Reducing the Cost of Breaking Audio CAPTCHAs
by Active and Semi-Supervised Learning

Malte Darnstadt
Faculty of Mathematics
Ruhr-Universitit Bochum
Bochum, Germany
Email: malte.darnstaedt@rub.de

Abstract—CAPTCHASs are challenge-response tests that are
widely used in the Internet to distinguish human users from
machines. In addition to the well-known visual CAPTCHASs, most
Internet services also provide an audio-based scheme, e.g., to
enable access for visually impaired users. Recent research has
shown that most CAPTCHAs are vulnerable as they can be bro-
ken by machine learning techniques. However, such automated
attacks come at a relatively high cost as they require human
experts to create labels for the unlabeled CAPTCHA samples
collected from a website in order to train an attacking system.

In this work we utilize active and semi-supervised learning
methods for breaking audio CAPTCHAs. We show that these
methods can reduce the labeling costs considerably, resulting in
an increased vulnerability of audio CAPTCHAs as automated
attacks are rendered even more worthwhile. In addition, our find-
ings give insight into improvements to the design of CAPTCHAs,
helping to harden prospective audio CAPTCHA schemes against
active learning attacks in the future.

Keywords-active learning, semi-supervised learning, audio
CAPTCHA, automatic speech recognition

I. INTRODUCTION

CAPTCHAs' are widely used in the Internet for distinguish-
ing human users from automated programs to limit the abuse
in online services, e.g., automated account creation for sending
spam mail. Therefore, CAPTCHAs should be easy to solve by
humans, but difficult to break by machines. Audio CAPTCHAs
are required for allowing access to visually impaired users and
to enable the use of non-graphical devices.

For evaluating the security strength of a CAPTCHA scheme,
one can build a system that attempts to solve the CAPTCHAs
in an automated manner. Recent investigations [1]—[3] show
that most audio CAPTCHAs are insecure as they can be
broken by machine learning techniques. In this work, we
utilize and improve an attack based on automatic speech
recognition (ASR) pioneered by Sano, Otsuka and Okuno [3].

Training speech recognition systems, as any machine learn-
ing technique, requires labeled data examples; thus to break
audio CAPTCHAs by means of ASR, the orthographic tran-
scription of the audio signals must be available. Whereas
collecting unlabeled data (i.e., downloading audio CAPTCHAs

ICompletely Automated Public Turing tests to tell Computers and Humans
Apart

Hendrik Meutzner, Dorothea Kolossa
Faculty of Electrical Engineering
Ruhr-Universitit Bochum
Bochum, Germany

Email: {hendrik.meutzner, dorothea.kolossa}@rub.de

from a website) is nearly for free, labeling the data is very ex-
pensive and time consuming as it requires human interaction.

Therefore we investigate the usefulness of unlabeled data,
by means of active and semi-supervised learning, to reduce
the amount of necessary labels. We demonstrate that the
labeling costs can be reduced considerably while achieving
high success rates for breaking audio CAPTCHAs.

Our experiments are conducted on two different data sets,
a development and an evaluation set. The development set is
given by the Aurora-5 speech corpus [4] that contains thou-
sands of noisy digit sequences. The digit sequences constitute
real speech recordings spoken by various speakers. The eval-
uation set is given by the current version of reCAPTCHA [5]
that consists of highly distorted digit sequences where the
speech appears to be synthetic. We will show that results on
the development set predominantly translate to the evaluation
set, while analyzing differences in performance between the
two data sets can give insights into the design of CAPTCHASs
that are harder to break by active learning.

A. Structure of the Paper

We will first give a quick overview over relevant prior work
in Sec. I-B. In Sec. I-C, we will define some vocabulary
used in the rest of the paper. In Sec. II, we introduce our
four learning algorithms: semi-supervised, active, and two
combined learners. The setup and results of our experiments
are given in Sec. III. The paper is finished with conclusions
and open questions in Sec. IV.

B. Prior Work

While there is much prior work on breaking visual
CAPTCHAs (e.g., see [6]-[9]), less focus has been given to
audio CAPTCHAs. Chellapilla, Larson, Simard and Czerwin-
ski establish in [7] that most attacks on character-based visual
CAPTCHAs employ a two-stage approach: the image is first
segmented into the parts where characters are located and
then the individual characters are recognized using standard
pattern recognition techniques. Chellapilla et al. consider the
segmentation phase to be the hard part of the problem. A
two-stage approach is also applied successfully to break audio
CAPTCHAs by Tam, Simsa, Hyde and von Ahn [1] and
Bursztein, Beauxis, Paskov, Perito, Fabry and Mitchell [2].

The viability of ASR to break audio CAPTCHAs was re-
cently demonstrated by Sano, Otsuka and Okuno in [3]. Since
ASR can cope with continuous speech, the aforementioned
segmentation problem is avoided. For an introduction to ASR
we refer the interested reader to Rabiner and Juang [10].

Our semi-supervised learning algorithm is an instance of
the hard expectation-maximization (EM) algorithm [11], [12],
which was previously applied for ASR by Zavaliagkos and
Colthurst in [13], for the similar problem of sequence classi-
fication using Hidden Markov Models by Zhong in [14] and
in the related field of computational linguistics by Spitkovsky,
Alshawi, Jurafsky and Manning in [15].

Some remarks about the hard EM algorithm are in order:
the well-known expectation-maximization (EM) algorithm, in-
troduced by Dempster, Laird and Rubin in [11], iterativley
finds a (local) maximum likelihood estimation for models
depending on hidden variables, like the unknown labels of
unlabeled CAPTCHAs in our case. In each iteration the
algorithm maximizes the expected value of the likelihood
function with respect to the distribution over the hidden
variables conditioned on the model from the last iteration.
The hard EM algorithm, a term coined by Kearns, Mansour
and Ng in [12], is a simplification of standard EM, where the
distribution is replaced by the mode, i.e. the most likely value,
of the hidden variables. Hard EM is sometimes called Viterbi
EM (e.g. see [15]); in this paper we will always refer to the
Viterbi algorithm for finding the most likely path in a Hidden
Markov Model [22] when we use the name ‘Viterbi’.

The active learning algorithm that we employ as well as
a method of combining active and semi-supervised learning
in parallel were originally proposed in the context of ASR by
Riccardi and Hakkani-Tiir [16]. Similar combinations of active
and semi-supervised learning for speech recognition were also
investigated by Yu, Varadarajan, Deng and Acero [17].

C. Preliminaries

An observation is a representation of an audio signal (by an
appropriate sequence of feature vectors), that consists of a vari-
able number of spoken words, which are possibly separated
by silence or background noise. The vocabulary is limited to
digits between zero and nine and the speech may be either
natural or synthetic. The observations may contain additional
distortions, e.g., additive noise or reverberation effects. The
label of an observation is the transcription (including silence
and noise) of the audio signal.

A model represents a data structure that enables the estima-
tion of labels—together with a measure of confidence for each
estimated label—for a given set of observations. We regard an
estimated label to be correct if its digit sequence is identical
to the ground-truth label of the observation disregarding any
occurrence of silence or noise.> Models used in ASR are often
generative, i.e., they describe a distribution over observation-

2For breaking reCAPTCHA this measure could be even more generous, as
the reCAPTCHA system accepts answers having a Levenshtein distance of
one between the user input and the true label of the CAPTCHA.

label pairs. The probability of a (fixed) model generating an
observation-label pair is called the likelihood of that pair.

A learner is an algorithm that takes a sample of labeled
observations as its input and outputs a model. The sample is
drawn according to some unknown distribution (which is not
necessarily generated by a model). We measure the error rate
of a learner’s model according to the same distribution.

When comparing two learners L and L', we call L better
than L' if L achieves a lower average error rate for any fixed
number of labeled words in the sample. Another possible
criterion uses the number of labeled observations, which is
unsuited for our purpose as observations can vary in length.
Clearly, the effort of labeling an observation is proportional to
its word count.

We assume that we have access to an ASR system that can
learn models using labeled observations and that can estimate
labels together with a measure of confidence for unlabeled
observations. Please note that our learning algorithms, which
are defined in the next section, are oblivious to the implemen-
tation of this underlying ASR backend (for a description of
the backend used in our experiments see Sec.s II-D and II-E).

II. ALGORITHMS
A. Semi-Supervised Learning

In semi-supervised learning the learner has access to two
samples: a labeled sample (which we denote by Sp) and
an unlabeled one (denoted by Syy). Both samples are drawn
according to the same distribution over the observations,
thus we can regard the sample Sy as providing additional
information about the distribution to the learner. A detailed
introduction to semi-supervised learning is given in [18].

We propose the following semi-supervised learning algo-
rithm, which—as mentioned before—has already been applied
in similar settings [13]-[15]:

1) Train initial model M on a (small) randomly drawn

labeled sample Sfy..

2) Draw an unlabeled sample Sy .

3) Repeat the following steps:

a) Estimate the labels of Sy using the current
model M.
b) Retrain model M on the labeled set S, U Sy.

In this, as in all following iterative learning algorithms, the
number of iterations can be either determined by convergence
or chosen in advance by the user.

In [13] Zavaliagkos and Colthurst removed the estimated
labels with the least confidence scores from Sy before re-
training the model; we will use a similar idea for the learning
algorithms in section II-C, but instead of merely removing the
estimations we will apply active learning to obtain the true
labels.

B. Active Learning

An active learner, introduced by Cohn el al. in [19], also has
access to an unlabeled sample, but here the learner is allowed
to actively request true labels for selected observations.

The following active learner requests labels for those obser-
vations which the learner’s model is least confident about:

1) Train initial model M on a (small) randomly drawn

labeled sample Sy..

2) Repeat the following steps:

a) Draw an unlabeled sample Sy and estimate its
labels using the current model M.

b) Request the true labels of the n observations from
Sy with the least confidence and add them to Sp.

¢) Retrain model M on the labeled set Sp.

The difference between our method and the active learner
from Riccardi and Hakkani-Tiir [16] is that the latter one uses
one pool of unlabeled observations, while we draw a new
sample Sy in every iteration. Moreover, we use a different
measure of confidence in our experiments than Riccardi and
Hakkani-Tiir (see Sec. II-E).

As noticed in [16], the choice of n is a trade-off between
making optimal selection decisions (n should be small) and
computational cost (n should be large).

C. Combined Learners

Since active learning algorithms typically do not request
labels for all drawn unlabeled observations, it is a natural idea
to use these leftovers for semi-supervised learning.

We study two methods to combine the active learner from
Sec. II-B with the semi-supervised learner from Sec. II-A.

Our first combined learner was proposed by Riccardi
and Hakkani-Tiir in [16]—apart from the parts marked as
‘optional’—and operates in parallel, i.e., in each iteration of
the active learner we use the spare unlabeled data for semi-
supervised learning:

1) Train initial model M on a (small) randomly drawn

labeled sample Sfy..

2) Set Sy to the empty set.

3) Repeat the following steps:

a) Draw an unlabeled sample S;; and estimate its
labels using the current model M.

b) Request the true labels of the n observations of
S}, with the least confidence and add them to Si..
Add the remaining observations of S;; with their
estimated labels to Sy .

¢) Retrain model M on the labeled set S;, U Sy
(optional: give Sy, a higher weight than Sp;)>.

d) Optional: Tterate the semi-supervised learning
steps, i.e., estimate the labels of Sy and retrain
M on S, U Sy several times.

During our experiments we had to include weighting and
additional semi-supervised steps to achieve satisfactory re-
sults. The benefit of additional semi-supervised learning steps
was previously recognized by Yu, Varadarajan, Deng and
Acero [17].

For our second combined method, we propose to run the
active and semi-supervised learners in a serial fashion:

3Integer weights can easily be implemented by duplicating the observations
of S, in the input of the training algorithm.

1) Train model M using the active learner from Sec. II-B.
2) Use M as the initial model for the semi-supervised
learner from Sec. II-A and skip the first step.

In spite of the simplicity of this “folklore” algorithm, we
are not aware of prior applications in the field of automatic
speech recognition.

The serial combined learner is computationally simpler than
the parallel one, especially if the optional additional semi-
supervised learning steps are executed. For a discussion of the
parallel learner’s practicability see Sec. III-B5.

D. Speech Recognition Backend

For the underlying ASR backend we employ the Hidden
Markov Model Toolkit (HTK) [20], which provides a state-of-
the-art implementation of the required training and recognition
algorithms used for our approach.

We use the Baum-Welch algorithm [21] to train models
given a labeled set of observations, and the estimation of
labels—given the trained models—is based on the Viterbi
algorithm [22]. Due to space constrains we omit the details of
these algorithms and refer the interested reader to Rabiner and
Juang [10]. HTK’s implementation of the Viterbi algorithm,
based on a token passing model, provides a list of the n
most likely labels together their corresponding word likeli-
hoods, and the overall likelihood of each label can be simply
computed as the product of the individual word likelihoods.

E. Measures of Confidence

Let s be an unlabeled observation and let (I1,p}),
.+, (I, Pr) be the output of the Viterbi algorithm using model
M, ie., l; are the labels estimated by M for s and p; are the
associated word likelihood vectors (including likelihoods for
parts consisting of silence or noise). We assume that the labels
are ordered by their likelihoods.* We define the normalized
likelihood q; of (I;,p;) as

1

[2:] : 1 ‘ T T
qi = (Hpi,kl"k >
k=1

where p; 1 is the likelihood of the k-th word of label I;, |w; k|
is its length (in frames) and |/;| is the word count of ;.

While we always take [; to be the estimated label of s for
semi-supervised learning, we employ these two methods to
measure the confidence in [y for active learning:

A) Take the normalized likelihood ¢, of (I1,p1).

B) Let 7 be the first index such that [; and [; differ in
more than just the positions of silence/noise. Compute
the confidence as the ratio g; / ¢;. We call this quantity
the likelihood ratio.

We give the following intuition why the normalized like-
lihood is a better measure of confidence than the plain like-
lihood: normalizing by 1/|w; ;| counteracts against choosing
observations with predominantly long words. The normaliza-
tion by 1/|l1| prevents the learner from selecting observations

“ie., it holds [T pip = TV pjos for i < .

with a high word count, which would be a good strategy, in
fact, if the effort of labeling was not directly dependent on the
word count.

Using the likelihood ratio instead of the normalized likeli-
hood is helpful in the following situation: it can happen that the
model M is still unsure about the position of silence/noise in
s, while the digits are already very certain; let us say the digits
are in the same order in Iy,...,[,, for some m. Let s’ be a
second observation where M has a low level of certainty about
the order of digits: let (I1,p1’),..., (I, p,’) be the output of
the Viterbi algorithm for s’ and let us say that already I} and
14 differ in their digits and ¢} = ¢5. It can occur in this case
that ¢; is smaller than ¢}, so the active learner based on the
normalized likelihood would request the label of s first. But we
would like the learner to request the true label of s’ instead of
s, because we are only interested in the order of digits when
breaking CAPTCHAs. Taking the quotient can mitigate this
problem, since typically g,,+1 is much smaller than q;, or it
may even hold that m = n, in which case we consider the
likelihood quotient to be infinite.

For example, during our experiments the Viterbi algo-
rithm estimated the following labels for an observation with
the true label “noise-7-2-6-9-noise”: “noise-7-2-6-9-noise”,
“noise-noise-7-2-6-9-noise”, ‘“‘noise-7-2-6-9-noise-noise”, etc.
We computed the sixteen most likely labels and all of them
were correct, i.e. only differing in the position and number of
noise segments. However, the normalized likelihood ¢; was
lower than the normalized likelihood of other, still erroneously
labeled observations.

III. EXPERIMENTS
A. Data Sets

We use two different data sets: Aurora-5 [4] and a sam-
ple from Google’s current audio CAPTCHA scheme (re-
CAPTCHA) [5].

The Aurora-5 data set contains real speech recordings
that are mixed with natural background noise (e.g., airport,
car engine or office noise) at different signal-to-noise ratios
(SNRs). The speech recordings were obtained from different
speakers (approx. 50 males and 50 females), each pronouncing
several observations that comprise a sequence of digits and the
number of digits per observation is varied between one and
seven. The data set is provided with the respective labels for
each observation. Our experiments are based on the noisy digit
recordings distorted by the interior noise at 10 dB SNR.

We find that using Aurora-5 for system development is ad-
vantageous as the recordings are not only similar to digit-based
audio CAPTCHAs but they offer the advantage of having
access to a large pool of 9275 correctly labeled observations
with 50554 words.

The reCAPTCHA data set is also constructed from a se-
quence of digits where the total number of digits per observa-
tion is varied between 6 and 12. The digits are spoken by both
a male and a female voice and the speech appears synthetic.
All signals exhibit the same stationary background noise. The
CAPTCHAs were downloaded from the reCAPTCHA website

in March 2014 and manually labeled at our institute. To
obtain the CAPTCHA labels, we conducted a listening test
in a controlled environment involving a group of 12 human
listeners®. Each participant was asked to label a set of 50
CAPTCHA signals. The participants were briefed that the
signals consist of a varying number of digits that are separated
in time by distinct speech pauses. Each CAPTCHA was
labeled by four different participants to identify inconsistent
labelings. We only utilize those transcriptions that exhibit an
agreement between at least three participants. This procedure
resulted in an overall number of 336 labeled CAPTCHAs —
corresponding to 4859 labeled words — that we utilize for our
evaluation.

An important difference between the two data sets arises
from the speaking pauses that separate the individual digits
from each other. While for the Aurora-5 observations there
are speaking pauses between all digits, the reCAPTCHA
observations consists of blocks of digits that are spoken in
an unnaturally fast succession. We assume that this is done to
make the separation problem harder.

B. Setup and Learning

To examine and compare the performance of our learning
algorithms we conducted a series of experiments. Because we
put the focus on comparison, we did not try to thoroughly
optimize parameters shared by all learners to achieve the best
possible error rate.

However, we were able to reduce the error rate for solving
the current reCAPTCHA challenges exactly (i.e., with a Lev-
enshtein distance of zero) by 44%—from 83%, published by
Sano, Otsuka and Okuno [3], to 39%—with a similar amount
of training data.®

In this paragraph we specify details of our ASR backend
(these details are not required for understanding the rest of
the paper; again, we refer interested readers unfamiliar with
ASR to Rabiner and Juang [10]). We used 39-dimensional Mel
frequency cepstral coefficients (MFCCs) as features including
their first and second order derivatives, where each feature
vector corresponds to a window length of 25 ms of the audio
signal. Each digit is modeled by an HMM that has 18 states
and exhibits a left-to-right topology without state skips. The
silence/noise model had five states and allowed backward
transitions and skips between the first and the last state. The
state emission probabilities were represented by a Gaussian
mixture model (GMM) having four mixture components.

In all experiments, the ratio between the number of ran-
domly drawn observations (labeled and unlabeled) and the
number of labels used was kept constant. On the Aurora-5 data

SEthical Considerations: Before performing the listening test, all partic-
ipants were informed that they were to take part in a scientific study and
that their data was used to analyze the properties of a CAPTCHA. All data
collected during our study was used in an anonymized way so that there is
no link between collected data and individual participants. Our institute does
not fall under the jurisdiction of an IRB or similar ethics committee.

%The error rates in [3] were found to be 83% and 48%, for a Levenshtein
distance of zero and one, respectively, with 400 labeled observations available
in total.

T T
—o— baseline
—m— semi-supervised
0.5 |- —@— active, norm. likelih. [
—r— active, ratio
—— combined, parallel
2 0.4 - @ - combined, serial [
s \
g
()
g 03| N
(5]
g
0.2 |- -
0.1 |- .
| | | | | |
50 150 250 350 450 550
number of labeled words
Fig. 1. Mean error rates for Aurora-5.
TABLE 1
EXPERIMENTAL RESULTS FOR AURORA-5.
baseline semi-supervised learner
words “ mean error rate [std. dev. “ mean error rate [std. dev.
0- 99 0.553 0.103 0.480 0.187
100-199 0.365 0.071 0.207 0.094
200-299 0.280 0.051 0.140 0.036
300-399 0.230 0.041 0.123 0.032
400-499 0.214 0.036 0.122 0.026
500-599 0.202 0.035 0.113 0.020
active, normalized likelihood active, likelihood ratio
words [mean error rate | std. dev. [[mean error rate | std. dev.
0- 99 0.543 0.109 0.525 0.119
100-199 0.353 0.065 0.327 0.067
200-299 0.255 0.039 0.243 0.035
300-399 0.212 0.030 0.204 0.036
400-499 0.185 0.025 0.175 0.025
500-599 0.169 0.026 0.158 0.019
parallel combined learner serial combined learner
words [mean error rate [std. dev. [[mean error rate [std. dev.
0- 99 0.535 0.173 0.428 0.170
100-199 0.244 0.120 0.173 0.049
200-299 0.173 0.042 0.137 0.031
300-399 0.144 0.034 0.123 0.027
400-499 0.122 0.023 0.117 0.027
500-599 0.131 0.030 0.115 0.032

0.7 F T I T -
—— baseline
—m— semi-supervised
—@— active, norm. likelih.
—r— active, ratio
0.6 [~ —&— combined, parallel
£ - @ - combined, serial
&
§ = i
b5}
=1
g 0.5 |- R
0.4 |- .
| | | | | | |
100 200 300 400 500 600 700
number of labeled words
Fig. 2. Mean error rates for eCAPTCHA 2014.
TABLE II
EXPERIMENTAL RESULTS FOR RECAPTCHA.
baseline semi-supervised learner
words “ mean error rate [std. dev. “ mean error rate [std. dev.
0-199 0.671 0.104 0.638 0.144
200-399 0.534 0.098 0.482 0.136
400-599 0.480 0.100 0.432 0.136
600-799 0.454 0.103 0.414 0.135
active, normalized likelihood active, likelihood ratio
words [mean error rate | std. dev. [[mean error rate | std. dev.
0-199 0.656 0.114 0.676 0.112
200-399 0.504 0.093 0.525 0.098
400-599 0.444 0.094 0.456 0.098
600-799 0.419 0.088 0.412 0.093
parallel combined learner serial combined learner
words “ mean error rate [std. dev. “ mean error rate [std. dev.
0-199 0.648 0.125 0.634 0.147
200-399 0.460 0.111 0.470 0.116
400-599 0.388 0.105 0.407 0.124
600-799 0.388 0.108 0.391 0.118

set this ratio is set to ten and on reCAPTCHA, due to the small
amount of available labeled data, it is four. Intuitively, for
optimal error rates this ratio should be as large as possible, but
for comparisons any constant suffices. All iterations were done
five times. Initial models were trained on fifty (Aurora-5) resp.
twenty (reCAPTCHA) randomly chosen labeled observations.

1) Baseline: In addition to the learning algorithms given in
Sec. II, we also run a purely supervised learner as a baseline.
The baseline learner started—as all our learning algorithms—
with an initial model and then added an increasing number of
randomly drawn labeled observations using Baum-Welch train-
ing. We kept track of the number of additional labeled words
and the empirical error rate (evaluated on an independent test
set). After 10 (Aurora-5) resp. 20 (reCAPTCHA) runs, we
calculated the mean error rates and standard deviations for
several intervals of word counts. In the other experiments we

proceeded in the same way and the results are shown in Tab. I
(Aurora-5) resp. Tab. II (reCAPTCHA). A plot of the mean
error rate against the word count is given in Fig. 1 resp. Fig. 2.

2) Semi-supervised learner: The semi-supervised learner
operates in a similar fashion: it uses the model trained by
the baseline as its initial model and then applies five rounds
of semi-supervised training on randomly drawn unlabeled data
(with a constant ratio between the number of unlabeled and la-
beled data as outlined above). As shown in Tab. I resp. Tab. I,
the semi-supervised learner clearly outperforms the baseline,
although the standard deviation is higher when the number of
additional words is small.

A comparison with the supervised baseline allows us to
estimate the value of unlabeled data: for example, on the
Aurora-5 data set, we get a mean error rate of 21% by
improving the initial model with 150 labeled and ca. 1350
unlabeled words’, however we need over 500 labeled words

7Since on the Aurora-5 data set the ratio between all used observations and
labeled observations is ten, and we designed the active learner in such a way
that it has no bias in observation length.

T T T
0.4 | —@— no add. iterations, weight 1 ||
—m— add. iterations, weight 1
—&— add. iterations, weight 5
| —— add. iterations, weight 10
—&— add. iterations, weight 15
5*_._: 0.3 |- - @ - add. iterations, weight 30 [
:
g
(5} - -
=1
S
g
0.2 |- =
0.1 |- B
number of labeled words
Fig. 3. Mean error rates for variants of the parallel combined learner using

different weighting factors and options of additional semi-supervised learning
iterations on Aurora-5.

to achieve the same performance when no unlabeled data are
available.

3) Active learners: For active learning we examined both
measures of confidence from Sec. II-E. As you can see in
Fig. 1 and 2, both active learners are better than the baseline,
which implies that both confidence measures can indeed
identify observations whose label is more informative than the
label of a randomly chosen one. Here we notice an important
difference in the two data sets: on Aurora-5 the confidence
measure based on the likelihood ratio outperforms the measure
based on the normalized likelihood, while on reCAPTCHA we
see the opposite behavior (except for a word count above 600,
where the quotient is slightly better, which we interpret as an
outlier.). The implications of this observation are discussed in
Sec. II-C.

4) Combined learners: The combined learners are based
on the superior confidence measure for each data set. We
find that both parallel and serial learners are better than pure
active learning, and on each data set one of the two combined
learners is the best learner evaluated in this work. Again,
the use of semi-supervised learning increases the standard
deviation for small word counts.

5) Practicability and performance of the parallel combined
learner: As seen in Fig. 3, we had to introduce weighting
(with an empirically found optimal weight of ten for Aurora-
5 and six for reCAPTCHA) and additional semi-supervised
iterations to achieve a satisfactory performance for the parallel
learner from Riccardi and Hakkani-Tiir [16]. Please note that
optimizing a parameter by experimentation—and by similar
techniques like cross validation—is detrimental to active learn-
ing’s goal of reducing the number of used labels, because an
active learner will (typically) request the labels of a different
fraction of the unlabeled data pool in each run. We are not
aware of a method for optimizing the weight without using a
large amount of labeled data, which is not readily available in
situations where active learning is applied.

Furthermore, the optimized parallel learner is still worse
than pure semi-supervised learning on Aurora-5, which implies
that its active choice of labels is inferior to random sampling.
While its performance on reCAPTCHA is better than the serial
learner (except for small word counts), this gain seems too
small to us to be worth the effort in real world attacks.

C. Implications for the Design of CAPTCHAs

The observation that active learning based on the likelihood
ratio performs better than the one based on the normalized
likelihood on the Aurora-5 data set, is best explained by the
frequent confusion about the position of noise or silence (the
example at the end of Sec. II-E was from Aurora-5). Further
evidence is given by the fact that the normalized likelihood
performs better on the reCAPTCHA data set, where we did
not see these kind of confusions.

The computation of likelihood ratios is more expensive,
since we have to determine the n best hypotheses instead
of just one. To improve the resistance of audio CAPTCHAS
against active learning, we would like to see this gap between
the performances of the two methods on audio CAPTCHAs,
and, at best, the gap should be much larger.

We suggest that both can be achieved by inserting super-
fluous words® from a preferably large vocabulary between the
words that are relevant for solving the CAPTCHA (e.g., the
digits in reCAPTCHA). These superfluous words play the role
of the noise in Aurora-5.

Doing so should amplify the effect that occurred on Aurora-
5: one simple silence/noise model does not suffice anymore;
in the best case a different model must be trained for each
superfluous word (the existence of a small number of models
that recognize all superfluous words well must be prevented
by the designer of the CAPTCHA scheme). Since the Viterbi
algorithm must estimate which, where and how many super-
fluous words occurred, the confusion in the n best hypotheses
will be much higher than it is now for Aurora-5. Therefore,
even if the digit sequence is already very certain, the estimated
labels will be assigned a low likelihood, and it becomes harder
to distinguish already correctly recognized from uncertain digit
sequences.

The introduction of superfluous words should not hamper
human users too much, because they can focus on the nec-
essary words (e.g., digits). On the other hand, the separation
problem still has to be hard, so transitions between necessary
and superfluous words have to be hard to detect.

IV. CONCLUSIONS AND OPEN QUESTIONS

We gave several active and semi-supervised learning tech-
niques and demonstrated that they are useful for reducing
the demand of labeled data in breaking audio CAPTCHAs.
We found that the results on our development set, Aurora-5,
are generally transferable to reCAPTCHA. We argued that a
serial combination of active and semi-supervised learning is
preferable to a parallel one, especially in real world attacks.

8These do not necessarily have to be English words. Even noise signals
could be used for the purpose.

We found evidence and theoretically motivated that the incor-
poration of superfluous words can hinder an active learning
system and should therefore be included the design of audio
CAPTCHA schemes.

We also raised open questions and gave directions for future
work: What other measures of confidence are useful for active
learning? How can we choose a good measure depending on
the data set (without using much labeled data)? Is it possible
to optimize parameters of active learning algorithms without
using much labeled data? How well do the presented learning
methods generalize to other CAPTCHA schemes?

ACKNOWLEDGMENTS

The authors would like to thank Hans Ulrich Simon for
helpful suggestions and all participants of the listening ex-
periments at the Ruhr-Universitit Bochum who provided the
reCAPTCHA labels required for our work.

This research was supported in part by the DFG Research
Training Group UbiCrypt (GRK 1817/1).

REFERENCES

[1] J. Tam, J. Simsa, S. Hyde, and L. von Ahn, “Breaking Audio
CAPTCHAs,” in NIPS, D. Koller, D. Schuurmans, Y. Bengio, and
L. Bottou, Eds., 2008.

[2] E. Bursztein, R. Beauxis, H. S. Paskov, D. Perito, C. Fabry, and
J. C. Mitchell, “The Failure of Noise-Based Non-continuous Audio
Captchas,” in IEEE Symposium on Security and Privacy, 2011.

[3] S. Sano, T. Otsuka, and H. G. Okuno, “Solving Google’s Continuous
Audio CAPTCHA with HMM-Based Automatic Speech Recognition,”
in Proceedings of the International Workshop on Security, 2013.

[4] D. Pearce and H.-G. Hirsch, “The Aurora Experimental Framework for
the Performance Evaluation of Speech Recognition Systems under Noisy
Conditions,” in Proc. ISCA ITRW ASR2000, 2000.

[5] Google, “reCAPTCHA,” http://www.recaptcha.net as of 03/2014.

[6] K. Chellapilla and P. Y. Simard, “Using Machine Learning to Break
Visual Human Interaction Proofs (HIPs),” in NIPS, 2004.

[7]

[8]
[9]
[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]
[19]

[20]

[21]

[22]

K. Chellapilla, K. Larson, P. Y. Simard, and M. Czerwinski, “Building
Segmentation Based Human-Friendly Human Interaction Proofs (HIPs),”
in Proceedings of the Second International Workshop on Human Inter-
active Proofs, 2005.

A. Hindle, M. W. Godfrey, and R. C. Holt, “Reverse Engineering
CAPTCHAs,” in Proc. WCRE, 2008.

J. Yan and A. S. El Ahmad, “Breaking visual captchas with naive pattern
recognition algorithms,” in Proc. ACSAC, 2007.

L. Rabiner and B.-H. Juang, Fundamentals of Speech Recognition.
Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1993.

A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,” Journal of the Royal
Statistical Society, Series B, 1977.

M. Kearns, Y. Mansour, and A. Y. Ng, “An Information-theoretic
Analysis of Hard and Soft Assignment Methods for Clustering,” in
Proceedings of the Thirteenth Conference on Uncertainty in Artificial
Intelligence, 1997.

G. Zavaliagkos and T. Colthurst, “Utilizing Untranscribed Training Data
To Improve Performance,” in DARPA Broadcast News Transcription and
Understanding Workshop, Landsdowne, 1998.

S. Zhong, “Semi-supervised sequence classification with HMMs,” Inter-
national Journal of Pattern Recognition & Artificial Intelligence, 2005.
V. 1. Spitkovsky, H. Alshawi, D. Jurafsky, and C. D. Manning, “Viterbi
Training Improves Unsupervised Dependency Parsing,” in Proceedings
of the Fourteenth Conference on Computational Natural Language
Learning, Stroudsburg, PA, USA, 2010.

G. Riccardi and D. Z. Hakkani-Tiir, “Active and unsupervised learning
for automatic speech recognition,” in INTERSPEECH, 2003.

D. Yu, B. Varadarajan, L. Deng, and A. Acero, “Active learning and
semi-supervised learning for speech recognition: A unified framework
using the global entropy reduction maximization criterion,” Computer
Speech & Language, 2010.

O. Chapelle, B. Scholkopf, and A. Zien, Eds., Semi-Supervised Learning.
MIT Press, 2006.

D. Cohn, L. Atlas, and R. Ladner, “Improving Generalization with
Active Learning,” Machine Learning, 1994.

S. J. Young, D. Kershaw, J. Odell, D. Ollason, V. Valtchev, and
P. Woodland, The HTK Book Version 3.4. Cambridge University Press,
2006.

L. E. Baum, T. Petrie, G. Soules, and N. Weiss, “A Maximization Tech-
nique Occurring in the Statistical Analysis of Probabilistic Functions of
Markov Chains,” The Annals of Mathematical Statistics, 1970.

A. J. Viterbi, “Error bounds for convolutional codes and an asymptoti-
cally optimum decoding algorithm,” IEEE Transactions on Information
Theory, 1967.

