Virtual Machines Jailed

Virtualization in Systems with Small Trusted Computing Bases

Michael Peter, Henning Schild, Adam Lackorzynski, Alexander Warg
Technische Universitat Dresden
Department of Computer Science
Operating Systems Group
{peter, hschild, adam, warg}@os.inf.tu-dresden.de

ABSTRACT

The trusted computing base of legacy applications can be
reduced significantly by separating their security—critical
parts into dedicated protection domains. As yet, paravir-
tualization has been used to host the non-secure portion.
The applicability of this approach is limited by the need of
source code access. We show how to implement efficient
virtual machines in a microkernel-based system enabling
the reuse of arbitrary operating systems. We found that
the performance is on par with other virtual machine imple-
mentations, while security—sensitive applications retain their
small trusted computing base. In fact, the kernel growth
is marginal (500 SLOC), other security—critical components
are not affected.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security Kernels; D.4.8
[Operating Systems]: Performance

General Terms

Design, Security, Performance

Keywords

Virtualization, Small Trusted Computing Base, Secure Sys-
tems, Microkernel

1. INTRODUCTION

Visiting the web page of his bank, a user must trust
software on his machine that can easily comprise millions of
source lines of code (SLOC). Contemporary web browsers,
such as Firefox, which alone accounts for 2.5 million SLOC!
are targeted recurrently[2]. Private data may be exposed
possibly resulting in personal distress or financial losses.

Considering the size of trusted components, the situation
is similar at the system level. A minimal configuration of the

!Firefox 3.0 measured with David A. Wheelers SLOCCount

This is the author’s version of the work. It is posted here by permission of
ACM for your personal use. Not for redistribution. The definitive version
was published in

VTDS 2009, March 31, 2009, Nuremberg, Germany.

Copyright 2009 ACM 978-1-60558-473-7 ...$5.00.

Linux kernel contains about 200,000 SLOC and the majority
of production configurations are significantly larger?. With
such a size, vulnerabilities are unavoidable[3]. Even worse,
the attacker does not need to compromise the kernel, as
it is sufficient to gain control over one of several processes
running with superuser privileges. For example, current X11
implementations comprise 1.25 million lines of code. Buffer
overflows, as observed in the past [4], have the potential to
seize complete control over the machine.

With about two defects per 1,000 SLOC [17] produced
even by leading software-development organizations, error-
free software is elusive in the foreseeable future and other
mitigations should be considered. Proposed for more than
three decades [22], subdividing software into trusted and
untrusted components has eventually been recognized as the
best practice [24, 12, 21, 20, 11].

Microkernels have a record for being a suitable foundation
upon which highly decomposed systems can be built. As for
any novel system, lack of applications is an issue. From
the technical point of view, building a completely new
operating system stack with desirable properties followed
by porting applications is the most appealing solution. But
it also comes with the highest costs. A more pragmatic
approach is to port whole legacy systems which obviates
changes to applications. Nonetheless the kernel has to be
adapted to run on top of the microkernel instead of bare
hardware. Although possible, porting is labor—intensive or
even impossible without source code access.

In this paper, we show how a microkernel can be extended
to support CPU and memory virtualization both of which
are crucial for the implementation of virtual machines
(VMs). We start with a small system where the security
critical core system, i.e. the kernel and base infrastructure,
contains less than 150,000 SLOC. Adding support for virtu-
alization resulted in a modest growth of 500 SLOC in kernel
size, which was the only increase of the trusted computing
base (TCB) for security—concerned applications.

We will proceed as follows: Section 2 will revisit the
fundamentals, before the design is described in Section 3.
Our evaluation in Section 4 shows that the performance
is on par with established solutions, which is noteworthy
because previous secure systems often had to pay a security
tax. Related work will be discussed in Section 5 and will be
followed by concluding remarks.

2Linux 2.6.29 comprises about 7 million SLOC

2. BACKGROUND

2.1 Microkernel-based Systems

Microkernels grew out of the insight that error—prone
device drivers should not reside in a location where isolation
cannot be enforced; and neither should resource allocation
policies, which have the potential of yielding much better
performance, if user—level knowledge is incorporated.

Following the L4 [16] philosophy, L4/Fiasco aims at
minimality in the kernel. Functionality is only admitted
into the kernel if either it cannot be implemented at
user—level without compromising on security, or an user—
level implementation had a severely adverse impact on
performance. Page table related operations (address space
construction) are an example for the former, scheduling is
one for the latter.

As communication overhead had proven to be crucial for
the viability of a microkernel, early work on L4 was primarily
focused on inter-process communication (IPC) performance,
which was a prerequisite for fine-grained isolation. When
this problem was solved the attention turned towards secu-
rity, where the global name space was swiftly identified as
problematic. Various development lines arose all with the
goal to adopt a capability—based access control mechanism,
which had been advocated as the method of choice [19].
Our efforts have resulted in L4/Fiasco, a microkernel which
employs capability mediation for all kernel objects.

In the remainder of this section, we will briefly intro-
duce L4 mechanisms as far as they are needed for the
comprehension. An L4 task embodies a protection domain
and serves as a container for resources such as memory.
L4 threads, the unit of scheduling, execute in tasks and
communicate via synchronous IPC. Apart from simple
message exchange, IPC is also used for capability transfer
and fault reflection. In L4-speak, granting capabilities via
IPC is called mapping, the revocation is called unmapping.
A pager is a program that fulfils the role of handling faults
by mapping capabilities.

The size of an appropriately configured development
version of L4/Fiasco is approximately 26,000 SLOC, which
is two orders of magnitude smaller than current commodity
monolithic kernels.

A microkernel is of little use on its own. It is rather
the microkernel-based system that provides utility to the
end user. The execution environment needs to supply basic
functionality, such as memory management, CPU and device
resources, infrastructure and service discovery, or common
application libraries.

Based on the kernel mechanisms we developed a runtime
environment that provides this set of abstractions. It’s
overall structure is hierarchical and allows the construction
of isolated compartments with differing characteristics.

Some flavor of virtualization is the most convenient way
to provide access to legacy applications. Compared to full
virtualization, paravirtualization has lower demands on the
kernel but requires source code modification to the OS.
Our software stack offers a paravirtualized version of Linux,
L*Linux [13], which is binary compatible with its original
version. This allows to run unmodified Linux programs on
L4/Fiasco.

Despite its potential to remove the source code depen-
dency, the integration of virtual machines into microkernels
was hold back by virtualization deficiencies of the ITA32 ISA.

2.2 Splitting Applications

The conceptionally most appealing approach — rebuilding
an application with a small TCB — is impractical in most
cases. This can be illustrated with the example of a
contemporary web browser: Given that a browser runs on
a secure operating system, it still has a TCB of hundreds
of thousands, if not millions of lines of code. Modern
web pages apply sophisticated transformations to adapt
their presentation. They often use scripting, which is
indispensable for rich web applications, and employ plugins
for more elaborate dynamic content.

If an application has to be available then there is no other
choice than to make sure that all contributing components
are also available. Fortunately, security ® has less stringent
requirements. For many use cases it is acceptable that an
application fails as long as there are no harmful effects.

An example is an online banking transaction as described
in [23], where a full featured web browser is usually involved.
The user authorizes a bank transfer with a Transaction
Authentication Number (TAN) where it needs to be made
sure that the TAN is not stolen or data of the transaction
is modified by intruders. In a split application scenario the
user uses his regular web browser but the final transaction
is displayed by a secure component and the TAN is entered
only there. The secure side also handles the encryption of
the transaction, which is finally sent to the bank via the
legacy operating system. This scenario handles threats like
keyloggers or viruses that exploit vulnerabilities somewhere
in the sizable software stack.

3. DESIGN AND IMPLEMENTATION

The objective of our design is the support of virtual
machines in an environment that at the same time allows
for secure applications with a small TCB. Secure applica-
tions may use VM-hosted functionality through the split
application design pattern (see Section 2.2).

3.1 Virtualization Aspects

The implementation of a virtual machine can be broken
down into virtualization of the CPU and memory and device
virtualization.

CPU and memory virtualization are tightly coupled and
critical to the performance of a VM. It is desirable to
execute as many instruction as possible natively on the
processor. Recent virtualization extensions in commodity
processors allow for efficient CPU virtualization with low
software complexity. Switching CPU execution modes is a
highly intrusive operation that involves page tables defining
the execution environment. Since only the kernel can
guarantee the validity of page tables, this operation has to be
integrated into the kernel’s protection domain management.
The guest in a VM employs it’s own virtual memory defining
it through page tables in (guest) physical memory which
translates guest virtual addresses® to guest physical ones.
On an actual machine, these physical addresses would be
used to refer to a memory location. Virtualization adds an
additional translation step wherein a guest physical address
is further translated into a host physical one.

3In this paper, we restrict ourselves to confidentiality and
integrity when referring to security. Availability cannot be
assured by splitting applications.

4IA32 terminology speaks also of linear addresses.

In the general case, the number of VMs exceeds the num-
ber of actual devices which necessitates device sharing. Since
commodity hardware often does not provide virtualization
support, the arbitration has to be done in software. Typical
strategies are sharing (e.g. timers), partitioning (e.g. mass
storage devices) or time multiplexing (e.g. network devices).
Best practice is to expose a device model to the the guest,
intercept interactions with it, analyze those and translate
them into requests for the actual host devices.

3.2 Kernel Extension

Representing protection domains, the microkernel’s tasks
were a natural choice to represent the execution environment
of VMs as well. In our design each VM has a task associated.
Memory, mapped into this task’s address space, will appear
as physical memory in the virtual machine. The secure
memory delegation mechanism of L4 ensures that VMs can
only access memory that has been granted to them.

Host § Guest

Kernel 1/l@)] 4

’7 Linux & KVM module

Figure 1: KVM control flow

Host Guest

|_ QEMU |

Linux &
User ~ KVM module +
i

Figure 2: KVM-L4 control flow

The host has two choices how to implement the translation
from guest virtual to host physical addresses®. It can run
the guest with page tables that translate directly from guest
virtual to host physical addresses. For this to work, the host
needs to intercept all guest page table manipulations and
translate each guest page table into a corresponding shadow
page table. Unfortunately, the overhead for shadow page
tables is significant. The frequent and expensive page table
intercepts can be avoided if both guest and host translation
are implemented in hardware. A processor therefor uses two
distinct page tables. It is noteworthy that only the page
table that translates to host physical addresses is security—
critical which obviates the interception of guest page table
modifications.

Figure 1 shows a world switch on a monolithic kernel.
KVM is a typical representative of a Linux-based virtual
machine monitor (VMM), any other VMM would also serve

5Processor execution modes without address translation
enabled are of no practical interest and can be handled by
software emulators.

well as an example. Running a virtual machine starts
with the switch (a) from QEMU to the Linux kernel (1).
KVM will then execute a world switch (b) to the VM (2).
Switching back occurs when events need to be handled (3).
After events that do not require a return to QEMU, such as
expiring timers driving the Linux scheduling, KVM resumes
execution (2). For more complex assistance such as device
emulation control is transferred to QEMU (4).

As L'Linux runs in user-mode KVM lacks the CPU
privileges to execute a VM switch directly. To compensate
we added a system call to L4/Fiasco which takes a CPU
state and a task capability as arguments. The task defines
the physical memory of the VM and the execution resumes
with the given CPU state. We denote the version of KVM
adapted to L4/Fiasco KVM-L4. Figure 2 illustrates how
a world switch looks like in our design. Compared to
Figure 1, the number of privilege transitions has doubled.
Transferring control from QEMU to L*Linux requires an L4
IPC (1,2) instead of a single syscall. The same applies to
the step where the KVM-L4 code within L*Linux switches
to QEMU (7, 8). Our new syscall enters L4 /Fiasco (3) and
switches to the VM (4). Control transfer from the VM back
to KVM-L4 again involves two privilege transitions (5,6).

The format of the page tables used to translate guest
physical to host physical addresses — often referred to
as nested page tables — is specific for a virtualization
extension. In the general case, the kernel has to derive a
nested page table from the VMs task page table. Such a
derivation is straightforward and not performance—critical
but increases the kernel memory footprint. Our implemen-
tation capitalizes on the fact that AMD’s SVM uses the
same format for both nested and regular page tables. Since
the kernel already maintains page tables for the VM task’s
address space, we could reuse them with little modifications.
The only difference is that an address space used for a virtual
machine does not contain the microkernel®.

The code we had to add to the microkernel to support all
the described functionality comprises about 500 SLOC.

3.3 Virtual Machine Monitor

We use the term virtual machine monitor for two different
meanings. In the broader sense, the virtual machine monitor
is the sum of all components that are needed to create the
illusion of a machine. In that case the VMM is not a single
component but rather comprises multiple parts as depicted
in Figure 3.

In a stricter sense, VMM refers to the component that
coordinates the execution of a VM. While doing so it
may make use of kernel services, e.g. for CPU and
memory virtualization, or secure device managers for device
virtualization. In our architecture (Figure 3), QEMU acts
as VMM. Under this meaning, the VMM is a regular user
activity and not particularly interesting from a security
point of view. In most cases, the intended meaning should
be clear from the context so that we do not explicitly denote
the subcase.

The device model can be rather complex. Since it is
implemented in a protection domain, it does not pose a
security risk so that an untrusted existing VMM can be
reused.

Regarding device drivers, the VMM has to be treated

5The L4/Fiasco kernel normally resides in the upper portion
of each task which accelerates kernel—user transitions.

as any other activity accessing devices. Each component
with access to DMA—capable devices may circumvent page
table based isolation as DMA operations are not subject to
this mechanism. If the VMM hosts device drivers it has
to be trusted. Pragmatically, we complement our VMM
with L*Linux and its rich assortment of device drivers. The
question of secure device drivers is beyond the scope of this

paper.

_____ paraVM
Trusted Computing Base
Linux App
Secure Trusted Full Featured Legacy App
Pinpad Viewer Web Browser Tegacy 05
[Legacy0S |
App App | i - _—___
/1 VMM

L4Linux/KVM-L4 |

Key Management & Signature / ‘

Secure Base Infrastructure {

Secure Device Manager |

CPU
Mgr

Naming
Service

’ Loader

Memory
Mgr

Secure
GUI

== SN LT IR

Microkernel / Hypervisor

Figure 3: System Architecture.

Kernel-based Virtual Machine (KVM) [1] is an open
source virtualization implementation for the Linux kernel.
It comprises a kernel module, which is responsible for CPU
and memory virtualization making use of the virtualization
extensions available with recent processors [6, 14]. Guest
device emulation is handled by a slightly modified version of
the QEMU (8] machine emulator.

All our adaptations are limited to the part of KVM
running inside the Linux kernel, KVM-L4 uses the KVM-
QEMU as it is. The changes to the KVM code comprise
about 100 SLOC. Although this number is not relevant
for the TCB of secure applications running next to virtual
machines , it is still noteworthy as we can easily benefit
from the ongoing KVM development with modest merge
overhead.

The slight modifications needed for KVM suggest that
the adaption of other VMMSs, e.g. VirtualBox, should be
straightforward. Running a VMM directly on L4/Fiasco is
also conceivable with the possible use case of a rudimentary
VMM that only virtualizes core devices, such as timers and
interrupt controllers, which are owned by the microkernel.
All other devices would be exposed directly to the guest
possibly with their activities restricted by an IO-MMU.
Such an arrangement would allow to run a Linux much less
modified than L*Linux.

3.4 Limitations

Using L*Linux’s device drivers without further provisions
makes L*Linux part of the TCB. It has been shown that
device drivers can be contained by an additional validation
layer albeit at a noticeable performance cost. The impend-
ing availability of IO-MMUs [5, 15] gives reasonable hope
for a solution that integrates well into a microkernel system
and is both general and well performing.

Our implementation does not yet support direct communi-
cation of applications inside virtual machines with processes
running outside a VM or in another VM. This feature is

100 -

8O f | e

60 [~ | f

qof----- - -
20| b -
0

Linux Linux-PAE KVM-L4 KVM

relative performance [%]

Figure 4: Virtual Memory Benchmark

required for the split application scenarios described in Sec-
tion 2.2. We expect the implementation of a communication
service through guest device drivers to be straightforward
and applicable to a wide range of guest operating systems,
including closed source products.

4. EVALUATION

4.1 Performance

In this section we present the results of our experiments.
We used an AMD Phenom”™ 9550 Quad-Core CPU on
an ASUS M3A78-EM motherboard equipped with 2GB
DDR2-800 RAM and a Samsung HDO0S80OHJ hard disk.
On the host we ran version 2.6.27 of both, L*Linux and
Linux. KVM-L4 is based on KVM version 79. Hardware
virtualization ran always with nested paging enabled and
used 32-bit mode for both, the host and the guest. In all
our experiments only one of the four available cores was
used. The respective VMs were always assigned one virtual
CPU and 512MB RAM. For the guest’s hard disk we used
virtio, which relies on paravirtualized drivers.

The first benchmark we ran was a microbenchmark
measuring the duration of context switches from the host
domain to the guest domain and back. This benchmark
helped us to quantify the overhead introduced by our design
modifications. Subsequent application benchmarks revealed
that the increased context switch duration of KVM-L4 only
has a slight impact on the performance. To our surprise,
KVM-L4 even performed slightly better than KVM in some
cases. After some investigations we concluded that the most
likely explanation can be found in KVM’s PAE overhead.

4.1.1 Microbenchmarks

Slipping a microkernel/hypervisor underneath invariably
increases the number of context switches. Our first mi-
crobenchmark quantifies the induced overhead. KVM ships
with a benchmark for measuring the average duration
of a world switch (Figures 1 and 2 scheme (b)). We
implemented another benchmark that measures the duration
of complete round-trips including the switch to QEMU
and back (scheme (a) and (b)). Concerning the world
switch, we measured an average of 2742 cycles for KVM and
3684 cycles for KVM-L4. The switch, which also includes
switching to QEMU and back (scheme (a) and (b)), takes
4361 cycles for KVM and 14132 cycles for KVM-L4. Hence,
the detour through the microkernel increases the duration of
the world switch by 34%, for the full round-trip the increase
is 224%. The high increase for the round—trip is because
address space switches and cache flushes are included in our
implementation.

100 ey e
S
3 8O0 - [-
g
E 60 - |
€
S 40l e
2
§ 20l e - - -
5]
0

Linux Linux-PAE KVM-L4 KVM

Figure 5: Linux—kernel compilation

To our surprise, KVM-L4 showed better performance than
KVM in some of our application benchmarks. At first,
we did not have an explanation because all of our design
changes should degrade performance due to additional
context switches and larger TLB and cache footprints.

We also ran a benchmark addressing virtual memory
management. The benchmark reads 256 MB virtual memory
in a long running loop. The area is constructed out of 2
MB of system memory using alias mappings. The results
of that benchmark are illustrated in Figure 4. Notice that
in this experiment KVM-L4 actually performs better than
KVM. We suppose that this is because of different TLB
fill costs that depend on the number of levels of the page
table. Under KVM nested paging can only be used with
three levels (PAE enabled on the host). The depth of the
page tables affects the page walk complexity and the TLB
pressure. Enabling the third level in native Linux (Linux-
PAE) decreased performance by 6% without virtualization
being involved. The depth of the nested page table goes in
as a multiple of the guest page table depth when calculating
the page walk complexity. It therefore also affects TLB
pressure. Bhargave et al. [9] go into details on nested paging
and suggest keeping the number of nested levels low in order
to reduce the memory management overhead.

4.1.2 Application Benchmarks

To evaluate the application performance of KVM-L4, mi-
crobenchmarks are not sufficient because they stress specific
functionality only, whereas application performance depends
on a larger set of features. A widely used benchmark,
compiling the Linux kernel (version 2.6.27.9) was our choice
for a complex workload. The results of this evaluation are
illustrated in Figure 5. Although the control flow switches
are slower on our adapted version of KVM, the overall
performance for kernel compilation turned out to be slightly
(about 2%) better. Using a two level nested page table
compensates for the slower switching in this benchmark.

100
80
60
40

20

relative performance [%]

0

write read

Figure 6: dd input—output Benchmark

Compilation primarily stresses virtual memory manage-

ment and the CPU. Another limiting factor for virtual
machine performance is input-output (I/0). Workloads
issuing I/O operations involve QEMU interaction, as already
shown these switches are much more expensive on KVM-1L4
than they are on KVM. In order to analyse the impact of
slower switching on I/O performance, we used the Linux
tool dd to read/write 512 MB from/to hard disk in blocks
of 1 kB. Before each run we cleared the Linux buffer caches
to really cause I/O operations. When measuring a VM, we
also flushed the host’s caches. Paravirtual devices reduce the
number of context switches induced by I/O and therefore
improve performance in contrast to full device emulation.
To show this improvement, we also ran this benchmark
without the paravirtualized hard disk provided by wvirtio.
The results of that benchmark are given in Figure 6 . It
illustrates that the I/O performance of KVM-L4 is slightly
worse in comparison to KVM. The big loss against native
Linux is implied by using a virtual machine and also applies
for KVM. Comparing the scenarios using virtio to the ones
using full device emulation (KVM-[L4]-E) shows that KVM-
L4 benefits more from that technique than KVM. This is
also what one would expect keeping in mind that KVM-L4
has slower round-trip switching and paravirtualized devices
reduce the number of these switches.

4.2 Guest Support

Besides Linux, which we used for the performance eval-
uation, we also ran several other guest operating systems
successfully on our VM. Among them, L4/Fiasco, Microsoft
Windows XP and Windows 7 Beta 1, OpenSolaris, and
FreeBSD. Except for the current limitation to 32—bit guests,
we expect KVM-L4 to be feature compatible to KVM.

5. RELATED WORK

The reduction of the TCB size has been investigated by
various researchers for some time now. Singaravelu et al.
[23] proposed a very similar architecture. Limited by the
absence of hardware virtualization support, they had only
paravirtualization at their disposal, which excludes closed
source operating systems and applications tied to them.

Biemiiller and Dannowski [10] proposed an extension
to the L4 API to enable virtual machines on L4-based
systems. The kernel version used as starting point did not
support capabilities, which is a drawback, if dynamic in the
secure part shall be supported. With the proposal, neither
architectural aspects above the kernel are covered, nor is
there an evaluation of a reference implementation available.

Murray et al. [21] showed how the TCB of a Xen—based
[7] system can be minimized. The lack of light—weight
protection domains and a capability—based access control
mechanisms is likely to hamper the evolvement of secure
applications that act more dynamically.

Flicker[18] employs a different architecture and forgoes
a kernel. Instead it relies on hardware support to ensure
the integrity of its execution environment. This approach is
limited to a single secure application at any given instant in
time which may become problematic for secure environments
that consist of multiple components.

6. CONCLUSION AND OUTLOOK

In this paper we presented a design and implementation of
a VM in a secure environment. The size of the TCB has only

marginally increased and remains with 150,000 SLOC about
two order of magnitudes smaller than those of contemporary
monolithic kernels. Experiments have shown that hosting a
virtual machine on a system with a small trusted computing
base is feasible and does not incur significant performance
losses.

The upcoming challenges of microkernel systems, such
as multiprocessor support and kernel resource management,
will necessitate compromises between simplicity and perfor-
mance. If performance—critical activities can be contained
in virtual machines, chosing the simpler version might be
acceptable. Future versions of KVM-L4 may add support
for Intel’s virtualization technology, including it’s version of
nested paging, as well as support for systems without nested
paging. We are currently working on the implementation of
a multi-core version of L4/Fiasco, which will enable guests to
benefit from multi-core machines. Besides all the discussed
points, the foremost problem with virtualization in secure
environments is secure device virtualization. forthcoming
IO-MMUs should facilitate the removal of device drivers
from the TCB.

7. ACKNOWLEGDEMENT

We would like to thank Bjorn Débel and the reviewers for
their constructive criticism on the way to this version of the
paper. Authors of this paper have been partially supported
by the European Research Programme FP7.

8. REFERENCES

[1] KVM - Kernel-based Virtualiztion Machine. White
paper, Qumranet Inc., 2006.

[2] Mozilla foundation security advisories, 2009.

[3] Vulnerability Report: Linux Kernel 2.6.x, 2009.

[4] Vulnerability Report: X Window System 11 (X11) 7.x,
2009.

[5] Advanced Micro Devices. AMD I/0O Virtualization
Technology (IOMMU) Specification, rev 1.20 edition,
2007.

[6] Advanced Micro Devices. AMDG64 Architecture
Programmer’s Manual Volume 2: System
Programming, rev 3.14 edition, 2007.

[7] P. Barham, B. Dragovic, K. Fraser, S. Hand,

T. Harris, A. Ho, R. Neugebauer, I. Pratt, and

A. Warfield. Xen and the art of virtualization. In
SOSP ’03: Proceedings of the nineteenth ACM
symposium on Operating systems principles, pages
164-177, New York, NY, USA, 2003. ACM.

[8] F. Bellard. QEMU, a fast and portable dynamic
translator. In ATEC ’05: Proceedings of the annual
conference on USENIX Annual Technical Conference,
pages 41-41, Berkeley, CA, USA, 2005. USENIX
Association.

[9] R. Bhargava, B. Serebrin, F. Spadini, and S. Manne.
Accelerating two-dimensional page walks for
virtualized systems. In ASPLOS XIII: Proceedings of
the 13th international conference on Architectural
support for programming languages and operating
systems, pages 26—-35, New York, NY, USA, 2008.
ACM.

[10] S. Biemueller and U. Dannowski. L4-Based Real
Virtual Machines - An API Proposal. In Proceedings

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

of the MIKES 2007: First International Workshop on
MicroKernels for Embedded Systems, pages 36—42,
Sydney, Australia, Jan. 16 2007.

S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram,

L. Zheng, and X. Zheng. Secure web application via
automatic partitioning. In SOSP ’07: Proceedings of
twenty-first ACM SIGOPS symposium on Operating
systems principles, pages 31-44, New York, NY, USA,
2007. ACM.

M. Hohmuth, M. Peter, H. Hartig, and J. Shapiro.
Reducing TCB size by using untrusted components -
small kernels versus virtual machine monitors. In in
Proc. of the 11th ACM SIGOPS European Workshop,
page 22. ACM Press, 2004.

H. Hiartig, M. Hohmuth, J. Liedtke, J. Wolter, and
S. Schonberg. The performance of p-kernel-based
systems. In SOSP °97: Proceedings of the sizteenth
ACM symposium on Operating systems principles,
pages 66-77, New York, NY, USA, 1997. ACM.

Intel Corporation. Intel 64 and IA-32 Architectures
Software Developer’s Manual Volume 3B: System
Programming Guide, Part 2, 253669-028us edition,
2008.

Intel Corporation. Intel Virtualization Technology for
Directed I/0, rev 1.2 edition, September 2008.

J. Liedtke. On microkernel construction. In
Proceedings of the 15th ACM Symposium on Operating
System Principles (SOSP-15), Copper Mountain
Resort, CO, Dec. 1995.

Y. K. Malaiya, Y. K. Malaiya, J. Denton, and

J. Denton. Estimating Defect Density Using Test
Coverage. Technical report, 1998.

J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter,
and H. Isozaki. Flicker: an execution infrastructure for
tcb minimization. In Eurosys '08: Proceedings of the
3rd ACM SIGOPS/EuroSys European Conference on
Computer Systems 2008, pages 315-328, New York,
NY, USA, 2008. ACM.

M. S. Miller, K.-P. Yee, and J. Shapiro. Capability
Myths Demolished, 2003.

D. G. Murray and S. Hand. Privilege separation made
easy: trusting small libraries not big processes. In
EUROSEC ’08: Proceedings of the 1st European
workshop on system security, pages 40-46, New York,
NY, USA, 2008. ACM.

D. G. Murray, G. Milos, and S. Hand. Improving Xen
security through disaggregation. In VEE ’08:
Proceedings of the fourth ACM SIGPLAN/SIGOPS
international conference on Virtual execution
environments, pages 151-160, New York, NY, USA,
2008. ACM.

J. Saltzer and M. Schroeder. The protection of
information in computer systems. Proceedings of the
IEFEF, 63(9):1278-1308, Sept. 1975.

L. Singaravelu, C. Pu, H. Hértig, and C. Helmuth.
Reducing TCB complexity for security-sensitive
applications: three case studies. SIGOPS Oper. Syst.
Rev., 40(4):161-174, 2006.

L. Singaravelu, C. Pu, H. Hirtig, and C. Helmuth.
Reducing TCB complexity for security-sensitive
applications: three case studies. SIGOPS Oper. Syst.
Rev., 40(4):161-174, 2006.

	Introduction
	Background
	Microkernel-based Systems
	Splitting Applications

	Design and Implementation
	Virtualization Aspects
	Kernel Extension
	Virtual Machine Monitor
	Limitations

	Evaluation
	Performance
	Microbenchmarks
	Application Benchmarks

	Guest Support

	Related Work
	Conclusion and Outlook
	Acknowlegdement
	References

