Performance Evaluation of Para-virtualization on
Modern Mobile Phone Platform

Yang Xu, Felix Bruns, Elizabeth Gonzalez, Shadi Traboulsiukldott, Attila Bilgic

Abstract—Emergence of smartphones brings to live the concepimitations, virtualization technology is chosen as amoth
of converged devices with the availability of web amenities. Suchiternative to enhance the security in modern mobile phones

trend also challenges the mobile devices manufactures and servic o)
providers in many aspects, such as security on mobile phones?ﬁrtua“Zatlon technology can date back to IBM's VM/370

complex and long time design flow, as well as higher developmepyStem [2][3][4] in 1960’s, which is the first commercial vir
cost. Among these aspects, security on mobile phones is getting mistal machine system on the world. The initial motivation $e u
and more attention. Microkernel based virtualization technology widl virtual machine system is to support multiple operatingr sy
play a critical role in addressing these challenges and meeting mohilens and multiplex expensive mainframe hardware. A virtual

market needs and preferences, since virtualization provides e$seﬁl . . .
isolation for security reasons and it allows multiple operating syste Achine (VM) is a duplicate of a real computer system, whose

to run on one processor accelerating development and cutting degsources are fully COUUOHEd by a _V"'tua| mthln(E_ monitor
opment cost. However, virtualization benefits do not come for fre€e/MM). The VMM provides users with an efficient, isolated
As an additional software layer, it adds some inevitable virtualizatigsrocessing environment, which is essential to allow more

overhead to the system, which may decrease the system performagicgn one operating system running on one single machine.
In this paper we evaluate and analyze the virtualization performan

cost of L4 microkernel based virtualization on a competitive mobil’g’E present, V|rtuaI|za.t|on technology is prlmgrlly apglien
phone by comparing the L4Linux, a para-virtualized Linux on top ct€rvers and workstations to help system f_idm”?'Str.amm.EEd
L4 microkernel, with the native Linux performance usitmbench management overhead. In the future, virtualization will be

and a set of typical mobile phone applications. a solution for security and software reliability [5], e.q i
Keywords—L4 microkernel, virtualization overhead, mobileMobile phones. The enhanced security is achieved by isglati
phone. trusted data and code from malicious ones so that even though

one guest operating system running on the virtual machine
is compromised, the integrity of the rest system can not be
I. INTRODUCTION damaged.

Recent years, as 3G/beyond-3G mobile communicationcu”ent virtualization technology can be generally didde

technology becomes mature, more and more mobile phoﬁ'&o two categories:

are connected to Internet. People start using mobile phoned) Full virtualization: unmodified guest OS can be run on
to download audio, video files as well as mobile phone the virtual machine directly. The guest OS does not
applications from Internet. Typical examples are iPhon@-Ap realize that it is running in a virtualized environment.
Store and Android Market. Such trend makes modern mobile Full virtualization is usually realized either by Dynamic
phones no longer closed systems like the traditional ones. Binary Translation (DBT) (e.g. VMware ESX [6] [7])
As a consequence, the security of mobile phones faces big or by hardware assistant (e.g. Xen [8]).

challenges. At the meantime, mobile phone users tend ta2) Para-virtualization: unlike full virtualization apgaoh,
put important personal contents into mobile phones, such as modifications are needed to de-privilege the guest OS.

personal information, contacts, emails, credit card nurabe Usually modifications of system call interface, memory
even passwords. All these put further pressure on the $gcuri management, and interrupt handling are necessary. The
aspect in modern mobile phones. advantage of para-virtutalization approach is its high

Currently in order to address the security challenges in performance. Examples of this approach are Xen and L4
mobile phones, several different methods are used, such as microkernel based virtualization approach (L4Linux).

implementing complete open devices (including open OS),the requirements for virtualization on mobile phones are

separating application domain and cellular domain, USIFiite different from virtualization on high performancessy
strict AP level certification policies and restricting Hime tomg Some suitable virtualization technologies for higin- p
environment (e.g. Java). However, all these solutions haygmnance systems may become unapplicable on mobile phones
their own limitations and restrictions [1]. To overcomes@e y .« to hardware resources and power consumption limigtion

—_— _ For example, in full virtualization by DBT, the executed
Yang Xu and Klaus Mott are with Infineon Technologies AG, Amrmieeon

1-12 85579 Neubiberg, Germany e-mdijang.xu;klaus.mok@infineon.com instructions are intercepted and replaced in real times Thi
Felix Bruns, Elizabeth, GonzalezShadi Traboulsi, and l&ttBilgic ~computationally intensive and unsuitable for mobile syste
are with Institue of Integrated System, Ruhr-Bochum UnigrdCFO- And the hardwares dedicated for virtualization, which are
03-560 Ruhr-Bochum University D-44780 Bochum Germany email: .
{felix.bruns;elizabeth.gonzalez;shadi.traboulsiatiilgic} @is.ruhr-uni- usually available for PC and server systems are not yet

bochum.de . available at the embedded market. With its high performance

virtue, Para-virtualization is currenlty the emergingwimn around 5% to 10% [12]; by comparing the performance of
for virtualization in mobile phones. Examples are Trangb4Linux with another microkernel based virtualized Linux,
(current VMWare MVP)[9], VirtualLogix virtualization tde MKLinux, it is concluded that the performance of the under-
nology [10] and L4 microkernel virtualization technolodyl]]. lying microkernel indeed affect the virtualization ovealde
This is substantially determined by the fact that on mobil&n inefficient microkernel can make the system several times
phones, high performance efficiency is preferred becausestdwer. All the works above are carried out on x86 platforms.
limited resources. Among all these available embedde@systNone of them addressed the performance of L4 microkernel
virtualization solutions, only the L4 microkernel virtigdtion on embedded systems, for example, ARM processor based
approach is open-source, which is a big advantage in rdseasgstems.
work. It gives us the possibility to deeply understand the Concerning the performance of VMM for embedded sys-
embedded system virtualization approach and allows us to t@ons, there have been some works [15][16]. The main target
detailed analysis and evaluation. Furthermore it provides of [16] is to describe the optimization techniques used on
more space for optimization in the future. Pistachio L4 microkernel, a re-implementation of L4 micok

L4 microkernel was designed and optimized for 486 amkl from University Karlsruhe. Some selectietbenchresults
Pentium architectures. It has been proved quite efficient are given to prove the effects of their optimizations. Nd rea
x86 systems [12][13][14]. However, on ARM processorsggpplication performance was presented there. In [15], >$en i
which are usually used in mobile phones, the efficiency gbrted and evaluated as a VMM on ARM processor based
L4 microkernel, especially used as a VMM, has not beeystem.Imbenchis also used to investigate the performance
extensively investigated yet. In order to narrow this gad arof basic system operations. Simple performance comparison
to get exact performance data of L4 microkernel based VMbetween Xen and Pistachio L4 microkernel is performed. A
on mobile phones, we evaluated the performance of L4 Fiaddeer Interface program is used as a real application benmhma
microkernel (Re-implementation of L4 microkernel from TUo reflect the performance of Xen on common operations in
Dresden. In the rest of this paper, we call it L4 for short) amobile phones. The evaluation results show that Xen has
a VMM on a modern mobile phone platform by comparingnoderate virtualization overheads on ARM processor.
the performance of L4Linux and native Linux. The experiment
results presented not only the virtualization overheadasid I1l. L4L INUX BAsICS

system operations on L4Linux but also the virtualization L4 microkernel only provides basic services needed to

overhead of a set of typical mobile phone applications aboyg e ment arbitrary systems (including virtual machinesich
L4Linux. Both of these are usually concemed by mobilgg ,4ress space management, thread management, and IPC. |
phone system developers. Furthermore, with the help of Qs i the most privilleged mode of the hardware so thatrit ca
evaluation results, potential points to be optimized ad @@l ., 0| resources of the whole system. Additionally, iteosf

the methods to optimize the performance of applicationsrabogood isolation characteristic, which is necessary to ruerse

LALinux can be identified. subsystems concurrently on a single machine. Therefore, L4

The rest of this paper is organized as following. We firshicrokernel has all the essentials that a VMM should have.

begin with related works in Section 2. Then in Section By sing L4 microkernel as a VMM, several virtual machines
we introduce some basics about the Fiasco L4 mmrokerrpjn run in parallel. An typical VM on L4 microkernel is the

virtualization approach, i.e. L4ALinux. In Section 4, we ddéise | 4| inux.
our evaluation methodology. In Section 5 and Section 6, the| 4 inux is a para-virtualized Linux on top of L4 micro-
evaluation results are presented and analyzed respgCtivRlne| where Linux is explicitly modified according to the
After the evaluation results, in Section 7, a short dis@rs$ irtya) machine interfaces. The first port was done in 1996 at
given. Finally, we conclude in Section 8. TU Dresden [17]. Since then it has been continuously updated
to the newest Linux version. The supported architectures al
[l. RELATED WORKS have extended into embedded processors, e.g. ARM proces-

. . fors. Up to now, the latest version is L4Linux2.6.30.
The well known performance evaluations of L4 microkernel,

are presented in [12][14]. In [14], several aspects of micro)

kernel are addressed, such as kernel-user switches oderh8a Implementation

address space switches overhead, thread switches and intekt4Linux is implemented with server-client approach, which
process communication (IPC) overhead, which are usualyy illustrated in Figure 1. an L4 task is used as a Linux-
considered to be expensive on microkernel. It is proved thedrver that provides all the Linux services to the user pro-
the significant overheads are usually due to the inefficiec¢sses/clients, which are also implemented as L4 tasks in
implementation, not inherited from the microkernel itselfdifferent address spaces. User processes can only commu-
The work in [12] especially focused on the virtualizatiomicate with the Linux-server through IPC, which is one of
overhead of L4Linux. To identify the virtualization ovedw the most important primitives that are supplied by the L4
the same set of benchmarks (ilmbench hbench and AIM) kernel. As a result, the Linux-server and the untrusted user
are executed on both native Linux and L4Linux on the sanpeocesses are isolated from each other. Moreover they soe al
hardware platform then the obtained results are compaiesl. Tsolated from the rest of the system. This is the reason why
typical virtualization overhead of L4linux was shown to benicrokernel virtualization approach can enhance the #gcur

Isolated Address Spaces C. Signaling

/ \ \ For security reasons, directly manipulating thread’s lstac

stack pointer, as well as instruction pointer from othee#us
in the same address space (like in native Linux) is not altbwe
in L4Linux. Instead, a user level signal-handler is added

i Linux-used | [Linux-use to every user process to solve this. Once the signal-handler

Linux-server; | process process || yser mode receives a message from the Linux-server, it makes the main
___________ S N S thread/Linux-server running in the same address spacdtsave
kernel mode state and enter Linux by manipulating the main thread/Linux

L4 Microkernel server’s stack pointer and instruction pointer.

D. Pagefault Handling

Pagefaults are handled by the Linux-server, which works as
a pager for the user processes it creates. When a pagefault

aspect. Because the user processes/tasks from virtuaimaacfCCUrs: similar with the procedure of a system call, the L4
are separated from the rest of the system, even though {§&ne! treats the pagefault as an exception and rediretts it
guest OS on the virtual machine is compromised, the damaj§ Linux-server by sending an IPC. After the Linux-server
will not propagate to the rest of the system. Applied to mebif SCeIVes thg not|f|cat|on, it checks the s_hadow page tahts t
phones, this means even if a downioaded virus took contfJe Maintained in user—Ievei]I and assigns a new page from
of the guest OS, telephone call still can be made, because ffie?Wn address space to the corresponding user process by

modem part of the mobile phone is protected from the attadR@PPINg operations. The real page tables are kept within L4
and can not be directly accessed by user-level processes for

security reasons. Maintaining the shadow page tables te qui
B. System Calls expensive [18].

As the Linux-server and user processes are isolated from
each other, system calls on LALinux can not be directly. Interrupt Handling
handled by the kernel/Linux-server like in the native Lindx 114 interrupt handling scheme on native Linux is emu-
mechanism calledyscall redirectionis applied to implement ,ieq on L4Linux. In native Linux, the interrupt handler is
system calls on L4Linux. This mechanism is realized by us"?ﬁmlemented with two parts, top-halves interrupt handéere
a user-level exception handler. Since L4 microkemel USESiom.havels interrupt handlers. In L4Linux, the topies
different system call numbers than native Linux, when am usgerrnt handlers are replaced by separate dedicateddire
process triggers a Linux system call, the L4 microkern@ltse o \ait for interrupt messages sent by L4 kernel when
this as an exception, which is redirected to the Linux-servg, qware interrupt is triggered. Each thread correspandag

by the user-level exception handler (step 2 in Figure 2).1Upg,qare interrupt source. The bottom-halves are impléeden
receiving this redirected system call, LALinux procesbesds by one single thread, which has higher priority than the kinu

a normal system call on native Linux and after that it willliep qeryer so that the interrupt handlers and Linux-server can
to the user process that triggered the system call by seraing,, o te sequentially.

IPC. The whole handling process is shown in Figure 2, from
which we can see that each system call on L4Linux costs 2

kernel entry/exit pairs and 2 address space switches. §his i
much more expensive than in native Linux. The evaluation in this paper differentiates itself from the

previous evaluation works [12][15][16] in the following i
besides executing microbenchmarkmifench), a group of

@ ﬁﬁ%ﬁ‘i'r']g typical mobile phone applications are tested as applicatio
IPC Linux—server specific benchmarks to estimate the performance of L4 mi-
process *----|- crokernel based VMM in real use cases. The reason for this
7 approach is: microbenchmarks are usually used to detgiled|
analyze basic operations of operating system, e.g. system

1 . o .
@ %} @ calls. From the discussion in Section IlI-B we can see that

Linux [syscall ; ! ’ >
/ — system calls on L4Linux are expensive due to the virtuabrat
redirection

Fig. 1. L4Linux Implementation

IV. EVALUATION METHODOLOGY

Linux-user

approach of L4Linux. Therefore, evaluating the weak points
could help us find low-level bottlenecks and potential point
L4 Microkernel that can be further optimized in the future. However, we &thou
keep in mind that the results dimbenchdo not indicate
the overall performance, as it only measures the perforenanc
Fig. 2. System Call on L4Linux of basic system operations, which do not represent any real
applications. To get the impression of the performance a@h re

use scenarios, we further evaluate with the applicationipe

benchmarks. With this method, we can identify how much the
real applications suffer from the low-level bottlenecksl dne
relations between the performance of low-level operatams Benchmarks
high-level applications.
VMM Linux
TABLE | (L4 Microkernel & Run Time Environment|
HARDWARE PLATFORM CONFIGURATIONS
_ Infineon X-GOLD618 Infineon X-GOLD618
Infineon X M M6180 ARM1176JZS ARM1176JZS

CPU ARM1176JZS

Level 1 Cache 16K I-Cache, 16K D-Cache Evaluation Environment 1 Evaluation Environment 2

Level 2 Cache N.A.

CPU Frequency 364Mhz

Memory 64MB DDR Fio. 3. Evaluation Envi t

Memory Frequency| 180Mhz ig. 3. Evaluation Environments

FPU N.A.

tW%aIIs, context switches, memory access etc. All these bench
marks basically fall into two categories: latency benchmar
and bandwidth benchmarks. Depending on different bench-
. marking purposesimbench can be configured to measure
operat|ops? . . performance of both operating system and hardware platform
2) Does this overhead matter in real use scenarios? As in this paper, the same hardware platform is used for
To evaluate the performance of L4 microkernel based VM| the measurementémbenchis configured to execute the
on modern mobile phone platform, we useM M""6180 penchmarks related to operating systems only. Due to limite

platform from Infineon Technologies as our evaluation har@lﬂemory size of the board, all the benchmarks used in the
ware platform. The core Component o M M6180 is In- experiment are Comp"ed dynamica”y linked.

fineon’s X-GOLD"™ 618 single chip basedband processor

From the evaluation we expect to answer the following
guestions:

1) How large is the virtualization overhead on basic syste

[19], which integrates wireless communication modem, whixe b hLTAB'-E I .
signal audio, measurement subsystem and power management MDENCLATENCY RESULTS
unit on a single chip. It not only offers the modem functidgtyal Test Cases Native Linux(us) | LALinux (us)
such as GSM, UMTS, GPRS, EDGE, HSxPA, but also pro- Simple syscall 0.7158 22.3718
vides many multimedia extensions, e.g. hardware acceterat | Simple read 3.6399 34.3318
f id di d plavback. i d di d Simple write 3.1738 30.9641
or video recording and playback, integrated audio codes et Simple stat 16 7348 1060476
Table | shows the details of the platform configuratforiio Simple fstat 4.2553 44.4267
generate comparable evaluation results, the same hardware ginlﬁple Opigl%ose ‘3193;8%1 5883-;;72
s : elect on 'S . .
platforr'_n anq configurations are used across all the measure- === 7 e 8 5561 S A757
ments in this paper. Select on 250 fd's 68.8872 122.4306
To measure the virtualization overhead of L4 microkernel Select on 500 fd's 136.3443 221.5062
based VMM, we setup two benchmark environments: the first | Signal handler install | 2.619 36.2203
. dt t f Its of LALi fwhi Signal hander overheadl 9.8543 136.0835
one is used to generate performance results o inux, twhic Protection Tault 70656 739005
is done by running all the benchmarks directly over L4Linux; Pipe 127.8178 698.4668
the second one is executed as a comparison experiment where| AU_UNIX sock stream| 205.9367 876.9344
the same set of benchmarks are re-executed on native Linux. | -rocess fork+exit 5213.2701 54736.8421
. Process fork+execve | 15915.493 110000
Any dewauong frqm these tvyo pe_rform_anqe results are chuse Process forke/bin/sh -d 45000 532000
by the virtualization layer, i.e. virtualization overheathe pagefaults 46.0907 307.4131

L4Linux used in this paper is L4Linux2.6.30. To make the
results comparable, the same version of native Linux is&mos 1) Latencies: Table Il shows selected results hbench

This scheme is shown in Figure 3. latency measurements. Results of both native Linux and
L4Linux are listed in this table so that we can compare
V. MICROBENCHMARKS the differences. Figure 4 illustrates the correspondirgvsl

. . down/overhead of L4Linux, which is normalized to the perfor
Imbenchis developed by Larry McVoy and Carl Staelin ance of native Linux. As the figure indicates, executing¢he

from 1993 to 1995 [20]. Since then it has been widely used g&

: asic operations on L4Linux can be quite expensive compared
measure the performance bottlenecks on many machines ane . ; . .
with native Linux, especially the simple syscall benchmark

operating systems. It is also commonly used for evaluating_. , - : . :
VMMs [12][15][16]. Imbenchcontains a suite of benchmarks\’\gmch is about 30 “”.“es .slo_vyer than the one on native L|r1ux.
The reason for this significant overhead is as follows: on

that are designed to measure basic operations, such amsysntgtive Linux, user tasks and kernel share the same address

1The CPU frequency, memory frequency and cache size in TableLYON space. I_EaCh system C_a” CO_StS nOthmg but a CPU mode Change;
stand for the configurations we used in this paper. On L4Linux, as explained in Section IlI-B, Linux-server and

TABLE Il

SELECTEDImbenchCONTEXT SWITCH RESULTS
Pagefault -
fork+/bin/sh - | [Test Cases| Native Linux (us) | LALinux(us)
fork+execve | [N 2p Ok 20.02 132.9
fork+exit | [N 8p OK 69.53 180.04
AF_UNIX sock | IR 2p 4k 63.29 169.1
Pipe | [N 8p 4k 121.35 236.16
Protection fault | || Gz 2p 8k 100.10 196.84
Sig handler ovr _ 8p 8k 158.13 263.18
sig handler install | | NN 2p 16k 158.94 231.11
Select on 500 fd's |] 8p 16k 189.60 276
Select on 250 fd’s] 2p 32k 107.83 176.37
s o 07 [e Lmn oo
, p . .
setecton 10 to's | I 8p 64k | 140.77 244.75
open/close _ .
ONative Linux
f |
z::: _ iL4Linu
write - Native Liggx 77777777
read - Latency (us) %ég o
1 1 1 1 1 1 50
o 5 10 15 20 25 30 35 250

Fig. 4. ImbenchLatency Results (normalized to native Linux performance)

user processes are isolated in different address spacels. Ea
system call costs 2 kernel entry/exit pairs plus 2 addreasesp B —— s 60
switches, which are time consuming procedures. T e ﬁwﬁbfp
The overhead of kernel entry/exit and address space prosess et
switches can directly attribute to three aspects [14]: pure
kernel instructions execution, cache and TLB flushing. &inc
the processor (ARM1176JZS) uses physically indexed cac,kl%,. 5.
cache flushing is not necessary during address space ssvitche
Therefore, cache flushing is not a main contributor to thier-ov
head. In current version of LALinux, frequent TLB flushing isurface of native Linux. This means context switches on
also eliminated by applying ASID (Address Space Identifier) 4Linux always take longer time than on native Linux.
As a consequence, the TLB can be retained across all th&) Memory Access BandwidtiTthe performance of mem-
address spaces. Considering the above facts, we can cencli§ access is presented in Figure 6 where we can hardly
the significant overhead in system calls comes from exegutidifferentiate the curve of native Linux and its counterpart
all the additional kernel instructions when kernel entitee from L4Linux, which means the memory read bandwidth and
and address space switches are executed within system caliemory write bandwidth of L4Linux are quite close to the
As additional signal-handler is used to avoid direct interative Linux. This is mainly due to the fact that in this
thread manipulation in signal handling, the cost of sign@lenchmark simply an unrolled loop that sums up a series
handling is more expensive than the one on native Linuxf integers is executed, which does not request any kernel
In benchmarks fork, fork+execv and fork+sh in Table llservices. Therefore, nearly no overhead is added to therayst
processes are created and executed. All these need to upThie is the advantage of L4 virtualization approach. Beeaus
page tables, which is realized by maintaining a set of shad@¥Linux does not try to emulate or intercept any instrucsion
page tables. Manipulating shadow page tables and mappihg performance is nearly the same with the native one when
guest virtual addresses to host physical addresses alsa adde user process executes computing intensive tasks.
lot of overhead to these operations. In the memory read bandwidth curve there is a sharp
2) Context Switch:Table Il lists some selected results ofdecrease when the block size is 16k bytes. This is because
context switch latencies both on native Linux and L4Linuxevel 1 cache of ARM11 is 16k. The memory read bandwidth
Without considering cache footprint (while the procese s& decreases tremendously when the accessing memory block
Ok bytes), one context switch on L4Linux takes about 3 timesize is larger than the cache size. As there is no level 2 cache
longer than on native Linux. This overhead becomes lowavailable on our hardware platform, there is no second sharp
when size of the processes increases. This is because wiietrease in this figure. The curve of memory write bandwidth
the size of process increases, the context switch overteadsirelatively flat compared with the memory read bandwidth
dominated by cache interference. curve. This is caused by the fact that on ARM1176JZS the
Figure 5 plots the complete context switch results, fromache is read allocate. The data accessed in the write band-
which we can see that the surface that is constructed by thielth benchmark are not cached during execution. Thergfore
context switch latencies of L4Linux is above the correspiogd the write bandwidth is not affected by the cache size. Thus

ImbenchContext Switch Results

400 T

Nt Lk Reed Bancah —-— in this category to evaluate the performance in this
L inux Read Banduidh x| aspect: ghostscript, stringsearch, ispell and rsynth.

3) Telecommunications: as the original basic functional-
ity of a mobile phone, telecommunicate applications
are chosen as the last category. It includes CRC32,
FFT/IFFT, GSM encode/decode as well as adpcm en-

code/decode.

All the benchmarks are executed and timed on both native
Linux and L4Linux. The benchmark results are listed in Table
IV in terms of absolute execution time.

Bandwidth (MB/s)

TABLE IV
APPLICATION SPECIFICBENCHMARK RESULTS

50 L L L L L L L L L L L L L
05k 1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1M 2M 4M 8M

Block Size (bytes) Benchmarks [Native Linux (s) [LALinux (s)
Multimedia Applications
Fig. 6. Memory Read & Write Bandwidth lame 78.69 81.1
mad (small MP3 file) | 0.232 0.598
mad (large MP3 file) | 1.828 2.506
. . . mad (larger MP3 file)| 7.842 9.012
Fhe write bandwidth does not change when the block size mplayer 5515 5710
increases. ipeg 0.84 1.44
From the results ofimbenchwe can conclude that the tiff2bw 0.64 1814
performance of basic system operations on L4Linux is much :;mt:;;n i';‘iz éggz
Iqwer_tha_n the one on native Linux. This is due t_o the fypeset =86 9.118
virtualization overhead caused by the kernel entry/exitd a Office Automation
address space switches during system call processing. iemo QhOTItSC”pt g-égg ;-;?4
. . o : ispe . -
access on L4L|nyx .performs just as efficiently as it does on sirngsearch 007 0332
native Linux. This is because no kernel services are need rsynth 24.75 25.642
during execution. This also implies that by avoiding kernel Telecommunications
services the virtualization overhead can be eliminated. CRC32 0.7 1.088
FFT 10.794 11.63
GSM 9.8 10.61
VI. APPLICATION SPECIFICBENCHMARKS adpcm 0.37 1.088

Imbenchonly measures the performance of basic system
operations. It does not represent any real applicationssten Figure 7 and Figure 8 illustrate the virtualization overthea
In order to evaluate the performance of L4Linux under moiga terms of slow-down. Unlike the situation imbench as the
realistic use cases, we executed a series of applicatiaifispe figures show us, in most of the benchmarks the performance
benchmarks, which will be described in details in this sBCti of L4Linux is very close to the native Linux, e.g. in case of
Modern mobile phones are not only used as a simplgme and mplayer the overhead is only about 3%. This is much
communication tool but also as an entertainment device ds Wsetter than the performance thbench An explanation for
as personal digital assistant (PDA). Audio and video plaiba this is that these two applications are all CPU bounded appli
digital image viewing & processing, web page browsing anghtions where system calls are seldom triggered. Therefwe
word processing applications are commonly found nearly ¢iuge system call overhead does not dominate anymore. What
all of the modern mobile phones. In order to generate moige more, L4 does not use the traditional “trap and emulate”
realistic benchmark results, which give us the impressiafrtualization approach. It does not try to emulate or ioégt
of virtualization overhead under real use cases, we seélectgy instructions. Thus, most of the instructions can bectlire
a series of application specific benchmarks from MiBenakxecuted on the CPU, which further reduces the virtuabimati
[21] and some other open source application to evaluate ihgrhead. This is the same explanation for the memory access
performance of L4Linux. All the selected benchmarks can gandwidth benchmark itmbench
divided into the following three groups: At the same time, we also notice that some other appli-
1) Multimedia Applications: we choose lame, madgations, like jpeg and mad small, that also belong to the
mplayer, jpeg, tiff2bw, tiffdither, tiffmedian and typese group of computing intensive applications, have much highe
to represent the multimedia application benchmark selyerhead compared with lame and mplayer. After further
which covers MP3 encoding, decoding, video decodingnalysis of Table IV we can find that all the benchmarks
digital image processing and HTML typesetting. with high overhead have short execution time compared with
2) Office Automation: as modern mobile phone users tertdose with lower overhead, e.g. stringsearch 0.07s, adpcm
to heavily rely on mobile phone as PDA to do word.37s, mad small 0.232s, tiff2bw 0.64s, jpeg 0.84s. Based on
processing work, the office automation functionalityhis observation we assume that this inconsistent overisead
becomes more and more important on modern mobiteainly produced during process creation and destructibe. T
phones. The following typical applications are selectembsolute time for creating process and destroying process t

VIl. DISCUSSION

O Native Linux

typeset . . .
:l -l The evaluation results from Section V and Section VI tell
:— us that the virtualization overhead of L4 microkernel is-use
case dependent. The overhead of system calls on L4Linux
is significant while for computing intensive applicatioreet
overhead can become nearly neglectable. This is mostlydaus
by the virtualization mechanism applied by L4Linux. The
more system calls are triggered, the more L4 microkernel ser
vices are involved, the more overhead is added to the system.
This means applications with lots of system calls will suffe

a lot from the virtualization overhead while the ones with
few system calls can perform very efficiently. This rule give
us a guideline for developing and optimizing L4Linux based

tiffmedian

tiffdither

tiff2bw

jpeg

mplayer

mad larger

mad large

mad small applications: frequent use of system calls should be adoide
lame in performance critical applications; by avoiding trigger
system calls frequently, the performance of applicatioas c
° os f is 2 25 3 be improved.

Fig. 7. Virtualization Overhead of Multimedia Applications
VIIl. CONCLUSIONS ANDFUTURE WORK

Based on our evaluation results, we can conclude that
L4 microkernel based para-virtualization approach isifdas
O Native Linux for modern mobile phones. Considering all the benefits the
= Latin virtualization approach provides, such as a promisingtsmiu
to the security challenge on modern mobile phones, actelera
ing development and cutting development cost, the inelatab
virtualization overhead (around 5% for typical mobile phon
applications) it adds to the system is acceptable and affbed
At the same time, our evaluation results also indicate tieat t
virtualization overhead of L4 microkernel based VMM is use
case dependent. The overhead of system calls that trigtger lo
of kernel activities is significant while for those CPU boedd
applications the overhead becomes nearly neglectables Thi
suggests us a guideline for developing and optimizing Ldkin
based applications: frequent use of system calls should be
avoided in performance critical applications.
: The results of our evaluation also point out directions
° : 2 s 4 s for the future works. First of all, kernel profiling work and
detailed analysis need to be done in order to identify the
Fig. 8. \Virtualization Overhead of Office Automation and Telmmunica- hotspot within the significant system call overhead. Afteatt
tions Applications Lo
proper optimizations need to be developed and evaluated.
Secondly, rather than performance cost, further impacthef
virtualization on mobile phones need to be evaluated, with
to dominate when the execution time is short. This meansrédspect to power consumption, memory footprint and ressurc
we use larger input file to extend the execution time of thesage.
benchmarks, the overhead will decrease accordingly. Teepro
this assumption, we re-measure the mad benchmark with two
other MP3 files with different sizes. As expected, the ovathe ACKNOWLEDGMENT
is reduced from 158% to 37% and 15% respectively. The
overhead of stringsearch, adpcm, jpeg, tiff2bw, tiffmedas The authors would like to thank eMuCo, Embedded Multi-
well as tiffdither can be reduced in the same way. Considerifcore Processing for Mobile Communication Systems, and all
the real use case that usually the input files are large enmugfthe involved eMuCo partners for their support and help is thi
hide such kind of overhead, we can conclude that with typicegsearch.
mobile phone applications where the significant overhead ofeMuCo (www.emuco.eu) is a European project supported by
basic system operations do not dominate, L4Linux perfornise European Union under the Seventh Framework Programme
nearly as efficiently as native Linux. (EP7) for research and technological development.

GSM

-

FFT

adpcm

]
-
N

O

rsynth

ispell

ghostscript

(1]

(2]

(3]

(4]
(5]
(6]

(7]

(8]

[9]
[10]
(11]

[12]

[13]
[14]

(18]

[16]

[17]

(18]

[19]
[20]

[21]

REFERENCES

J. Brakensiek, A. Dige, M. Botteck, H. Hrtig, and A. Lackorzynski,
“Virtualization as an enabler for security in mobile devites IIES
'08: Proceedings of the 1st workshop on Isolation and ire¢ign in
embedded system2008.

R. Goldberg, “Survey of virtual machine researchfEE Computer
vol. 7, no. 6, pp. 34-45, 1974.

P. Gum, “System/370 extended architecture: facilities ¥otual ma-
chines,”IBM Journal of Research and Developmewiil. 27, no. 6, pp.
530-544, 1983.

L. Seawright and R. MacKinnon, “VYm/370 - a study of multipty and
usefulness,1BM Systems Journalol. 18, no. 1, pp. 4-17, 1979.

M. Rosenblum and T. Garfinkel, “Virtual machine monitorsurént
technology and future trendsComputer pp. 39—47, 2005.

K. Adams and O. Agesen, “A comparison of software and hardwa
techniques for x86 virtualization,” iIASPLOS-XII: Proceedings of the
12th international conference on Architectural supportfioogramming
languages and operating systen2906.

C. Waldspurger, “Memory resource management in vmware aseise
ACM SIGOPS Operating Systems Revieal. 36, pp. 181-194, 2002.
I. Pratt, K. Fraser, S. Hand, C. Limpach, A. Warfield, D. Mabeimer,
J. Nakajima, and A. Mallick, “Xen 3.0 and the art of virtualiza,” in
Linux Symposium2005.
“http://www.vmware.com/technology/mobile/.”

V. Inc, “Virtuallogix vIx,” Online at http://www. virtuallogix. com

M. E. Gonzalez, A. Bilgic, A. Lackorzynski, D. Tudor, Batus, and
I. Badr, “Ict - emuco: An innovative solution for future smatignes.”
in IEEE ICME Workshop on Multimedia Signal Processing and Nove
Parallel Computing. 2009.

H. Hartig, M. Hohmuth, J. Liedtke, J. Wolter, and S. 8oberg, “The
performance ofi-kernel-based systems,” Proceedings of the sixteenth
ACM symposium on Operating systems principle397, pp. 66—77.

H. Hartig and M. Roitzsch, “Ten years of research on |4-basektiraa
systems,” inProceedings of the 8th Real-Time Linux Worksh2@06.

J. Liedtke, “On micro-kernel constructionACM SIGOPS Operating
Systems Reviewol. 29, no. 5, pp. 237-250, 1995.

J. Hwang, S. Suh, S. Heo, C. Park, J. Ryu, S. Park, and @, Ki
“Xen on arm: System virtualization using xen hypervisor fanebased
secure mobile phones,” iBth IEEE Consumer Communications and
Networking Conference, 2008. CCNC 20@808, pp. 257-261.

C. van Schaik and G. Heiser, “High-performance microkéend virtu-
alization on arm segmented architectures data objdot®foceedings of
the 1st International Workshop on Microkernels for Embeti8gstems
2007.

M. Hohmuth, “Linux-emulation auf einem mikrokern,” Masgthesis,
TU-Dresden, 1996.

R. Bhargava, B. Serebrin, F. Spadini, and S. Manne, &emating two-
dimensional page walks for virtualized systems,/A8PLOS XIII: Pro-
ceedings of the 13th international conference on Architedtsupport
for programming languages and operating syste2G08.

X-GOLD 61X Production SpecificatipiWersion3.0 ed.

L. McWoy and C. Staelin, “Imbench: Portable tools for feemance
analysis,” inProceedings of the 1996 annual conference on USENIX
Annual Technical Conference Usenix Association, 1996, p. 23.

M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudgad
R. Brown, “Mibench: A free, commercially representative endest
benchmark suite,” iHEEE 4th annual Workshop on Workload Charac-
terization vol. 131, 2001, pp. 184-193.

