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Abstract. Co-training under the Conditional Independence Assump-
tion is among the models which demonstrate how radically the need for
labeled data can be reduced if a huge amount of unlabeled data is avail-
able. In this paper, we explore how much credit for this saving must
be assigned solely to the extra-assumptions underlying the Co-training
model. To this end, we compute general (almost tight) upper and lower
bounds on the sample size needed to achieve the success criterion of PAC-
learning within the model of Co-training under the Conditional Inde-
pendence Assumption in a purely supervised setting. The upper bounds
lie significantly below the lower bounds for PAC-learning without Co-
training. Thus, Co-training saves labeled data even when not combined
with unlabeled data. On the other hand, the saving is much less radical
than the known savings in the semi-supervised setting.

1 Introduction

In the framework of semi-supervised learning, it is usually assumed that there
is a kind of compatibility between the target concept and the domain distri-
bution.3 This intuition is supported by recent results indicating that, without
extra-assumptions, there exist purely supervised learning strategies which can
compete fairly well against semi-supervised learners (or even against learners
with full prior knowledge of the domain distribution) [3, 7].

In this paper, we go one step further and consider the following general ques-
tion: given a particular extra-assumption which makes semi-supervised learning
quite effective, how much credit must be given to the extra-assumption alone?
In other words, to which extent can labeled examples be saved by exploiting the
extra-assumption in a purely supervised setting? We provide a first answer to
this question in a case study which is concerned with the model of Co-training
under the Conditional Independence Assumption [4]. In this model (whose for-
mal definition will be recalled in Section 2), one labeled example is enough for

? This work was supported by the bilateral Research Support Programme between
Germany (DAAD 50751924) and Hungary (MÖB 14440).

3 See the introduction of [6] for a discussion of the most popular assumptions.
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achieving the success criterion of PAC-learning provided that there are suffi-
ciently many unlabeled examples [1].4 Recall that PAC-learning without any
extra-assumption requires d/ε labeled samples (up to logarithmic factors) where
d denotes the VC-dimension of the concept class and ε is the accuracy param-
eter [5]. The step from d/ε to just a single labeled example is a giant-one. In
this paper, we show however that part of the credit must be assigned to just the
Co-training itself. More specifically, we show that the number of sample points
needed to achieve the success criterion of PAC-learning in the purely supervised
model of Co-training under the Conditional Independence Assumption has a
linear growth in

√
d1d2/ε (up to some hidden logarithmic factors) as far as the

dependence on ε and on the VC-dimensions of the two involved concept classes is
concerned. Note that, as ε approaches 0,

√
d1d2/ε becomes much smaller than

the well-known lower bound Ω(d/ε) on the number of examples needed by a
traditional (not co-trained) PAC-learner.

The remainder of the paper is structured as follows. Section 2 clarifies the
notations and formal definitions that are used throughout the paper and men-
tions some elementary facts. Section 3 presents a fundamental inequality that
relates a suitably defined variant of Hanneke’s disagreement coefficient [9] to a
purely combinatorial parameter, s(C), which is closely related to the “unique
negative dimension” from [8]. This will later lead to the insight that the prod-
uct of the VC-dimension of a (suitably chosen) hypothesis class and a (suitably
defined) disagreement coefficient has the same order of magnitude as s(C). Sec-
tion 3 furthermore investigates how a concept class can be padded so as to
increase the VC-dimension while keeping the disagreement coefficient invariant.
The padding can be used to lift lower bounds that hold for classes of low VC-
dimension to increased lower bounds that hold for some classes of arbitrarily
large VC-dimension. The results of Section 3 seem to have implications for ac-
tive learning and might be of independent interest. Section 4.1 presents some
general upper bounds in terms of the relevant learning parameters (including ε,
the VC-dimension, and the disagreement coefficient, where the product of the
latter two can be replaced by the combinatorial parameters from Section 3).
Section 4.2 shows that all general upper bounds from Section 4.1 are (nearly)
tight. Interestingly, the learning strategy that is best from the perspective of a
worstcase analysis has one-sided error. Section 4.3 presents improved bounds for
classes with special properties. Section 5 contains some final remarks.

Due to space constraints, not all proofs are given in full detail. We plan to
give the missing parts in an upcoming journal version of this paper.

4 This is one of the results which impressively demonstrate the striking potential
of properly designed semi-supervised learning strategies although the underlying
compatibility assumptions are somewhat idealized and therefore not likely to be
strictly satisfied in practice. See [2, 12] for suggestions of relaxed assumptions.
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2 Definitions, Notations, and Facts

We assume the reader is familiar with Valiant’s model of Probably Approxi-
mately Correct Learning (PAC-learning) [11]. In Co-training [4], it is assumed
that there is a pair of concept classes, C1 and C2, and that random examples
come in pairs (x1, x2) ∈ X1×X2. Moreover, the domain distribution D, accord-
ing to which the random examples are generated, is perfectly compatible with
the target concepts, say h∗1 ∈ C1 and h∗2 ∈ C2, in the sense that h∗1(x1) = h∗2(x2)
with probability 1. (For this reason, we sometimes denote the target label as
h∗(x1, x2).) As in [4, 1], our analysis builds on the Conditional Independence
Assumption: x1, x2, considered as random variables that take “values” in X1

and X2, respectively, are conditionally independent given the label. As in [1],
we perform a PAC-style analysis of Co-training under the Conditional Indepen-
dence Assumption. But unlike [1], we assume that there is no access to unlabeled
examples. The resulting model is henceforth referred to as the “PAC Co-training
Model under the Conditional Independence Assumption”.

Let C be a concept class over domain X and H ⊇ C a hypothesis class over
the same domain. For every h∗ ∈ C and every X ′ ⊆ X, the corresponding version
space in H is given by VH(X ′, h∗) := {h ∈ H| ∀x ∈ X ′ : h(x) = h∗(x)}. Let
V ⊆ C. The disagreement region of V is given by DIS(V ) := {x ∈ X| ∃h, h′ ∈
V : h(x) 6= h′(x)}. Let P denote a probability measure on X. We define the
following variants of disagreement coefficients:

θ(C,H|P, X ′, h∗) :=
P(DIS(VC(X

′, h∗)))

suph∈VH(X′,h∗)P(h 6= h∗)

θ(C,H) := sup
P,X′,h∗

θ(C,H|P, X ′, h∗)

For sake of brevity, let θ(C) := θ(C, C). Note that

θ(C,H) ≤ θ(C) ≤ |C| − 1 . (1)

The first inequality is obvious from C ⊆ H and h∗ ∈ C, the second follows from

DIS(VC(X
′, h∗)) =

⋃
h∈VC(X′,h∗)\{h∗}

{x| h(x) 6= h∗(x)}

and an application of the union bound.
As an example we will calculate θ for the following class, which will also be

useful for proving lower bounds in section 4.2:

SFn = {{0}, {0, 1}, {0, 2}, . . . , {0, n}}

Lemma 1. θ(SFn) = n.

Proof. Let P be uniform on {1, . . . , n}, let X ′ = h∗ = {0}. Then V :=
VSFn

(X ′, h∗) = SFn and DIS(V ) = {1, . . . , n} has probability mass 1. Thus,

θ(SFn) ≥ θ(SFn,SFn|P, X ′, h∗) =
P(DIS(V ))

suph∈V P(h 6= h∗)
=

1

1/n
= n .

Conversely, θ(SFn) ≤ |SFn| − 1 = n (according to (1)). ut
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The main usage of this disagreement coefficient is as follows. First note that
we have P(DIS(VC(X

′, h∗))) ≤ θ(C,H) · suph∈VH(X′,h∗)P(h 6= h∗) for every
choice of P, X ′, h∗. This inequality holds in particular when X ′ consists of m
points in X chosen independently at random according to P. According to
classical sample size bounds in PAC-learning, there exists a sample size m =
Õ(VCdim(H)/ε) such that, with probability at least 1−δ, suph∈VH(X′,h∗)P(h 6=
h∗) ≤ ε. Thus, with probability at least 1−δ (taken over the random sample X ′),
P(DIS(VC(X

′, h∗))) ≤ θ(C,H) · ε. This discussion (with ε/θ(C,H) substituted
for ε) is summarized in the following

Lemma 2. There exists a sample size m = Õ(θ(C,H) ·VCdim(H)/ε) such that
the following holds for every probability measure P on domain X and for every
target concept h∗ ∈ C. With probability 1− δ, taken over a random sample X ′ of
size m, P((DIS(VC(X

′, h∗))) ≤ ε.

This lemma indicates that one should choose H so as to minimize θ(C,H) ·
VCdim(H). Note that makingH more powerful leads to smaller values of θ(C,H)
but comes at the prize of an increased VC-dimension.

We say that H contains hypotheses with plus-sided errors (or minus-sided
errors, resp.) w.r.t. concept class C if, for every X ′ ⊆ X and every h∗ ∈ C,
there exists h ∈ VH(X ′, h∗) such that h(x) = 0 (h(x) = 1, resp.) for every
x ∈ DIS(VC(X

′, h∗)). A sufficient (but, in general, not necessary) condition for a
class H making plus-sided errors only (or minus-sided errors only, resp.) is being
closed under intersection (or closed under union, resp.).

Lemma 3. Let C ⊆ H. If H contains hypotheses with plus-sided errors and
hypotheses with minus-sided errors w.r.t. C, then θ(C,H) ≤ 2.

Proof. Consider a fixed but arbitrary choice of P, X ′, h∗. Let hmin be the hy-
pothesis in VH(X ′, h∗) that errs on positive examples of h∗ only, and let hmax
be the hypothesis in VH(X ′, h∗) that errs on negative examples of h∗ only. We
conclude that DIS(VC(X

′, h∗)) ⊆ {x| hmin(x) 6= hmax(x)}. From this and the
triangle inequality, it follows that

P(DIS(VC(X
′, h∗))) ≤ P(hmin 6= hmax) ≤ P(hmin 6= h∗) +P(hmax 6= h∗) .

The claim made by the lemma is now obvious from the definition of θ(C,H). ut

Example 1. Since POWERSET and HALFINTERVALS are closed under inter-
section and union, we obtain θ(POWERSET) ≤ 2 and θ(HALFINTERVALS) ≤
2. Let the class C consist of both the open and the closed homogeneous halfplanes
and let H be the class of unions and intersections of two halfplanes from C. It
is easy to see that H contains hypotheses with plus-sided errors (the smallest
pie slice with apex at 0 that includes all positive examples in a sample) and
hypotheses with minus-sided errors (the complement of the smallest pie slice
with apex at 0 that includes all negative examples in a sample) w.r.t. C. Thus,
θ(C,H) ≤ 2. Note that H is neither closed under intersection nor closed under
union.
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3 A Closer Look to the Disagreement Coefficient

In Section 3.1 we investigate the question how small the product VCdim(C) ·
θ(C,H) can become if H ⊇ C is cleverly chosen. The significance of this ques-
tion should be clear from Lemma 2. In Section 3.2 we introduce a padding
technique which leaves the disagreement coefficient invariant but increases the
VC-dimension (and, as we will see later, also increases the error rates in the PAC
Co-training Model).

3.1 A Combinatorial Upper Bound

Let s+(C) denote the largest number of instances inX such that every binary pat-
tern on these instances with exactly one “+”-label can be realized by a concept
from C. In other words: s+(C) denotes the cardinality of the largest singleton-
subclass of C. Let C+ denote the class of all unions of concepts from C. As usual,
the empty union is defined to be the empty set.

Lemma 4. C ⊆ C+, C+ is closed under union, and VCdim(C+) = s+(C). More-
over, if C is closed under intersection, then C+ is closed under intersection too,
and θ(C, C+) ≤ 2 so that VCdim(C+) · θ(C, C+) ≤ 2s+(C).

Proof. By construction, C ⊆ C+ and C+ is closed under union. From this it
follows that s+(C) ≤ VCdim(C+). Consider now instances x1, . . . , xd that are
shattered by C+. Thus, for every i = 1, . . . , d, there exists a concept hi in C+ that
contains xi but none of the other d−1 instances. Therefore, by the construction
of C+, C must contain some hypothesis h′i smaller than hi satisfying h′i(xi) = 1.
We conclude that VCdim(C+) ≤ s+(C). For the remainder of the proof, assume
that C is closed under intersection. Consider two sets A,B of the form A = ∪iAi
and B = ∪jBj where all Ai and Bj are concepts in C. Then, according to the
distributive law, A ∩ B = ∪i,jAi ∩ Bj . Since C is closed under intersection,
Ai ∩ Bj ∈ C ⊆ C+. We conclude that C+ is closed under intersection. Closure
under intersection and union implies that C+ contains hypotheses with plus-sided
errors and hypotheses with minus-sided errors w.r.t. C. According to Lemma 3,
θ(C, C+) ≤ 2. ut

We aim at a similar result that holds for arbitrary (not necessarily intersec-
tion-closed) concept classes. To this end, we proceed as follows. Let s−(C) denote
the largest number of instances in X such that every binary pattern on these
instances with exactly one “−”-label can be realized by a concept from C. In
other words: s−(C) denotes the cardinality of the largest co-singleton subclass of
C. Let C− denote the class of all intersections of concepts from C. As usual, the
empty intersection is defined to be the full set X. By duality, Lemma 4 translates
into the following

Corollary 1. C ⊆ C−, C− is closed under intersection, and VCdim(C−) =
s−(C). Moreover, if C is closed under union, then C− is closed under union
too, and θ(C, C−) ≤ 2 so that VCdim(C−) · θ(C, C−) ≤ 2s−(C).
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We now arrive at the following general bound:

Theorem 1. Let H := C+∪C−. Then, C⊆H, VCdim(H)≤2 max{s+(C), s−(C)},
and θ(C,H) ≤ 2 so that VCdim(H) · θ(C,H) ≤ 4 max{s+(C), s−(C)} =: s(C).

Proof. C ⊆ H is obvious. The bound on the VC-dimension is obtained as follows.
If m instances are given, then, by Lemma 4 and Corollary 1, the number of
binary patterns imposed on them by concepts from H = C+ ∪C− is bounded by
Φs+(C)(m) + Φs−(C)(m) where

Φd(m) =

{
2m if m ≤ d∑d
i=0

(
m
i

)
otherwise

is the upper bound from Sauer’s Lemma [10]. Note that Φd(m) < 2m−1 for
m > 2d. Thus, for m > 2 max{s+(C), s−(C)}, Φs+(C)(m) + Φs−(C)(m) < 2m−1 +
2m−1 = 2m. We can conclude that VCdim(H) ≤ 2 max{s+(C), s−(C)}. Finally
note that θ(C,H) ≤ 2 follows from Lemma 3 and the fact that, because of
Lemma 4 and Corollary 1, H = C+ ∪ C− contains hypotheses with plus-sided
errors and hypotheses with minus-sided errors. ut

Please note that the parameter s−(C) was originally introduced by Mihály
Geréb-Graus in [8] as the “unique negative dimension” of C. He showed that it
characterizes PAC-learnability from positive examples alone.

3.2 Invariance of the Disagreement Coefficient under Padding

For every domain X, let X(i) and X [k] be given by

X(i) = {(x, i)| x ∈ X} and X [k] = X(1) ∪ · · · ∪X(k) .

For every concept h ⊆ X, let h(i) = {(x, i)| x ∈ h}. For every concept class C
over domain X, let

C[k] := {h(1)1 ∪ · · · ∪ h
(k)
k | h1, . . . , hk ∈ C} .

Loosely speaking, C[k] contains k-fold “disjoint unions” of concepts from C. It is
obvious that VCdim(C[k]) = k · VCdim(C). The following result shows that the
disagreement-coefficient is invariant under k-fold disjoint union:

Lemma 5. For all k ≥ 1: θ(C[k],H[k]) = θ(C,H).

Proof. The probability measures P on X [k] can be written as convex combina-
tions of probability measures on the X(i), i.e., P = λ1P1 + · · · + λkPk where
Pi is a probability measure on X(i), and the λi are non-negative numbers that
sum-up to 1. A sample S ⊆ X [k] decomposes into S = S(1) ∪ · · · ∪ S(k) with
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S(i) ⊆ X(i). An analogous remark applies to concepts c ∈ C[k] and hypotheses
h ∈ H[k]. Thus,

θ(C[k],H[k]|P, S, c) =
P(DIS(VC[k](S, c)))

suph∈VH[k] (S,c)
P(h 6= c)

=

∑k
i=1 λi

=:ai︷ ︸︸ ︷
Pi(DIS(VC(i)(S

(i), c(i))))∑k
i=1 λi sup

h
(i)
i ∈VH(i) (S(i),c(i))

Pi(h
(i) 6= c(i))

︸ ︷︷ ︸
=:bi

≤ θ(C,H) .

The last inequality holds because, obviously, ai/bi ≤ θ(C(i),H(i)) = θ(C,H).
On the other hand, ai/bi can be made equal (or arbitrarily close) to θ(C,H) by
choosing Pi, S

(i), c(i) properly. ut

4 Supervised Learning and Co-training

Let p+ = P(h∗ = 1) denote the probability for seeing a positive example of
h∗. Similarly, p− = P(h∗ = 0) denotes the probability for seeing a negative
example of h∗. Let P(·|+),P(·|−) denote probabilities conditioned to positive
or to negative examples, respectively. The error probability of a hypothesis h
decomposes into conditional error probabilities according to

P(h 6= h∗) = p+ ·P(h 6= h∗|+) + p− ·P(h 6= h∗|−) . (2)

In the PAC-learning framework, a sample size that, with high probability, bounds
the error by ε typically bounds the plus-conditional error by ε/p+ and the minus-
conditional error by ε/p−. According to (2), these conditional error terms lead
to an overall error that is bounded by ε, indeed. For this reason, the hardness of
a problem in the PAC-learning framework does not significantly depend on the
values of p+, p−. As we will see shortly, the situation is much different in the PAC
Co-training Model under the Conditional Independence Assumption where small
values of pmin := min{p+, p−} (though not smaller than ε) make the learning
problem harder. Therefore, we refine the analysis and present our bounds on
the sample size not only in terms of distribution-independent quantities like
θ, ε and the VC-dimension but also in terms of pmin. This will lead to “smart”
learning policies that take advantage of “benign values” of pmin. In the following
subsections, we present (almost tight) upper and lower bounds on the sample size
in the PAC Co-training Model under the Conditional Independence Assumption.

4.1 General Upper Bounds on the Sample size

Let us first fix some more notation that is also used in subsequent sections.
V1 ⊆ C1 and V2 ⊆ C2 denote the version spaces induced by the labeled sample
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within the concept classes, respectively, and DIS1 = DIS(V1), DIS2 = DIS(V2)
are the corresponding disagreement regions. The VC-dimension of H1 is denoted
d1; the VC-dimension of H2 is denoted d2. θ1 = θ(C1,H1) and θ2 = θ(C2,H2).
θmin = min{θ1, θ2} and θmax = max{θ1, θ2}. s+1 = s+(C1), s+2 = s+(C2), s−1 =
s−(C1), and s−2 = s−(C2). The learner’s empirical estimates for p+, p−, pmin
(inferred from the labeled random sample) are denoted p̂+, p̂−, p̂min, respectively.
Let h1 ∈ VH1

and h2 ∈ VH2
denote two hypotheses chosen according to some

arbitrary but fixed learning rules.
The error probability of the learner is the probability for erring on an un-

labeled “test-instance” (x1, x2). Note that the learner has a safe decision if
x1 /∈ DIS1 or x2 /∈ DIS2. As for the case x1 ∈ DIS1 and x2 ∈ DIS2, the situation
for the learner is ambiguous, and we consider the following resolution-rules, the
first two of which depend on the hypotheses h1 and h2: 5

R1: If h1(x1) = h2(x2), then vote for the same label. If h1(x1) 6= h2(x2), then go
with the hypothesis that belongs to the class with the disagreement coeffi-
cient θmax.

R2: If h1(x1) = h2(x2), then vote for the same label. If h1(x1) 6= h2(x2), then
vote for the label that occurred less often in the sample (i.e., vote for “+” if
p̂− ≥ 1/2, and for “−” otherwise).

R3: If p̂− ≥ 1/2, then vote for label “+”. Otherwise, vote for label “−”. (These
votes are regardless of the hypotheses h1, h2.)

Theorem 2. The number of labeled examples sufficient for learning (C1, C2) in
the PAC Co-training Model under the Conditional Independence Assumption by
learners applying one of the rules R1, R2, R3 is given asymptotically as follows:

Õ
(√

d1d2
ε ·

θmin

pmin

)
if rule R1 is applied

Õ

(√
d1d2
ε ·max

{
1

pmin
, θmax

})
if rule R2 is applied

Õ

(√
d1d2
ε · θ1θ2

)
if rule R3 is applied

(3)

Proof. Õ(1) examples are sufficient to achieve that (with high probability) the
following holds: if pmin < 1/4, then p̂min < 1/2. Assume that this is the case. For
reasons of symmetry, we may assume furthermore that θ1 = θmax and p̂− ≥ 1/2
so that p− ≥ 1/4. Please recall that the rules R1 to R3 are only applied if
x1 ∈ DIS1 and x2 ∈ DIS2. Assume first that ambiguities are resolved according

5 The choice applied in rules R2 and R3 could seem counterintuitive at first. However,
p̂+ > p̂− means that the learner has more information about the behaviour of the
target concept on the positive instances than on the negative ones, indicating that the
positive instances in the disagreement regions might have smaller probability than
the negative ones. This choice is also in accordance with the common strategy applied
in the “learning from positive examples only” model, which outputs a negative label
if in doubt, although the learner has never seen any negative examples.
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to rule R1. Note that the sample size specified in (3) is sufficient to bound (with
high probability) the error rate of hypotheses h1, h2, respectively, as follows [5]:

ε1 =

√
d1
d2
· pmin
θmin

· ε and ε2 =

√
d2
d1
· pmin
θmin

· ε

If R1 assigns a wrong label to (x1, x2), then, necessarily, h1 errs on x1 and
x2 ∈ DIS2. Thus the error rate induced by R1 is bounded (with high probability)
as follows:

P(h1(x1) = 0 ∧ x2 ∈ DIS2|+)p+ +P(h1(x1) = 1 ∧ x2 ∈ DIS2|−)p−

≤ 1

pmin
·
(
P(h1(x1) = 0|+)p+ ·P(x2 ∈ DIS2|+)p+

+P(h1(x1) = 1|−)p− ·P(x2 ∈ DIS2|−)p−

)
≤ 1

pmin
·
(
P(h1(x1) = 0|+)p+ +P(h1(x1) = 1|−)p−

)︸ ︷︷ ︸
≤ε1

·
(
P(x2 ∈ DIS2|+)p+ +P(x2 ∈ DIS2|−)p−

)︸ ︷︷ ︸
≤θ2ε2=θminε2

≤ θmin
pmin

· ε1ε2 = ε

The first inequality in this calculation makes use of Conditional Independence
and the third applies Lemma 2.
The proofs for the rules R2 and R3 proceed analogously. We omit the details
because of space constraints. ut

We now describe a strategy named “Combined Rule” that uses rules R1, R2,
R3 as sub-routines. Given (x1, x2) ∈ DIS1 × DIS2, it proceeds as follows. If
ε > 4/(θ1θ2) and p̂+ ≤ ε/2 (or p̂− ≤ ε/2, resp.), it votes for label “−” (or for
label “+”, resp.). If ε ≤ 4/(θ1θ2) or p̂min := min{p̂+, p̂−} > ε/2, then it applies
the rule 

R1 if θmin

θmax
≤ p̂min

R2 if 1
θ1θ2
≤ p̂min < θmin

θmax

R3 if p̂min <
1

θ1θ2

. (4)

Corollary 2. If the learner applies the Combined Rule, then

Õ
(√

d1d2
ε ·

θmin

pmin

)
if θmin

θmax
≤ pmin

Õ

(√
d1d2
ε · θmax

)
if 1

θmax
≤ pmin < θmin

θmax

Õ
(√

d1d2
ε ·

1
pmin

)
if 1

θ1θ2
≤ pmin < 1

θmax

Õ

(√
d1d2
ε · θ1θ2

)
if pmin <

1
θ1θ2

(5)

labeled examples are sufficient for learning C1, C2 in the PAC Co-training Model
under the Conditional Independence Assumption.
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Proof. It is an easy application of multiplicative Chernov-bounds to show that
(with high probability) p̂min equals pmin up to a factor of 2 unless one of the
following special cases occurs:

ε >
4

θ1θ2
, p̂min <

ε

2
and pmin <

ε

2
(6)

ε ≤ 4

θ1θ2
, p̂min <

1

θ1θ2
and pmin <

1

θ1θ2
(7)

In case of (6), the Combined Rule outputs the empirically more likely label,
and the error rate is bounded by pmin < ε/2. In case of (7), rule R3 is applied
which, according to Theorem 2, leads to the desired upper bound on the sample
size. Thus, we may now safely assume that p̂min equals pmin up to factor 2. If
none of the rules R1, R2, R3 is applied, then p̂min ≤ ε/2 and the error rate
will be pmin < ε. Thus, we may assume that Combined Rule proceeds according
to (4). If the learner could substitute the (unknown) pmin for p̂min within (4),
the corollary would follow immediately from Theorem 2. But it is easy to see that
even the knowledge of the empirical estimate p̂min is sufficient for this purpose.

ut

We can also give a completely combinatorial upper bound without referring
to θ. As we will see later this bound is tight up to logarithmic factors in the
worst case (i.e. small pmin):

Theorem 3. If the learner applies rule R3 and uses hypothesis classes Hb =

C+b ∪ C
−
b for b = 1, 2, then Õ

(√
max{s+1 s

+
2 , s
−
1 s
−
2 }/ε

)
labeled examples are suffi-

cient.

Proof. (Sketch) R3 always chooses one of the two hypotheses with one sided-
error: h− which always outputs “−” for (x1, x2) ∈ DIS1 ×DIS2, and h+ which
always outputs “+” on these instances. With an analysis similar as before one
can relate the error of h− to the errors of the smallest consistent hypotheses
in C−1 and C−2 , and then conclude using standard PAC-bounds and results from

Section 3.1 that with high probability Õ
(√

s−1 s
−
2 /(εp+)

)
many examples suffice

for h− to have an error of at most ε. For h+ the analogous bound on the number

of examples is Õ
(√

s+1 s
+
2 /(εp−)

)
. Because Õ(1) many examples are enough to

distinguish with high probability among the cases “p− is large” (say ≥ 3/4)
and “p− is small” (say ≤ 1/4), choosing between the two learning strategies
according to rule R3 yields the desired bound. ut

Please note that finding the smallest consistent hypotheses in C−b is possible using
positive examples only. This shows a strong connection to the results by Geréb-
Graus in [8], where it was shown that Õ

(
s−(C)/ε

)
many positive examples are

sufficient (and necessary) to PAC-learn a class C from positive examples alone.
A dual also holds for the largest consistent hypotheses in C+

b .
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4.2 Lower Bounds on the Sample Size

In this section, we first derive a general lower bound which matches the upper
bound from Theorem 3. Both bounds are part of a worstcase analysis and the
lower bound makes use of rather small values of pmin. Afterwards, we show that,
for more “benign” choices of pmin, the upper bound from Corollary 2 is tight by
exhibiting concrete concept classes that lead to a matching lower bound.
A useful concept class for the purposes of this section is SFn from Lemma 1.
Note that all lower bounds obtained for SFn immediately generalize to concept
classes containing SFn as subclass.

Lemma 6. Let n1, n2 ≥ 1, and let Cb = SFnb+2 so that θb = nb + 2 for b =
1, 2. Then, for every pmin ≤ 1/(θ1θ2) and every sufficiently small ε > 0, the
number of examples needed to learn C1, C2 in the PAC Co-training Model under
the Conditional Independence Assumption is at least Ω(

√
n1n2/ε).

Proof. Let p+ = pmin, let C1 be a concept class over domain {a0, a1, . . . , an1+2},
and let C1 be a concept class over domain {b0, b1, . . . , bn2+2}, respectively. Ob-
viously,

p+ = pmin ≤
1

(n1 + 2)(n2 + 2)
=

1

θ1θ2
.

Note that n1n2p+ ≤ 1. Consider the following malign scenario:

– P(a0|+) = P(b0|+) = 1−
√
ε/p+.

– Index s is uniformly chosen at random from {2, . . . , n1 + 2}. Index t is uni-
formly chosen at random from {2, . . . , n2+2}. P(as|+) = P(bt|+) =

√
ε/p+.

– P(a1|−) = 1− 4 ·
√
n1ε/n2. P(b1|−) = 1− 4 ·

√
n2ε/n1.

– The instances from X1 \ {a0, a1, as} evenly share a minus-conditional prob-
ability mass of 4 ·

√
n1ε/n2. The instances from X2 \{b0, b1, bt} evenly share

a minus-conditional probability mass of 4 ·
√
n2ε/n1.

Let us assume that the sample size satisfies m ≤
√
n1n2

40 ·
√

1/ε. Let Z1 count
the number of sample points that hit X1 \ {a0, a1, as} (the “interesting negative
examples” in X1). Let Z2 be defined analogously. Then the following holds:

– The expectation of Zb is bounded by nb/10 for b = 1, 2. Thus, with proba-
bility at least 1 − 2/5, Z1 ≤ n1/2 and Z2 ≤ n2/2, which is assumed in the
sequel. Thus at least half of the interesting negative examples in X1 and at
least half of the interesting negative examples in X2 remain “hidden” from
the learner (i.e. do not occur in the sample), respectively.

– The expected number of occurrences of as (or bt, resp.) in the sample is
bounded by

p+ ·
√
ε/p+ ·

√
n1n2
40

·
√

1/ε =
√
n1n2p+/40 ≤ 1/40 .

Thus, with probability at least 1 − 1/15, neither as nor bt occurs in the
sample, which is assumed in the sequel.
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Note that the assumptions that we made on the way are satisfied with a prob-
ability of at least 1 − 2/5 − 1/15 > 1/2. Given these assumptions, we now
bound the smallest possible error rate from below. Let E+ (or E−, resp.) de-
note the set of instance-pairs which are labeled “+” (or labeled “−”, resp.).
For b = 1, 2, let Ub ⊆ Xb be the set of points in Xb that did not occur in the
sample, and let U = U1 × U2. For test-instances (x1, x2) /∈ U , the learner can
infer the label from the information provided by the sample. It can be shown by
a rigorous analysis (omitted here because of space constraints) that the Bayes-
decision leads to the same vote for all pairs from U : if P(E+ ∩U) ≥ P(E− ∩U)
vote for “+”, otherwise vote for “−”. Clearly, the resulting Bayes-error equals
min{P(E+ ∩ U),P(E− ∩ U)}. It can be bounded from below as follows:

P(U ∩ E+) ≥ p+ ·
(√

ε

p+

)2

= ε ,

because
√

ε
p+

coincides with the plus-conditional probability of as and bt, re-

spectively. A similar computation shows that

P(U ∩ E−) ≥ (1− p+)︸ ︷︷ ︸
≥1/2

·(2
√
n1ε/n2) · (2

√
n2ε/n1) ≥ 2ε .

Thus, the Bayes-error is at least ε. ut

Corollary 3. Let n1, n2, d1, d2 ≥ 1, and, for b = 1, 2, let Cb = SFnb+2 so that

θ(Cb) = θ(C[db]b ) = nb+2. Then, for every pmin ≤ 1/(θ1θ2) and every sufficiently

small ε > 0, the number of examples needed to learn C[d1]1 , C[d2]2 in the PAC
Co-training Model under the Conditional Independence Assumption is at least
Ω(
√
d1d2n1n2/ε).

Proof. (Sketch) θ(Cb) = θ(C[db]b ) follows from Lemma 5. A malign scenario for

the classes C[db]b is obtained by installing the malign scenario from the proof of
Lemma 6 (with some minor modifications) for each of the d1 many copies of C1
and for each of the d2 many copies of C2. The main idea behind the proof is that
every disjoint copy of the “old scenario” is now served by fewer sample points.
In order to compensate this, the sample size must pop-up by factor

√
d1d2. ut

Here comes the lower bound that is tight from the perspective of a worstcase
analysis:

Theorem 4. Assume that6 3 ≤ s+b , s
−
b < ∞ for b ∈ {0, 1}. Then the following

holds. For every sufficiently small ε > 0, the number of examples needed to
learn C1, C2 in the PAC Co-training Model under the Conditional Independence

Assumption is at least Ω
(√

max{s+1 s
+
2 , s
−
1 s
−
2 }/ε

)
.

6 One can drop the restriction 3 ≤ s+b , s
−
b and still prove tight bounds, but that needs

a tedious case distinction and is omitted due to space constraints.
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Proof. We show first that each learner needs at least Ω
(√

s+1 s
+
2 /ε

)
many labels

in the worst case. By duality we also get the bound of Ω
(√

s−1 s
−
2 /ε

)
. Now taking

the maximum of both cases yields the theorem.

The former bound can be proved as follows: in the proof of Lemma 6, we
may set p+ = pmin = ε. Thus the probability assigned to the redundant points
a0 and b0 is now 0, respectively. Removal of the redundant point in a class of
type SF will lead to the class of singletons. Thus, the proof of Lemma 6 with the
special setting p+ = pmin = ε shows that at least Ω

(√
n1n2/ε

)
many examples

are needed for every pair C1, C2 of concept classes such that, for b = 1, 2, Cb
contains a singleton subclass of size nb + 2. ut

Note that the lower bound in Theorem 4 nicely matches with the upper bound
in Theorem 3 for small enough ε. Furthermore, this implies a weak converse of
Theorem 1 where we have shown that VCdim(H) · θ(C,H) ≤ s(C) for H =
C+ ∪ C−. More precisely s(C) = Õ

(
VCdim(H) · θ(C,H)

)
must hold for every

H ⊇ C because, otherwise, the lower bound in Theorem 4 would exceed the
upper bound for rule R3 in Theorem 2 with C1 = C2 = C.

The next step will be to provide lower bounds that remain valid even when
pmin takes more “benign values” than it does in the worstcase. Actually, Corol-
lary 3 is a first step in this direction because the lower bound in this result
nicely matches with the upper bound in Corollary 2 when pmin ≤ 1/(θ1θ2). We
list here, without proof, some more lemmas of this kind which together witness
that all upper bounds mentioned in Corollary 2 are fairly tight.

For any concept class C over domain X, the class co(C) is given by co(C) =
{X \A| A ∈ C}. Clearly, VCdim(C) = VCdim(co(C)) and θ(C) = θ(co(C)).

Lemma 7. Let k, n ≥ 1, let C1 = SFkn+2, and let C2 = co(SFn+2), so that

θmax = θ(C1) = θ(C[d1]1 ) = kn+2 and θmin = θ(C2) = θ(C[d2]2 ) = n+2. Then, for

every sufficiently small ε > 0, the number of examples needed to learn C[d1]1 , C[d2]2

in the PAC Co-training Model under the Conditional Independence Assumption
is at least 

Ω
(√

d1d2
ε ·

θmin

pmin

)
if θmin

θmax
≤ pmin ≤ 1

2

Ω

(√
d1d2
ε · θmax

)
if 1

θmax
≤ pmin ≤ θmin

θmax

.

Lemma 8. Let n ≥ 2, let C1 = C2 = SFn+2, so that θ1 = θ2 = θmax = n + 2.
Then, for every 1/(θ1θ2) ≤ pmin ≤ 1/θmax and every sufficiently small ε > 0,

the number of examples needed to learn C[d1]1 , C[d2]2 in the PAC Co-training Model

under the Conditional Independence Assumption is at least Ω
(√

d1d2
εpmin

)
.

The lower bounds in Corollary 3 and Lemmas 7 and 8 nicely match with the
general upper bounds given in Corollary 2.
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4.3 Sample Size in Case of One-sided Errors

In the upper bounds presented in this section, any term of the form dbθb can
be safely replaced by s(Cb) provided that Hb = C+b ∪ C

−
b . The proofs will be

presented in the journal version.

Theorem 5. For b = 1, 2, let Cb,Hb be classes such that Hb contains hypotheses
with plus-sided errors (or with minus-sided errors, resp.) w.r.t. Cb. Then sample
size 

Õ
(√

d1d2
ε ·

1
pmin

)
if pmin ≥ 1

θ1θ2

Õ

(√
d1d2
ε · θ1θ2

)
otherwise

is asymptotically sufficient for learning C1, C2 with hypotheses from H1,H2 in
the PAC Co-training Model under the Conditional Independence Assumption.

Note that the upper bound from Theorem 5 applies to the special case where,
for b = 1, 2, Hb = Cb and Cb is intersection-closed (or union-closed, resp.). In this
case, the upper bound nicely matches with the lower bounds from Corollary 3
and Lemma 8.

Theorem 6. For b = 1, 2, let Cb,Hb be classes such that H1 contains hypotheses
with plus-sided errors w.r.t. C1, and H2 contains hypotheses with minus-sided
errors w.r.t. C2. Then sample size

Õ
(√

d1d2
ε ·

θmin

pmin

)
if pmin ≥ θmin

θmax

Õ

(√
d1d2
ε · θmax

)
otherwise

is asymptotically sufficient for learning C1, C2 with hypotheses from H1,H2 in
the PAC Co-training Model under the Conditional Independence Assumption.

Note that the upper bound from Theorem 6 applies to the special case where
H1 = C1 is intersection-closed and H2 = C2 is union-closed. In this case, the
upper bound nicely matches with the lower bound from Lemma 7.

5 Final Remarks

It is known that semi-supervised learners in the Co-training framework also
benefit from assumptions weaker than conditional independence (see [2, 12]).
One can ask whether PAC-learners can also use these relaxed assumptions to
their advantage. At least for the assumption introduced in [2] this is not generally
true: for Co-training with an α-expanding distribution and one-sided errors, one
can show that there are classes and distributions (e.g. “Example 1” from [2])
where every PAC-learner requires Ω(d/ε) many examples (with d denoting the
VC-dimension of both views), which coincides with the standard PAC bounds.
On the other hand, conditional independence given the label reduces the label
complexity to Õ(d/

√
ε). Details will follow in the journal version of this paper.
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We also looked into having more than two views. With k views under the
Conditional Independence Assumption we can show that the upper bound for
rule R3 becomes m = Õ

(
k
√
d1θ1 · · · dkθk/ε

)
, and, as in the 2-view case, this has a

matching lower bound. The other bounds can be generalized in a similar fashion.
The lower bound given in Theorem 4 is only valid for finite s+b , s

−
b , because the

constraint on ε is essentially 1/ε ≥ max{s+1 s
+
2 , s
−
1 s
−
2 }. In case the singleton size is

infinite, however, this theorem still implies the lower boundΩ(1/ε). Nevertheless,
this rules out the drastic reduction of the label complexity that we saw for
s+b , s

−
b < ∞. To determine how much the Co-training assumption can help in

this situation is work in progress.
In a broader context, it would be interesting to see whether the techniques of

this paper can be applied to get new bounds on the unlabeled sample complexity
in semi-supervised learning. Another interesting question is whether existing up-
per bounds in active learning (at least in the realizable case) can be reformulated
in completely combinatorial terms using Theorem 1.

References

[1] Maria-Florina Balcan and Avrim Blum. A discriminative model for semi-
supervised learning. Journal of the Association on Computing Machinery,
57(3):19:1–19:46, 2010.

[2] Marina-Florina Balcan, Avrim Blum, and Ke Yang. Co-training and expansion:
Towards bridging theory and practice. In Advances in Neural Information Pro-
cessing Systems 17, pages 89–96. MIT Press, 2005.
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