” . Using resolution rule R+,

m = Õ


√√√√ s+

1 s
+
2

ε · p−


labeled examples are sufficient for PAC-learning.

Proof. Recall from Lemma 37 that the hypotheses classes C+
b , for b = 1, 2, are

closed under union and thus contain hypotheses h∪b with minus-sided error,
namely the unions of all hypotheses in the version spaces VC+

b
. Since the

hypotheses h∪b are consistent and, by Lemma 37, db := VCdim(C+
b ) ≤ s+

b , it
follows from Theorem 4 that (with high probability) the error rates for h∪b after

seeing at least m = Õ

(√
s+

1 s
+
2

ε·p−

)
examples are:

ε1 = d1 ·
√
p− · ε
s+

1 s
+
2
≤

√√√√s+
1 · p− · ε
s+

2
, ε2 ≤

√√√√s+
2 · p− · ε
s+

1

Because both h∪b have minus-sided error, they return a “+”-label on the whole
disagreement region, thus they just behave like rule R+.
Using conditional independence we can bound the error from above:

P (x1 ∈ DIS1 ∧ x2 ∈ DIS2|−) · p−
= P (x1 ∈ DIS1|−) · P (x2 ∈ DIS2|−) · p−
= P

(
h∪1 (x1) = 1| −

)
· P
(
h∪2 (x2) = 1| −

)
· p−

≤ 1
p−
· P
(
h∪1 (x1) = 1| −

)
p−︸ ︷︷ ︸

=ε1

·P
(
h∪2 (x2) = 1| −

)
p−︸ ︷︷ ︸

=ε2
≤ ε

A dual result (using C−b and h∩b , which denotes the smallest consistent hypoth-

esis) yields a bound of m = Õ
(√

s−1 s
−
2 /(ε · p+)

)
for a correspondingly defined

rule R−, which only errs on positive points.
Now we can give a version of the upper bound from Theorem 58, which is

(almost) tight for classes that do not satisfy S+ or S−:
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Theorem 63. The term “s+
1 s

+
2 ” in the upper bound from Theorem 58 can be

replaced by 1 if (at least) one of the classes does not satisfy S+.
The term “s−1 s

−
2 ” in the upper bound from Theorem 58 can be replaced by 1 if

(at least) one of the classes does not satisfy S−.

Proof. We only show the result for the case “C1 does not satisfy S−” (and
both classes still satisfy S+), but all other cases can be treated completely
analogously. We now have to show that a sample size of

Õ
(√

s+
1 s

+
2 /ε

)
(5.13)

suffices for learning.
Recall from the proof of Lemma 60 that in the given setting just one example

with a positive label is sufficient to learn the target exactly. A direct computa-
tion shows that a positive example will occur in a sample of size (5.13) with a
high probability in the case p+ ≥

√
ε/(s+

1 s
+
2 ). Thus we assume in the following

that p+ <
√
ε/(s+

1 s
+
2 ) holds.

If the learner’s sample only contains positive examples, she proceeds using
rule R+. Since 1/p− = 1/(1− p+) = O(1) for small ε, the sample size (5.13) is
large enough for an application of Lemma 62, which concludes the proof.

5.4.4 Sample Size in Case of One-sided Errors
In the upper bounds presented in this section, any term of the form dbθb can
be safely replaced by s(Cb) provided that Hb = C+

b ∪ C−b .

Theorem 64. For b = 1, 2, let Cb,Hb be classes such that Hb contains hypotheses
with plus-sided errors (or with minus-sided errors, resp.) w.r.t. Cb. Then sample
size 

Õ
(√

d1d2
ε
· 1
pmin

)
if pmin ≥ 1

θ1θ2

Õ
(√

d1d2
ε
· θ1θ2

)
otherwise

is asymptotically sufficient for learning C1, C2 with hypotheses from H1,H2 in the
PAC Co-training Model under the Conditional Independence Assumption.

Proof. If ε > 4/(θ1θ2) and p̂min ≤ ε/2, the learner will output the less likely
label (and this is analyzed as in the proof of Theorem 54). Assume now
that ε ≤ 4/(θ1θ2) or p̂min > ε/2. For reasons of symmetry, we may assume
that, for b = 1, 2, Hb contains hypotheses with plus-sided errors w.r.t. Cb.
Let h1, h2 be two hypotheses that err on positive examples only. Thus, if
h(x1) = 1 or h(x2) = 1, the learner may safely vote for label “+”. Assume that
h(x1) = h(x2) = 0. If p̂min ≥ 1/(θ1θ2) (Case 1), the learner votes for label “−”.
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Otherwise (Case 2), the learner applies rule R3. According to Theorem 53,
R3 leads to the sample size bound Õ

(√
d1d2
ε
· θ1θ2

)
.6 So we may focus on

Case 1. The sample size Õ
(√

d1d2
ε
· 1
pmin

)
is sufficient to bound (with high

probability) the error rate of h1, h2, respectively, as follows:

ε1 =
√
d1

d2
· pmin · ε and ε2 =

√
d2

d1
· pmin · ε

Thus, the error rate for guessing label “−” in Case 1 is bounded as follows:

P (h1(x1) = h(x2) = 0|+)p+

≤ 1
p+
· P (h1(x1) = 0|+)p+︸ ︷︷ ︸

≤ε1

·P (h(x2) = 0|+)p+︸ ︷︷ ︸
≤ε2

≤ 1
pmin

· ε1ε2

= ε

Note that the upper bound from Theorem 64 applies to the special case
where, for b = 1, 2, Hb = Cb and Cb is intersection-closed (or union-closed,
resp.). In this case, the upper bound nicely matches with the third and fourth
lower bound from Theorem 57.

Theorem 65. For b = 1, 2, let Cb,Hb be classes such that H1 contains hypotheses
with plus-sided errors w.r.t. C1, and H2 contains hypotheses with minus-sided
errors w.r.t. C2. Then sample size

Õ
(√

d1d2
ε
· θmin
pmin

)
if pmin ≥ θmin

θmax

Õ
(√

d1d2
ε
· θmax

)
otherwise

is asymptotically sufficient for learning C1, C2 with hypotheses from H1,H2 in the
PAC Co-training Model under the Conditional Independence Assumption.

Proof. As in the proof of Theorem 64, we may focus on the case where ε ≤
4/(θ1θ2) or p̂min > ε/2. Let h1, h2 be two hypotheses such that h1 errs on positive
examples only, and h2 errs on negative examples only. The learner has an error-
free decision unless x1 ∈ DIS1 and x2 ∈ DIS2. Note that x1 ∈ DIS1 implies
that h1(x1) = 0, and x2 ∈ DIS2 implies that h2(x2) = 1. In case of conflict,
the learner applies rule R1 if p̂min ≥ θmin/θmax (Case 1), and rule R2 (voting for

6Recall from the proof of Theorem 54 that knowing the empirical estimate p̂min instead of
the true value pmin does not cause much trouble.
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the empirically less likely label) otherwise. According to Theorem 53, R1 leads
to the sample size bound Õ

(√
d1d2
ε
· θmin
pmin

)
. So we may focus on Case 2. As in

the proof of Theorem 53, we may assume that, if pmin < 1/4, then p̂min < 1/2.
For reasons of symmetry, we may assume furthermore that p̂− ≥ 1/2 (so that
R2, in case of conflict, makes the learner vote for label “+”). Our assumptions
imply that p− ≥ 1/4. Note that the sample size Õ

(√
d1d2
ε
· θmax

)
is sufficient to

bound (with high probability) the error rates of h1, h2, respectively, as follows:

ε1 =
√
d1

d2
· 1
θmax

· ε and ε2 =
√
d2

d1
· 1
θmax

· ε

Thus, the error rate induced by R2 in Case 2 is bounded as follows:

P (x1 ∈ DIS1 ∧ h2(x2) = 1|−)p−

≤ 1
p−︸︷︷︸
≤4

·P (h1(x1) = 0|−)p−︸ ︷︷ ︸
≤θ1ε1

·P (h2(x2) = 1|−)p−︸ ︷︷ ︸
≤ε2

≤ 4 · θmax · ε1ε2

= ε

Note that the upper bound from Theorem 65 applies to the special case
where H1 = C1 is intersection-closed and H2 = C2 is union-closed. In this case,
the upper bound nicely matches with the first and second lower bound from
Theorem 57.

5.4.5 Generalization to k-tuples
In this section we give several bounds on the supervised sample complexity
in a generalization of Co-training where the learner is provided with sample
points consisting of k-tuples (x1, . . . , xk) instead of pairs. Also, we now have k
concept classes C1, . . . Ck over k domains X1, . . . , Xk. The assumptions of the
original framework are adjusted in a straightforward way. Especially we again
assume Conditional Independence given the label.
As we will see below, the bounds on the sample size do not change much

compared to the old model, but note that the dependency on 1/ε is now in the
order of the k-th root. The proofs are also very similar to the ones from the
case k = 2.
We can give a generalization of the upper bound from Theorem 53. To this

end we generalize the three resolution rules in the following way:

R1: If h1(x1) = . . . = hk(xk), then vote for the same label. Otherwise go
with the hypothesis that belongs to the class with the disagreement co-
efficient θmax.
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R2: If h1(x1) = . . . = hk(xk), then vote for the same label. Otherwise vote for
the label that occurred less often in the sample.

R3: If p̂− ≥ 1/2, then vote for label “+”. Otherwise, vote for label “−” (this is
the same rule as in the case k = 2).

Corollary 66. The number of labeled examples sufficient for learning (C1, . . . , Ck)
in the PAC Co-training Model with k-tuples under the Conditional Independence
Assumption by learners applying one of the rules R1, R2, R3 is given asymptotically
as follows:

Õ

((
d1···dk
ε
· 1
pk−1
min

· θ1···θk
θmax

)1/k
)

if rule R1 is applied

Õ

((
d1···dk
ε
·max

{
1

pk−1
min

, θ1···θk
θmin

})1/k
)

if rule R2 is applied

Õ
((

d1···dk
ε
· θ1 · · · θk

)1/k
)

if rule R3 is applied

Proof. We follow the proof of Theorem 53 and only point out the necessary
changes. We have to adjust the error rates εb properly and recalculate the
overall error for each rule.
For R1, note that the sample size is sufficient to bound the error rates of the

hypotheses hb (with a high probability) by

εb =
(

dkb
d1 · · · dk

· pk−1
min ·

θmax
θ1 · · · θk

· ε
)1/k

.

We can now bound the error of R1 as follows (remember that we assume
θ1 = θmax):

P
(
h1(x1) = 0 ∧ x2 ∈ DIS2 ∧ . . . ∧ xk ∈ DISk

∣∣∣+)p+

+ P
(
h1(x1) = 1 ∧ x2 ∈ DIS2 ∧ . . . ∧ xk ∈ DISk

∣∣∣−)p−

≤ 1
pk−1
min

· ε1 · θ2ε2 · · · θkεk

≤ 1
pk−1
min

· θ1 · · · θk
θmax

· ε1 · · · εk

= ε

Since, obviously, (k · 4k−1)1/k = O(1), we can bound the error rate of hb for
rule R2 by

εb =
(

dkb
2d1 · · · dk

·min
{
pk−1
min,

θmin

k · 4k−1 · θ1 · · · θk

}
· ε
)1/k

.
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This yields the following upper bound for the error of R2:

P
(
h1(x1) = . . . = hk(xk) = 0|+

)
p+

+
k∑
i=1

P
(
hi(xi) = 1 ∧ xj ∈ DISj ∀j 6= i

∣∣∣−)p−

≤ 1
pk−1

+
· ε1 · · · εk + 1

pk−1
−︸ ︷︷ ︸
≤4k−1

·ε1 · · · εk ·
k∑
j=1

θ1 · · · θk
θj︸ ︷︷ ︸

≤k· θ1···θk
θmin

≤ 2 ·max
{ 1
pk−1
min

, k · 4k−1 · θ1 · · · θk
θmin

}
· ε1 · · · εk

≤ ε

For R3, we can bound the error rate of hb by

εb =
(

dkb
d1 · · · dk

· ε

4k−1 · θ1 · · · θk

)1/k

.

Thus the error rate of R3 is given by:

P
(
x1 ∈ DIS1 ∧ . . . xk ∈ DISk

∣∣∣−)p−

≤ 1
pk−1
−
· θ1ε1 · · · θkεk

≤ 4k−1 · θ1 · · · θk · ε1 · · · εk
= ε

One can also generalize lower bounds in this model, as we will show here for
the bound from Lemma 55:

Corollary 67. Let nb ≥ 1, and let Cb = SFnb+2 so that θb = nb+2 for b = 1, . . . , k.
Then, for every pmin ≤ 1/(θ1 · · · θk)1/(k−1) and every sufficiently small ε > 0, the
number of examples needed to learn C1, . . . , Ck in the PAC Co-training Model with
k-tuples under the Conditional Independence Assumption is at least

Ω
(1
k
·
(
n1 · · ·nk/ε

)1/k
)

.

Proof. We proceed as in the proof of Lemma 55 and point out the neces-
sary changes. Again, we assume that pmin = p+ holds. Let Cb be a concept
class over domain Xb = {ab0, . . . , abnb+1} for b = 1, . . . , k. From p+ = pmin ≤
1/(θ1 · · · θk)1/(k−1) follows that (n1 · · ·nk)1/k · p

k−1
k

+ ≤ 1. We change the malign
scenario from Lemma 55 in the following way:
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• Index sb is chosen uniformly at random fromXb\{0, 1} and let P (absb|+) =
(ε/p+)1/k.

• Let P (ab0|+) = 1− (ε/p+)1/k.

• Let P (ab1|−) = 1− 4 ·
(

nkb
n1···nk

· ε
)1/k

.

• The instances from Xb \ {ab0, ab1, absb} evenly share a minus-conditional

probability mass of 4 ·
(

nkb
n1···nk

· ε
)1/k

.

Let us assume now that the sample size satisfies

m ≤ (n1 · · ·nk)1/k

20 · k ·
(1
ε

)1/k
.

Reusing the notation Zb (the number of “interesting” negative examples in the
sample) from the proof of Lemma 55, we calculate:

• For the expectation of Zb holds:

E[Zb] ≤ p− · 4 ·
(

nkb
n1 · · ·nk

· ε
)1/k

· (n1 · · ·nk)1/k

20 · k ·
(1
ε

)1/k
≤ nb

5 · k

Thus with a probability of at least 1− 2/5 at least half of the interesting
negative points in each Xb remain hidden from the learner simultane-
ously.

• The expected number of occurrences of absb in the sample is bounded by

p+ ·
(
ε

p+

)1/k
· (n1 · · ·nk)1/k

20 · k ·
(1
ε

)1/k

≤ 1
20 · k · (n1 · · ·nk)1/k · p

k−1
k

+︸ ︷︷ ︸
≤1

≤ 1
20 · k .

Thus with a probability of at least 1− 1/20 the learner never sees any absb
in the sample.

Therefore, with a probability of at least 1 − 2/5 − 1/20 > 1/2, the learner
can only guess the label on instances that were not included in the sample.
Analogously as in the proof of Lemma 55 we bound the Bayes-error, which is
given by min{P (U ∩ E+), P (U ∩ E−)}:

P (U ∩ E+) ≥ p+ ·
k∏
b=1

P (absb|+) = p+ ·

( ε

p+

)1/k
k = ε
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P (U ∩ E−) ≥ (1− p+)︸ ︷︷ ︸
≥1/2

·
k∏
b=1

1
2 · 4 ·

(
nkb

n1 · · ·nk
· ε
)1/k

≥ 2k−1 · ε ≥ ε

Thus, the Bayes-error is at least ε.

Furthermore, it is possible to apply the padding argument and generalize
Corollary 56 to the k-tuple model in the same fashion. Note that the resulting
lower bound for rule R3 is tight up to a previously unnoticeable factor of 1/k
(and the usual logarithmic factors).

5.4.6 Co-training with α-expansion
Because the Conditional Independence assumption is very strict and rarely
fulfilled in practical problems, there is some effort to replace Conditional Inde-
pendence with relaxed assumptions that still allow semi-supervised Co-training
to save a significant amount of labels.
To this end, a model called “Co-training with α-expansion” was introduced

by Balcan, Blum and Yang in [BBY04]. The learner in this framework learns
from positive examples alone, and is required to use a hypothesis with plus-
sided error (i.e., one that always returns label “−” if there is any doubt about
the true label). One motivation from [BBY04] for this restriction stems from
the fact that the assumption we have to make on P is now only necessary to
be satisfied on the positively labeled part of the domain, which is said to be a
more realistic assumption in practice.
In this model, just as before, two concept classes C1 and C2 over domains X1

resp. X2 are given, and the domain distribution P , from which the random
examples (x1, x2) ∈ X1×X2 are drawn, is perfectly compatible with the target
concepts c∗1 ∈ C1 and c∗2 ∈ C2, meaning that c∗1(x1) = c∗2(x2) with probability 1.
Let P+ denote the distribution conditioned on positive labels and let X+

1 and
X+

2 denote the support of the marginal distributions of P+ over X1 resp. X2.
We say that P+ is α-expanding with respect to hypothesis classes H1, H2 if for all
h1 ∈ H1 and h2 ∈ H2:

P
(
h1(x1) 6= h2(x2)

∣∣∣+ )
≥ α ·min

{
P
(
h1(x1) = h2(x2) = 1

∣∣∣+ )
,

P
(
h1(x1) = h2(x2) = 0

∣∣∣+ )}
where condition “+” refers to the event c∗(x1) = c∗(x2) = 1.
The authors of [BBY04] show that the α-expansion assumption is weaker

than Conditional Independence and in [BB10] it is mentioned, that, if both P+

and P− are α-expanding (with α > 0), a semi-supervised learner only needs
to see just one (positively or negatively) labeled example to learn successfully,
just like under the Conditional Independence Assumption.
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One can ask whether this weaker assumption is also always helpful for a
fully supervised learner. Below we answer this in the negative by showing
an example where, in comparison with general PAC-learning, fully supervised
Co-training requires significantly less examples under the Conditional Inde-
pendence Assumption, but not under the α-expansion assumption.
We use the setting of Example 1 from [BBY04]. The two concept classes,

which are also the hypothesis classes, are axis-aligned rectangles inRd, the two
target concepts are chosen to be always identical c∗1 = c∗2 = c∗ and non-empty.
Note that this also implies X+

1 = X+
2 . Let p+ = p− = 1/2. Distribution P+ over

X+
1 × X+

2 is defined as follows.7 First x1 is drawn uniformly at random from
X+

1 , i is drawn uniformly at random from {1, . . . , d} and then x2 is identified
with x1 except for its i-th component which is chosen uniformly at random so
that x2 still lies in X+

2 . This distribution is Ω(1/d)-expanding [BBY04].

Theorem 68. For d ≥ 2 and ε ≤ 1/2 the following holds in the 1/d-expanding
rectangle learning setting described above: any fully supervised PAC-learner needs
at least

m = Ω
(
d

ε

)
many labeled examples.

Proof. We will reduce learning the pair (c∗1, c∗2) to learning the rectangle c∗ in
the normal, non co-training setting.
To guarantee that the combined hypothesis has a plus-sided error, the learner

has to choose h1 and h2 as the smallest rectangles consistent with the sample so
that it outputs “−” whenever both of x1 and x2 lie in the disagreement region.
However, from the symmetry c∗1 = c∗2 follows that all information in the sample
about c∗1 can also be applied to learn c∗2 and vice versa. Thus the learner can
always output a hypothesis of the form (h, h) without risking a higher error
rate.
Because p+ = 1/2 and the learner is required to use hypothesis with plus-

sided error, it suffices to bound the error under distribution P+. Let h be any
rectangle contained in c∗. We denote the error of (h, h) with respect to the
distribution P+ by P+(h 6= c∗). To model the standard learning setting, let U
be the uniform distribution over c∗ and denote the error of h with respect to U
by U(h 6= c∗). We claim that

P+(h 6= c∗) ≥ d− 1
d
· U(h 6= c∗) . (5.14)

The reason is as follows. Let x1 be a misclassified point in the normal PAC-
learning setting. Then there can be at most one axis along which x1 can be
7The distribution on the negative points is not important.
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moved inside the rectangle h. But then (x1, x2) can only be classified correctly,
if x1 and x2 differ exactly on the corresponding component. The probability
of the latter event is 1/d so that the error probability U(h 6= c∗) is reduced by
factor (d− 1)/d only.
Observe that one positive training example (x1, x2) in the co-training model

does not contain more information about the target rectangle than two exam-
ples in standard learning where all components of x2 ∈ X+

2 (not just the i-th
component for a randomly chosen i) are chosen uniformly at random.
Because of (5.14), it suffices to show that the best learner in the standard

setting needs Ω(d/ε) many examples to reach an error smaller than εwith high
probability.
Let us choose a target rectangle c∗ with sides of length 1 (i.e., a cube of

volume 1). Assume furthermore thatm ≤ d/(8ε) and let x1, ..., xm be a sample
drawn independently from U .
According to the union bound, the probability that the i-th component of at

least one of the m examples lies outside of an interval of length 1 − 4ε/d is at
most

4ε
d
·m ≤ 1

2 .

Thus the probability of the complementary event, that the i-th component of
all sample points lies on said interval, is at least 1/2.
Additionally, the probability that this holds for at least half of the d compo-

nents is at least 1/2. But then, with probability at least 1/2, the error of the
smallest consistent rectangle h is at least

1− (1− 4ε/d)d/2 ≥ 1− e−2ε ≥ ε ,

where the last inequality holds thanks to ε ≤ 1/2. This completes the proof.

Note that the authors of [BDLP08] show a lower bound of Ω(1/ε) on the sam-
ple size of any learner (even semi-supervised learners) which learns thresholds,
and thereby also intervals, under any continuous distribution. Although it looks
like one could apply their result in the last part of the proof of Theorem 68,
this is not possible since we fixed p+.
Also observe that the bound from Theorem 68 is of the same order of magni-

tude as in the case of standard PAC-learning. So the learner doesn’t gain any
advantage from Co-training with α-expansion in this example. In contrast,
we may conclude from Theorem 64 that Õ

(
d/
√
ε
)
labeled examples are suffi-

cient for learning d-dimensional axis-aligned rectangles in the PAC Co-training
Model under the Conditional Independence Assumption.
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Figure 5.8: Estimated sample complexity under the worst-case distribution for
(C1, C2) = (SF10, SF5).

5.5 Experimental Results
In this section, we study the lower bound on the sample complexity proven
in Lemma 55 by conducting experiments on artificial data. We investigate the
behavior of the following learning strategies:

view 1 Take a random consistent hypothesis (using a uniform distribution
over the version space), ignoring all data from the second view.

view 2 Identical to the first strategy, but ignores the first view instead of the
second.

rule R1, R2, R3 Proceed according to resolution rule R1, R2 or R3 from
Section 5.4.1. The hypotheses h1, h2 are again chosen uniformly at random
from the version space.

maj. vote If (x1, x2) ∈ DIS1 × DIS2, vote for the label that holds the ma-
jority in the sample, i.e., make the exact opposite decision compared to
resolution rule R3.

combined rule Proceed like the Combined Rule from Section 5.4.1.

In the experiment whose results are shown in Figure 5.8 we estimated the
sample complexity under the worst-case distribution, as given in the proof of
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Figure 5.9: Estimated mean error rate under the worst-case distribution with
the parameter ε = 0.01 for (C1, C2) = (SF10, SF5).
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Figure 5.10: Estimatedmedian error rate under theworst-case distributionwith
the parameter ε = 0.01 for (C1, C2) = (SF10, SF5). The trimmed
values below of 10−4 correspond to a median error rate of zero.
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Lemma 55, for p+ = pmin = 1/(θ1θ2) and different values of ε on the classes
C1 = SF10 and C2 = SF5.8 For each learner and each value of ε, we increased
the sample size (starting at m = 1) until at least one half of 500 independent
runs of the learner, each time with a newly drawn target concept and sample,
achieved an error rate smaller than ε. Figure 5.8 can verify several facts that
we already derived from theory:

• The majority vote performs much worse than rule R3, which counter-
intuitively decides against the majority when in doubt. In fact, the
experiment supports the conjecture that the majority vote is by far the
worst of all learning strategies considered in this chapter when exposed
to the worst-case distribution.

• Learning becomes harder with smaller values of ε. Even though all
estimated sample complexities aremuch higher than the theoretical lower
boundm0 = 1/40 ·

√
n1n2/ε (with n1 = 8 and n2 = 3 in our experiments)

from the proof of Lemma 55, the curves are indeed proportional to
√

1/ε.

We also observe that “view 2” performs better than “view 1”, although the worst-
case distribution balances the probabilities to uncover “interesting points” for
both SF10 and SF5 (see the proof of Lemma 55). A possible explanation is
that the version space of SF5 is typically smaller than the one of SF10 (simply
because SF5 contains fewer concepts while the fraction of consistent concepts
declines similarly for both classes under the worst-case distribution) and the
chance of guessing the target concept correctly is therefore higher for “view 2”.
It can be surprising that the PAC-learners who ignore one view—and thereby

forfeit the main advantage of the Co-training setting—perform quite well com-
pared with the three resolution rules. We can see the advantage of Co-training
by studying how the mean error rates fall with the increasing sample size in
Figure 5.9. For this experiment, we used the worst-case distribution with the
parameter ε set to 10−2 = 0.01, which corresponds to the setting in Figure 5.8
on the very right, and estimated the mean error rate by 500 independent
runs. As Figure 5.9 shows, the mean error rates of the resolution rules, espe-
cially R3 and the combined rule, fall much faster than the error rates of the
one-view-PAC-learners.
The reader may be wondering how to reconcile Figures 5.8 and 5.9. For

example, the former figure shows that “majority vote” requires about 40 labeled
examples to achieve an error rate lower than 0.01 with a probability of at least
one half, while the latter one demonstrates that “majority vote” has a mean
error rate smaller than 0.01 for any sample size. The reason for the mismatch is

8We also run the experiment on (SFk1 ,SFk2) for different values of k1 and k2. The results
are roughly equivalent, although the scale of the axes changes.
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Figure 5.11: Estimated mean error rate in the “uniform” setting for (C1, C2) =
(SF10, SF5). The trimmed values below of 10−5 correspond to a
mean error rate of zero.

the fact, that the distributions of the error rates are heavily skewed to different
sides. We can verify this by plotting themedian error rates (again estimated by
500 independent runs of the experiment), which are shown in Figure 5.10 and
match nicely with the results on the very right of Figure 5.8, e.g., the median
error rate of “majority vote” drops below 0.01 for the first time at a sample size
of 38.

Furthermore, we can run experiments for other settings than the worst case.
For example, Figure 5.11 depicts the mean error rates (estimated by 1000
independent runs) of the seven different learning strategies over the sample
size in the following “uniform” setting: the target concept (c∗1, c∗2) is drawn
uniformly at random from (SF10, SF5), p+ is drawn uniformly at random from
[0, 1] and P (·|+) and P (·|−) are uniform distributions. Since the parameter ε
does not exist in this setting, we determined the input parameter ε for the
Combined Rule empirically9.
As expected, the error rates decrease faster than in the worst case (compare

Figure 5.9). Note that the comparative behavior of the learning strategies is

9To this end we proceeded as follows. We split the sample into two equally sized parts: the
first half for learning with different choices of ε, the second half as a test set to determine
the empirically optimal ε. The resulting value was then used for learning on the whole
sample.
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similar, e.g., rule R3 and the Combined Rule again exhibit the fastest decreasing
mean error rates.

5.6 Conclusions and Open Questions
We close this chapter with some final remarks and open questions.

The case of subclasses with infinitely many singletons The lower bound
given in Theorem 59 is only valid for finite s+

b , s
−
b because the constraint on

ε is essentially 1/ε ≥ max{s+
1 s

+
2 , s

−
1 s
−
2 }. But even when these parameters are

infinite, one easily obtains (from a close inspection of the proof of Theorem 59)
a lower bound of Ω(1/ε). For special classes, we obtain even larger lower
bounds. E.g., let S∞ denote a class consisting of infinitely many singletons.
Then, for the classes C1 = S[d1]

∞ and C2 = S[d2]
∞ , a sample of size Θ̃(min{d1, d2}/ε)

is necessary and sufficient for learning under the Co-training assumption. On
the other hand, we get a significantly smaller sample complexity of Θ̃(1/ε +
d/
√
ε) for the classes C1 = C2 = S∞ ∪ {0, 1}[d]. This shows that we cannot

expect to get tight bounds in terms of d and ε alone. To determine how much
the Co-training assumption can help for classes with infinite values of s+

b , s
−
b is

an open question.

Tight bounds for Co-training with k-tuples We saw in Section 5.4.5 that
the generalized upper and lower bounds on the sample complexity leave a gap
of 1/k. It would be interesting to find bounds that are tight (up to logarithmic
factors).
Since the learner in the k-tuple setting chooses k hypotheses hb instead of

just two, it is possible to design many new resolution rules (preferably with the
constraint that our old three rules are chosen for the special case k = 2). We
conjecture that the number of resolution rules necessary to prove tight bounds
grows with k.

Agnostic learning Like in the previous chapters, the results presented in this
chapter are only valid for the realizable case of PAC-learning. It is an open
question if and how our results can be applied to more relaxed settings, like
agnostic learning or learning with noise.
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Chapter 6

An Example of Practical
Application: Harnessing Unlabeled
Data for an Attack on Audio
CAPTCHAs
This chapter is based on the paper “Reducing the Cost of Breaking Audio
CAPTCHAs by Active and Semi-supervised Learning” [DMK14]1, which is a
joint work of the author with Hendrik Meutzner and Dorothea Kolossa. All
results in this chapter were originally published in this paper2.

6.1 Introduction
This chapter stands out from the rest of the thesis, in the sense that it is
not concerned with proving theorems but solving a practical problem, namely
performing an attack on a real-world internet security scheme. Nevertheless,
we stay true to our main topic, which is the investigation of the power of
unlabeled data, in particular the power of semi-supervised learning (we will
also apply active learning in this chapter, but themain improvements, as wewill
see, originate from semi-supervised learning). We will show in this chapter,
that unlabeled data can help considerably in real-world problems, while we
have no good theory at hand that can explain or even predict these findings. It
is likely that the good performance of semi-supervised learning on our problem

1This paper was supported in part by the DFG Research Training Group UbiCrypt (GRK
1817/1).

2A note from the author about the contributions of co-authors in this part of the thesis: most
of the research was conducted jointly by Hendrik Meutzner and me. While Mr. Meutzner
and Prof. Dr. Kolossa contributed the data sets and the ASR backend, I suggested the semi-
supervised and active learning algorithms. BothMr. Meutzner and I surveyed the literature,
implemented the algorithms and run the experiments together. The final evaluation and
interpretation of the experimental data was done primarily by me.
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relied on extra assumptions, i.e., a connection between the data distribution
P and the target concept (note that we consider “models” instead of “target
concepts” in this chapter). Sadly we are not aware of any formulation of this
assumption.
Let us now consider the problem we want to solve:
CAPTCHAs3 are widely used in the Internet for distinguishing human users

from automated programs to limit the abuse in online services, e.g., automated
account creation for sending spam mail. Therefore, CAPTCHAs should be easy
to solve by humans, but difficult to break by machines. Audio CAPTCHAs are
required for allowing access to visually impaired users and to enable the use
of non-graphical devices.
For evaluating the security strength of a CAPTCHA scheme, one can build a

system that attempts to solve the CAPTCHAs in an automated manner. Recent
investigations [TSHvA08, BBP+11, SOO13] show that most audio CAPTCHAs
are insecure as they can be broken by machine learning techniques. In this
work, we utilize and improve an attack based on automatic speech recognition
(ASR) pioneered by Sano, Otsuka and Okuno [SOO13].
Training speech recognition systems, as any machine learning technique,

requires labeled data examples; thus to break audio CAPTCHAs by means of
ASR, the orthographic transcription of the audio signals must be available.
Whereas collecting unlabeled data (i.e., downloading audio CAPTCHAs from
a website) is nearly for free, labeling the data is very expensive and time
consuming as it requires human interaction.
Therefore we investigate the usefulness of unlabeled data, by means of ac-

tive and semi-supervised learning, to reduce the amount of necessary labels.
Our experiments are conducted on two different data sets, a development
and an evaluation set. The development set is given by the Aurora-5 speech
corpus [PH00] that contains thousands of noisy digit sequences. The digit
sequences constitute real speech recordings spoken by various speakers. The
evaluation set is given by the current version of reCAPTCHA [Goo14] that
consists of highly distorted digit sequences where the speech appears to be
synthetic.

6.1.1 Related Work
The two-stage approach from breaking visual CAPTCHAs

While there is much prior work on breaking visual CAPTCHAs (e.g., see [CS04,
CLSC05, HGH08, YEA07]), less focus has been given to audio CAPTCHAs.
Chellapilla, et al. establish in [CLSC05] that most attacks on character-based
visual CAPTCHAs employ a two-stage approach: the image is first segmented

3Completely Automated Public Turing tests to tell Computers and Humans Apart

100



6.1 Introduction

into the parts where characters are located and then the individual characters
are recognized using standard pattern recognition techniques. Chellapilla et
al. consider the segmentation phase to be the hard part of the problem. A
two-stage approach is also applied successfully to break audio CAPTCHAs by
Tam et al. [TSHvA08] and Bursztein et al. [BBP+11].

Automatic speech recognition (ASR)

The viability of ASR to break audio CAPTCHAs was recently demonstrated by
Sano, Otsuka and Okuno in [SOO13]. Since ASR can cope with continuous
speech, the aforementioned segmentation problem is avoided. For an intro-
duction to ASR we refer the interested reader to Rabiner and Juang [RJ93].

Semi-supervisead learning for ASR

Our semi-supervised learning algorithm is an instance of the hard expectation-
maximization (EM) algorithm [DLR77, KMN97], which was previously applied
for ASR by Zavaliagkos and Colthurst in [ZC98], for the similar problem of se-
quence classification using Hidden Markov Models by Zhong in [Zho05] and in
the related field of computational linguistics by Spitkovsky et al. in [SAJM10].
Some remarks about the hard EM algorithm are in order: the well-known

expectation-maximization (EM) algorithm, introduced by Dempster, Laird and
Rubin in [DLR77], iteratively finds a (local) maximum likelihood estimation
for models depending on hidden variables, like the unknown labels of unla-
beled CAPTCHAs in our case. In each iteration the algorithm maximizes the
expected value of the likelihood function with respect to the distribution over
the hidden variables conditioned on the model from the last iteration. The hard
EM algorithm, a term coined by Kearns, Mansour and Ng in [KMN97], is a sim-
plification of standard EM, where the distribution is replaced by the mode, i.e.,
the most likely value, of the hidden variables. Hard EM is sometimes called
Viterbi EM (e.g., see [SAJM10]); in this chapter we will always refer to the
Viterbi algorithm for approximating the most likely path in a Hidden Markov
Model [Vit67], which is also an instance of the hard EM algorithm and heavily
used in ASR, when we write the name “Viterbi”.

Combining active and semi-supervised learning for ASR

The active learning algorithm that we employ as well as a method of combin-
ing active and semi-supervised learning in parallel were originally proposed in
the context of ASR by Riccardi and Hakkani-Tür [RHT03]. Similar combina-
tions of active and semi-supervised learning for speech recognition were also
investigated by Yu et al. [YVDA10].
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Our serial combination of active and semi-supervised learning is—to our
knowledge—new in the field of ASR.

6.1.2 Main Results
We demonstrate that the labeling costs can be reduced considerably by both
semi-supervised and active learning while achieving high success rates for
breaking audio CAPTCHAs. We will see that especially semi-supervised learn-
ing provides a huge saving of labeled data.
The investigation of combinations of semi-supervised and active learning will

show that the parallel method from the ASR literature [RHT03] performs much
worse than a considerably simpler (conceptually and computationally) serial
approach, which—to our knowledge—was not considered before in the field
of ASR. We will show how the parallel method can still yield good results
by introducing weights, although adjusting these weights seems to be too
expensive (when the cost is measures in labeled data) for practical attacks.
We show that results on the development set predominantly translate to the

evaluation set, while analyzing differences in performance between the two
data sets can give insights into the design of CAPTCHAs that are harder to
break by active learning.
Although we put our focus on the comparison of different methods, and not

on achieving the smallest possible error rate on labeling unseen CAPTCHAs,
the we in fact attain a smaller error rate (of 39%) than the best error rate
(of 83%, see [SOO13]) in the published literature (with training performed on
a similar amount of data).

6.1.3 Organization of This Chapter
First, we will define some vocabulary in Section 6.2, which is used in the
remainder of the chapter. In Section 6.3, we introduce our four learning
algorithms: semi-supervised, active, and two combined learners. The setup
and results of our experiments are given in Section 6.4. In Section 6.5 with
some suggestions for the design of audio CAPTCHAs, that are stronger against
active learning attacks. The chapter is finished with conclusions and open
questions in Section 6.6.

6.2 Preliminaries
An observation is a representation of an audio signal (by an appropriate se-
quence of feature vectors), that consists of a variable number of spoken words,
which are possibly separated by silence or background noise. The vocabulary is
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limited to digits between zero and nine and the speech may be either natural or
synthetic. The observations may contain additional distortions, e.g., additive
noise or reverberation effects. The label of an observation is the transcription
(including silence and noise) of the audio signal. Note that, unlike in the
previous chapters, labels are no longer binary, instead they are strings over the
alphabet Σ = {0, . . . , 9,noise} (where “noise” also denotes silence).
A model represents a data structure that enables the estimation of labels—

together with a measure of confidence for each estimated label—for a given
set of observations. We regard an estimated label to be correct if its digit
sequence is identical to the ground-truth label of the observation disregarding
any occurrence of silence or noise.4 Models used in ASR are often generative,
i.e., they describe a distribution over observation-label pairs. The probability
of a (fixed) model generating an observation-label pair is called the likelihood
of that pair.
In this chapter, a learner is an algorithm that takes a sample of labeled ob-

servations as its input and outputs a model. The sample is drawn according to
some unknown distribution (which is not necessarily generated by a model).
We measure the error rate of a learner’s model according to the same distribu-
tion.
When comparing two learners L and L′, we call L better than L′ if L achieves

a lower average error rate for any fixed number of labeled words in the sample.
Another possible criterion is based the number of labeled observations instead
of words, which is unsuited for our purpose as observations can vary in length
and, clearly, the effort of labeling an observation is proportional to its word
count.
We assume that we have access to an ASR system that can learn models

using labeled observations and that can estimate labels together with a mea-
sure of confidence for unlabeled observations. Please note that our learning
algorithms, which are defined in the next section, are oblivious to the imple-
mentation of this underlying ASR backend (for a description of the backend
used in our experiments see Sections 6.3.4 and 6.3.5).

6.3 Algorithms

6.3.1 Semi-supervised Learning
In semi-supervised learning the learner has access to two samples: a labeled
sample (which we denote by SL) and an unlabeled one (denoted by SU). Both

4For breaking reCAPTCHA this measure could be even more generous, as the reCAPTCHA
system accepts answers having a Levenshtein distance of one between the user input and
the true label of the CAPTCHA.
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samples are drawn according to the same distribution over the observations,
thus we can regard the sample SU as providing additional information about the
distribution to the learner. A detailed introduction to semi-supervised learning
is given in [CSZ06].
We propose the semi-supervised learning algorithm from Listing 6.1, which—

as mentioned before—has already been applied in similar settings [ZC98,
Zho05, SAJM10]. In this, as in all following iterative learning algorithms,

Algorithm 6.1 Semi-supervised learner

1. Train initial modelM on a (small) randomly drawn labeled sample SL.

2. Draw an unlabeled sample SU .

3. Repeat the following steps:

a) Estimate the labels of SU using the current modelM .

b) Retrain modelM on the labeled set SL ∪ SU .

the number of iterations can be either determined by convergence or chosen
in advance by the user.
In [ZC98] Zavaliagkos and Colthurst removed the estimated labels with the

least confidence scores from SU before retraining the model; we will use a
similar idea for the learning algorithms in section 6.3.3, but instead of merely
removing the estimations we will apply active learning to obtain the true labels.

6.3.2 Active Learning
An active learner, introduced by Cohn el al. in [CAL94], also has access to an
unlabeled sample, but here the learner is allowed to actively request true labels
for selected observations.
The active learner from Listing 6.2 requests labels for those observations

which the learner’s model is least confident about.
The difference between our method and the active learner from Riccardi

and Hakkani-Tür [RHT03] is that the latter one uses one pool of unlabeled
observations, while we draw a new sample SU in every iteration. Moreover,
we use a different measure of confidence in our experiments than Riccardi and
Hakkani-Tür (see Section 6.3.5).
As noticed in [RHT03], the choice of n is a trade-off between making optimal

selection decisions (n should be small) and computational cost (n should be
large).
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Algorithm 6.2 Active learner

1. Train initial modelM on a (small) randomly drawn labeled sample SL.

2. Repeat the following steps:

a) Draw an unlabeled sample SU and estimate its labels using the
current modelM .

b) Request the true labels of the n observations from SU with the least
confidence and add them to SL.

c) Retrain modelM on the labeled set SL.

6.3.3 Combined Learners
Since active learning algorithms typically do not request labels for all drawn
unlabeled observations, it is a natural idea to use these leftovers for semi-
supervised learning.
We study two methods to combine the active learner from Section 6.3.2 with

the semi-supervised learner from Section 6.3.1.
Our first combined learner is given in Listing 6.3. This algorithm was pro-

posed by Riccardi and Hakkani-Tür in [RHT03]—apart from the parts marked
as ‘optional’—and operates in parallel, i.e., in each iteration of the active learner
we use the spare unlabeled data for semi-supervised learning.

Algorithm 6.3 Combined learner, parallel

1. Train initial modelM on a (small) randomly drawn labeled sample SL.

2. Set SU to the empty set.

3. Repeat the following steps:

a) Draw an unlabeled sample S ′U and estimate its labels using the
current modelM .

b) Request the true labels of the n observations of S ′U with the least
confidence and add them to SL. Add the remaining observations of
S ′U with their estimated labels to SU .

c) Retrain model M on the labeled set SL ∪ SU (optional: give SL a
higher weight than SU)5.

d) Optional: Iterate the semi-supervised learning steps, i.e., estimate
the labels of SU and retrainM on SL ∪ SU several times.
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During our experiments we had to include weighting and additional semi-
supervised steps to achieve satisfactory results. The benefit of additional semi-
supervised learning steps was previously recognized by Yu et al. [YVDA10].
For our second combined method, given in Listing 6.4, we propose to run the

active and semi-supervised learners in a serial fashion.

Algorithm 6.4 Combined learner, serial

1. Train modelM using the active learner from Listing 6.2

2. UseM as the initial model for the semi-supervised learner from Listing 6.1
(where the first step is omitted).

In spite of the simplicity of this “folklore” algorithm, we are not aware of
prior applications in the field of automatic speech recognition.
The serial combined learner is computationally simpler than the parallel

one, especially if the optional additional semi-supervised learning steps are ex-
ecuted. For a discussion of the parallel learner’s practicability see Section 6.4.2.

6.3.4 Speech Recognition Backend

For the underlying ASR backend we employ the Hidden Markov Model Toolkit
(HTK) [YKO+06], which provides a state-of-the-art implementation of the re-
quired training and recognition algorithms used for our approach.
We use the Baum-Welch algorithm [BPSW70] to train models given a labeled

set of observations, and the estimation of labels—given the trained models—
is based on the Viterbi algorithm [Vit67]. Due to space constrains we omit
the details of these algorithms and refer the interested reader to Rabiner and
Juang [RJ93]. HTK’s implementation of the Viterbi algorithm, based on a
token passing model, provides a list of the n most likely labels together their
corresponding word likelihoods, and the overall likelihood of each label can
be simply computed as the product of the individual word likelihoods.

6.3.5 Measures of Confidence

Let s be an unlabeled observation and let (l1,p1), . . . , (ln,pn) be the output of
the Viterbi algorithm using modelM , i.e., li are the labels estimated byM for
s and pi are the associated word likelihood vectors (including likelihoods for
parts consisting of silence or noise). We assume that the labels are ordered by
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their likelihoods.6 We define the normalized likelihood qi of (li,pi) as

qi :=
 |li|∏
k=1

p
1

|wi,k|

i,k

 1
|li|

where pi,k is the likelihood of the k-th word of label li, |wi,k| is its length (in
frames) and |li| is the word count of li.
While we always choose l1 to be the estimated label of s for semi-supervised

learning, we employ these two methods to measure the confidence in l1 for
active learning:

(A) Take the normalized likelihood q1 of (l1,p1).

(B) Let i be the first index such that l1 and li differ in more than just the
positions of silence/noise. Compute the confidence as the ratio q1 / qi.
We call this quantity the likelihood ratio.

We give the following intuition why the normalized likelihood is a better
measure of confidence than the plain likelihood: normalizing by 1/|w1,k| coun-
teracts against choosing observations with predominantly long words. The
normalization by 1/|l1| prevents the learner from selecting observations with
a high word count, which would be a good strategy, in fact, if the effort of
labeling was not directly dependent on the word count.
Using the likelihood ratio instead of the normalized likelihood is helpful in

the following situation: it can happen that the model M is still unsure about
the position of silence/noise in s, while the digits are already very certain; let
us say the digits are in the same order in l1, . . . , lm for some m. Let s′ be a
second observation where M has a low level of certainty about the order of
digits: let (l′1,p1

′), . . . , (l′n,pn′) be the output of the Viterbi algorithm for s′ and
let us say that already l′1 and l

′
2 differ in their digits and q′1 ≈ q′2. It can occur in

this case that q1 is smaller than q′1, so the active learner based on the normalized
likelihood would request the label of s first. But we would like the learner to
request the true label of s′ instead of s, because we are only interested in the
order of digits when breaking CAPTCHAs. Taking the quotient can mitigate
this problem, since typically qm+1 is much smaller than q1, or it may even hold
that m = n, in which case we consider the likelihood quotient to be infinite.
For example, during our experiments the Viterbi algorithm estimated the

following labels for an observation with the true label “noise-7-2-6-9-noise”:

• “noise-7-2-6-9-noise”

• “noise-noise-7-2-6-9-noise”

6i.e., it holds
∏|li|

k=1 pi,k ≥
∏|lj |

k=1 pj,k for i < j.
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• “noise-7-2-6-9-noise-noise”

• “noise-noise-7-2-6-9-noise-noise”

• “noise-7-2-6-noise-9-noise’

• etc.

We computed the sixteen most likely labels and all of them were correct, i.e.
only differing in the position and number of noise segments. However, the
normalized likelihood q1 of this observation was lower than the normalized
likelihood of other, still erroneously labeled observations.

6.4 Experiments
6.4.1 Data Sets
We use two different data sets: Aurora-5 [PH00] and a sample from Google’s
current audio CAPTCHA scheme (reCAPTCHA) [Goo14].
The Aurora-5 data set contains real speech recordings that are mixed with

natural background noise (e.g., airport, car engine or office noise) at different
signal-to-noise ratios (SNRs). The speech recordings were obtained from dif-
ferent speakers (approx. 50 males and 50 females), each pronouncing several
observations that comprise a sequence of digits and the number of digits per
observation is varied between one and seven. The data set is provided with
the respective labels for each observation. Our experiments are based on the
noisy digit recordings distorted by the interior noise at 10 dB SNR.
We find that using Aurora-5 for system development is advantageous as

the recordings are not only similar to digit-based audio CAPTCHAs but they
offer the advantage of having access to a large pool of 9275 correctly labeled
observations with 50554 words.
The reCAPTCHA data set is also constructed from a sequence of digits where

the total number of digits per observation is varied between 6 and 12. The
digits are spoken by both a male and a female voice and the speech appears
synthetic. All signals exhibit the same stationary background noise. The
CAPTCHAs were downloaded from the reCAPTCHA website in March 2014 and
manually labeled at our institute. To obtain the CAPTCHA labels, we conducted
a listening test in a controlled environment involving a group of 12 human
listeners. Each participant was asked to label a set of 50 CAPTCHA signals.
The participants were briefed that the signals consist of a varying number of
digits that are separated in time by distinct speech pauses. Each CAPTCHA
was labeled by four different participants to identify inconsistent labelings.
We only utilize those transcriptions that exhibit an agreement between at
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Figure 6.1: Mean error rates for Aurora-5.

baseline semi-supervised learner
# words mean error rate std. dev. mean error rate std. dev.
0– 99 0.553 0.103 0.480 0.187

100–199 0.365 0.071 0.207 0.094
200–299 0.280 0.051 0.140 0.036
300–399 0.230 0.041 0.123 0.032
400–499 0.214 0.036 0.122 0.026
500–599 0.202 0.035 0.113 0.020

active, normalized likelihood active, likelihood ratio
# words mean error rate std. dev. mean error rate std. dev.
0– 99 0.543 0.109 0.525 0.119

100–199 0.353 0.065 0.327 0.067
200–299 0.255 0.039 0.243 0.035
300–399 0.212 0.030 0.204 0.036
400–499 0.185 0.025 0.175 0.025
500–599 0.169 0.026 0.158 0.019

parallel combined learner serial combined learner
# words mean error rate std. dev. mean error rate std. dev.
0– 99 0.535 0.173 0.428 0.170

100–199 0.244 0.120 0.173 0.049
200–299 0.173 0.042 0.137 0.031
300–399 0.144 0.034 0.123 0.027
400–499 0.122 0.023 0.117 0.027
500–599 0.131 0.030 0.115 0.032

Table 6.1: Experimental results for Aurora-5.
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Figure 6.2: Mean error rates for reCAPTCHA 2014.

baseline semi-supervised learner
# words mean error rate std. dev. mean error rate std. dev.

0–199 0.671 0.104 0.638 0.144
200–399 0.534 0.098 0.482 0.136
400–599 0.480 0.100 0.432 0.136
600–799 0.454 0.103 0.414 0.135

active, normalized likelihood active, likelihood ratio
# words mean error rate std. dev. mean error rate std. dev.

0–199 0.656 0.114 0.676 0.112
200–399 0.504 0.093 0.525 0.098
400–599 0.444 0.094 0.456 0.098
600–799 0.419 0.088 0.412 0.093

parallel combined learner serial combined learner
# words mean error rate std. dev. mean error rate std. dev.

0–199 0.648 0.125 0.634 0.147
200–399 0.460 0.111 0.470 0.116
400–599 0.388 0.105 0.407 0.124
600–799 0.388 0.108 0.391 0.118

Table 6.2: Experimental results for reCAPTCHA.
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least three participants. This procedure resulted in an overall number of 336
labeled CAPTCHAs—corresponding to 4859 labeled words—that we utilize for
our evaluation.
An important difference between the two data sets arises from the speaking

pauses that separate the individual digits from each other. While for the Aurora-
5 observations there are speaking pauses between all digits, the reCAPTCHA
observations consists of blocks of digits that are spoken in an unnaturally fast
succession. We assume that this is done to make the separation problem harder.

6.4.2 Setup and Learning

To examine and compare the performance of our learning algorithms we con-
ducted a series of experiments. Because we put the focus on comparison, we
did not try to thoroughly optimize parameters shared by all learners to achieve
the best possible error rate.
However, we were able to reduce the error rate for solving the current re-

CAPTCHA challenges exactly (i.e., with a Levenshtein distance of zero) by
44%—from 83%, published by Sano, Otsuka and Okuno [SOO13], to 39%—
with a similar amount of training data.7

In this paragraph we specify details of our ASR backend (these details are not
required for understanding the rest of the chapter; again, we refer interested
readers unfamiliar with ASR to Rabiner and Juang [RJ93]). We used 39-
dimensional Mel frequency cepstral coefficients (MFCCs) as features including
their first and second order derivatives, where each feature vector corresponds
to a window length of 25 ms of the audio signal. Each digit is modeled by an
HMM that has 18 states and exhibits a left-to-right topology without state skips.
The silence/noise model had five states and allowed backward transitions and
skips between the first and the last state. The state emission probabilities
were represented by a Gaussian mixture model (GMM) having four mixture
components.
In all experiments, the ratio between the number of randomly drawn ob-

servations (labeled and unlabeled) and the number of labels used was kept
constant. On the Aurora-5 data set this ratio is set to ten and on reCAPTCHA,
due to the small amount of available labeled data, it is four. Intuitively, for
optimal error rates this ratio should be as large as possible, but for compar-
isons any constant suffices. All iterations were done five times. Initial models
were trained on fifty (Aurora-5) resp. twenty (reCAPTCHA) randomly chosen
labeled observations.

7The error rates in [SOO13] were found to be 83% and 48%, for a Levenshtein distance of
zero and one, respectively, with 400 labeled observations available in total.
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Figure 6.3: Mean error rates for variants of the parallel combined learner
using different weighting factors and options of additional semi-
supervised learning iterations on Aurora-5.

Baseline

In addition to the learning algorithms given in Section 6.3, we also run a
purely supervised learner as a baseline. The baseline learner started—as all
our learning algorithms—with an initial model and then added an increasing
number of randomly drawn labeled observations using Baum-Welch training.
We kept track of the number of additional labeled words and the empirical
error rate (evaluated on an independent test set). After 10 (Aurora-5) resp. 20
(reCAPTCHA) runs, we calculated themean error rates and standard deviations
for several intervals of word counts. In the other experiments we proceeded in
the same way and the results are shown in Table 6.1 (Aurora-5) resp. Table 6.2
(reCAPTCHA). A plot of the mean error rate against the word count is given in
Figure 6.1 resp. Figure 6.2.

Semi-supervised learner

The semi-supervised learner operates in a similar fashion: it uses the model
trained by the baseline as its initial model and then applies five rounds of semi-
supervised training on randomly drawn unlabeled data (with a constant ratio
between the number of unlabeled and labeled data as outlined above). As
shown in Table 6.1 resp. Table 6.2, the semi-supervised learner clearly outper-
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forms the baseline, although the standard deviation is higher when the number
of additional words is small.
A comparison with the supervised baseline allows us to estimate the value of

unlabeled data: for example, on the Aurora-5 data set, we get a mean error
rate of 21% by improving the initial model with 150 labeled and ca. 1350
unlabeled words8, however we need over 500 labeled words to achieve the
same performance when no unlabeled data are available.

Active learners

We examined both measures of confidence from Section 6.3.5 for active learn-
ing. As you can see in Figure 6.1 and 6.2, both active learners are better than
the baseline, which implies that both confidence measures can indeed identify
observations whose label is more informative than the label of a randomly
chosen one. Here we notice an important difference in the two data sets: on
Aurora-5 the confidence measure based on the likelihood ratio outperforms
the measure based on the normalized likelihood, while on reCAPTCHA we see
the opposite behavior (except for a word count above 600, where the quotient
is slightly better, which we interpret as an outlier.). The implications of this
observation are discussed in Section 6.5.

Combined learners

The combined learners are based on the superior confidence measure for each
data set. We find that both parallel and serial learners are better than pure
active learning, and on each data set one of the two combined learners is the
best learner evaluated in this work. Again, the use of semi-supervised learning
increases the standard deviation for small word counts.

Practicability and performance of the parallel combined learner

As seen in Figure 6.3, we had to introduce weighting (with an empirically
found optimal weight of ten for Aurora-5 and six for reCAPTCHA) and addi-
tional semi-supervised iterations to achieve a satisfactory performance for the
parallel learner from Riccardi and Hakkani-Tür [RHT03]. Please note that op-
timizing a parameter by experimentation—and by similar techniques like cross
validation—is detrimental to active learning’s goal of reducing the number of
used labels, because an active learner will (typically) request the labels of a
different fraction of the unlabeled data pool in each run. We are not aware

8Since on the Aurora-5 data set the ratio between all used observations and labeled obser-
vations is ten, and we designed the active learner in such a way that it has no bias in
observation length.
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of a method for optimizing the weight without using a large amount of la-
beled data, which is not readily available in situations where active learning is
applied.
Furthermore, the optimized parallel learner is still worse than pure semi-

supervised learning on Aurora-5, which implies that its active choice of labels
is inferior to random sampling. While its performance on reCAPTCHA is better
than the serial learner (except for small word counts), this gain seems too
small to us to be worth the effort in real world attacks.

6.5 Implications for the Design of CAPTCHAs
The observation that active learning based on the likelihood ratio performs
better than the one based on the normalized likelihood on the Aurora-5 data
set, is best explained by the frequent confusion about the position of noise or
silence (the example at the end of Section 6.3.5 was from Aurora-5). Further
evidence is given by the fact that the normalized likelihood performs better on
the reCAPTCHA data set, where we did not see these kind of confusions.
The computation of likelihood ratios is more expensive, since we have to

determine the n best hypotheses instead of just one. To improve the resistance
of audio CAPTCHAs against active learning, we would like to see this gap
between the performances of the two methods on audio CAPTCHAs, and, at
best, the gap should be much larger.
We conjecture that both can be achieved by inserting superfluouswords9 from

a preferably large vocabulary between the words that are relevant for solving
the CAPTCHA (e.g., the digits in reCAPTCHA). These superfluous words play
the role of the noise in Aurora-5.
Doing so should amplify the effect that occurred on Aurora-5: one simple

silence/noise model does not suffice anymore; in the best case a different model
must be trained for each superfluous word (the existence of a small number
of models that recognize all superfluous words well must be prevented by the
designer of the CAPTCHA scheme). Since the Viterbi algorithm must estimate
which, where and how many superfluous words occurred, the confusion in the
n best hypotheses will be much higher than it is now for Aurora-5. Therefore,
even if the digit sequence is already very certain, the estimated labels will
be assigned a low likelihood, and it becomes harder to distinguish already
correctly recognized from uncertain digit sequences.
The introduction of superfluous words should not hamper human users too

much, because they can focus on the necessary words (e.g., digits). On the

9These do not necessarily have to be English words. Even noise signals could be used for the
purpose.
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other hand, the separation problem still has to be hard, so transitions between
necessary and superfluous words have to be hard to detect.

6.6 Conclusions and Open Questions
We close this chapter with the following open questions:

• There are many alternative ways to measure the confidence in an es-
timated label than the two options that we considered. It could be
worthwhile to experiment with more measures. Furthermore, as we saw
a difference between Aurora-5 and reCAPTCHA, it would interesting to
gain more insight how to choose a good measure depending on the data
set (without using much labeled data).

• We ruled out the parallel combination of the semi-supervised and active
learner for practical attacks because we need (too) many labels to adjust
the necessary weight. It would be interesting to prove sample size lower
bounds for parameter optimizations like these. Alternatively, one could
try to find efficient optimization algorithms, that do not require many
labels.

• We conjectured in Section 6.5 how one could make attacks based on
active learning techniques (like the ones that we applied) harder. Try
to prove or disprove this conjecture (e.g., by designing a corresponding
CAPTCHA scheme and evaluating our methods)!

• The question how well our results transfer to other audio CAPTCHA
schemes is open.
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[a, b] Closed interval {x ∈ R : a ≤ x ≤ b}
[n] The set {1, . . . , n} for any n ≥ 1
2A The power set of A for any set A

Aε,m
P Payoff matrix modelling PAC-learning under the fixed distribu-

tion P

b Vector of binary labels; b = c∗(x) ∈ {0, 1}m

C Concept class

C+ All unions of concepts from C
C− All intersections of concepts from C
c Concept from C
c∗ Target concept from C
co(C) Complement of class C; co(C) = {X \ c : c ∈ C}
δ Confidence parameter in PAC-learning

∆ The d-dimensional probability simplex

DIS(V ) Disagreement region of the concepts in V

ε Accuracy parameter in PAC-learning

E[A] Expected value of random variable A

H Hypothesis class

h Hypothesis from H
I(S) Indicator function of condition S; I(S) = 1 if S holds, I(S) = 0

otherwise

L A learning algorithm

L A proper learning function; L : Xm × {0, 1}m → C
ln(x) The natural logarithm of x

logb(x) The logarithm of x to basis b

m Usually the sample size
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M Number of learning functions

mL
C Sample complexity of learner L and concept class C

mL
C,P Sample complexity of learner L and concept class C under the

fixed distribution P

m∗C Sample complexity of the best learner for concept class C
m∗C,P Sample complexity of the best learner L for concept class C

under the fixed distribution P

N Number of concepts

NC,P Covering number of class C under distribution P
s(C) Singleton-size of C; s(C) = 4 ·max{s+(C), s−(C)}
s+(C) Size of the largest singleton subclass in class C
s−(C) Size of the largest co-singleton subclass in class C (the “unique

negative dimension” [GG89])

SFn Sunflower class; SFn = {{0}, {0, 1}, {0, 2}, . . . , {0, n}}
θ Disagreement coefficient

p Probability vector over all proper learning functions; corre-
sponds to a mixed strategy for the learner

P Domain distribution

P Family of domain distributions

P (A) Probability of event A under domain distribution P

Pr(A) Probability of event A

q Probability vector over all concepts; corresponds to a mixed
strategy for the opponent of the learner

R Payoff matrix; models PAC-learning in a worst-case analysis

R̄ Payoff matrix; models PAC-learning in an average-case analysis

VCdim(C) VC-dimension of class C
VH Version space; the set of all hypotheses inH consistent with the

sample

x Vector of random sample points; x ∼ Pm

(x, b) Labeled sample

X A domain

Note that this list contains the most frequently used notations only.
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