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Abstract

CAPTCHAs are widely used in the Internet
to distinguish humans from machines. To al-
low access for visually impaired users, audio-
based CAPTCHA schemes are often used.
Recent studies show that most audio
CAPTCHAs are vulnerable, as they can be
broken by machine learning techniques. How-
ever, such attacks come at a relatively high
cost, as they require human experts to label
the CAPTCHA samples collected from a web-
site in order to train an attacking system.
In this work we use active and semi-
supervised learning for breaking audio
CAPTCHAs and show that these methods
can reduce the labeling cost considerably, re-
sulting in an increased vulnerability of audio
CAPTCHAs, as automated attacks are ren-
dered even more worthwhile. In addition, our
findings give insight into improvements to the
design of audio CAPTCHAs, helping to make
automated attacks more difficult in the future.
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Confidence Measures

1. Likelihood of the most likely hypothesis.

2. Normalized likelihood of the most likely hy-
pothesis:
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l: Length of label (∧= word count) pk: Word likelihoods
wk: Duration of k-th word

3. Likelihood ratio of the most likely and the
second most likely hypothesis.

Experimental Setup

Speech Recognition Backend

•The speech is modeled by using hidden
Markov models (HMMs).

•Each digit is represented by a linear HMM
that has 16 emitting states.
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•Silence/noise is modeled by a 3-state HMM
that allows backward transitions and skips.

1 2 3

•The state emission probabilities constitute a
mixture of 4 Gaussian distributions.

•The features are given by 39-dimensional
Mel frequency cepstral coefficients.

•Each feature vector corresponds to a win-
dow length of 25 ms of the audio signal.

Data Sets

� Aurora 5 (development set):

•Spoken sequence of digits (“zero” to “nine”).

•The number of digits varies between 1–7.

•Real speech from different speakers.

•Mixed with natural background noise (e.g.,
airport, office noise).

� Google’s reCAPTCHA (evaluation set):

•Spoken sequence of digits (“zero” to “nine”).

•Some digits are overlapping in time.

•The number of digits varies between 6–12.

•Synthetic speech from a single female voice.

•Highly stationary background noise.
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FIGURE 1: Example of Aurora-5 showing the waveform.
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FIGURE 2: Example of reCAPTCHA showing the waveform.

Experimental Results
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FIGURE 3: Comparison of learners for Aurora-5.
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FIGURE 4: Comparison of learners for reCAPTCHA.
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Conclusions

•Semi-supervised and active learning lowers
the costs for breaking audio CAPTCHAs.

•A simple serial combination of active and
semi-supervised learning is preferable to a
more involved parallel combination.
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