
System Level Benchmarking Analysis

of the Cortex™-A9 MPCore™

This project in ARM is in part

funded by ICT-eMuCo, a

European project supported

under the Seventh Framework

Programme (7FP) for research

and technological development

Roberto Mijat

Software Solutions Architect - ARM

2

Agenda

 Introduction to the ARM Cortex-A9 MPCore processor

 ARM Cortex-A9 MPCore RealView Development Platforms

 Analysis of benchmark results

 Memory bandwidth

 Memory latency

 Multiple outstanding transactions

 Context switching

 Cache to cache transfers

 Understanding the implications of system-wide benchmarks

in order to design an optimal multi-core system

3

Acknowledgements

 ICT-eMuCo

 Embedded multi-core processing for mobile communication systems

 Research program sponsored by the EU

 Partaken by industrial partners (incl. ARM) and top university

 From ARM

 Anirban Lahiri – Technology Researcher

 John Goodacre – Director of Program Management, Processor Division

 Adya Shrotriya – Intern

 Nicolas Zea – Intern

This project in ARM is in part

funded by ICT-eMuCo, a

European project supported

under the Seventh Framework

Programme (7FP) for research

and technological development

4

The Cortex-A9 MPCore Processor

External Memory

Snoop Control Unit

D$ I$

C-A9 CPU

D$ I$

C-A9 CPU

D$ I$

C-A9 CPU

D$ I$

C-A9 CPU

Generic Interrupt Controller

Unified L2 Cache

Neon/VFP Neon/VFP Neon/VFP Neon/VFP

External interrupts

Interrupt distribution

AXI Interface(s)

L2 Cache Controller

AXI Interface(s)

ACP

External un-cached AXI Masters

HOMOGENEOUS

SUPPORT

SMP/AMP/BMP

SHARED

MEMORY

CACHE

COHERENT

CONFIGURABLE

1 TO 4 CORES

DISTRIBUTED GIC

SCALABLE

5

The Cortex-A9 MPCore Processor

External Memory

Snoop Control Unit

D$ I$

C-A9 CPU

D$ I$

C-A9 CPU

D$ I$

C-A9 CPU

D$ I$

C-A9 CPU

Generic Interrupt Controller

Unified L2 Cache

Neon/VFP Neon/VFP Neon/VFP Neon/VFP

External interrupts

Interrupt distribution

AXI Interface(s)

L2 Cache Controller

AXI Interface(s)

ACP

External un-cached AXI Masters

ACCELERATOR

COHERENCE

PORT

ADDRESS

FILTERING

NEON

MULTIMEDIA SIMD

ENGINE

v7 ARM

ARCHITECTURE

6

 Superscalar out-of-order

instruction execution

 Up to 4 instruction cache line

pre-fetching

 Decode up to TWO full

instructions per cycle and

dispatch up to FOUR

 Register renaming for

speculative execution and

loop unrolling

 FPU/NEON

 Counters for performance

monitoring and PTM

Cortex-A9: Technology Leadership

Recently announced

hard macro 40nm G (TSMC) implementation targeting 2GHz

7

ARM Versatile-PBX Cortex-A9 Platform

 Dual core ARM Cortex A9

 structured ASIC

 CPU @ 70 to 140MHz

 1 NEON and 1 VFP

 Fast memory system

 32KB I&D L1 caches

 128K L2 cache

 1GB RAM

 Ethernet, USB, Flash, PrimeCells

 Same peripheral memory map as

PB/11MPCore and PB/A8

 File-system on Compact Flash

8

ARM Versatile Express Cortex-A9 Platform

 Motherboard Express uATX

 Support for two „Express‟ Daughterboards

(Processor or FPGA)

 Backwards compatible peripherals

(PB11MPCore, PB-A8, PBX-A9 & EB)

 Ethernet, USB, Flash, PrimeCells, DVI/HDMI

 CoreTile Express 4xA9

 Quad core ARM Cortex-A9

 Silicon test-chip

 4 NEON/VFP

 CPU @ ~400MHz

 Core:Bus ~2:1

 32KB I&D L1 caches

 512K L2 cache

 1GB 32bit DDR @500Mbps

11

Software Framework for Benchmarks

 Linux kernel 2.6.28

 from kernel.org

 pre-built images, boot-loaders, patches, file-systems etc

available from ARM website

 Debian 5.0 “Lenny” Linux file-system

 compiled for v4T

12

lmbench3 benchmark

 Comprehensive system benchmark including:

 Micro-benchmarks, focusing on:

 Bandwidth

 Latency

 Other (system info diagnostics etc)

 Context switching

 Stream benchmark

 Version 3 provides infrastructure to measure the scalability of

multi-processor systems

 Concurrent execution and accurate timing infrastructure

 Break out of the boundaries of L1 cache subsystem

 For the purpose of this presentation we‟ll only look at a small

subset of these benchmarks

13

Memory Bandwidth – PBX-A9

Single Instance 2 Instances

 Consider a 2 core platform

 Knees indicate cache sizes (small [128k] L2 RAM for PBX-A9)

 Increased effective memory bandwidth for multicore (2 cores)

 Cache bandwidth – doubles

 DDR2 memory bandwidth – doubles

 Agnostic to alignment

Note: Pre-fetching disabled for normalization

14

Memory Bandwidth – V2-A9

Single Instance 4 Instances

 Consider 4 core platform - running 4 concurrent benchmarks (instead of 2)

 Also at 4 times the frequency of the PBX-A9

 b/w showing good 4 cores scalability

 Increased effective memory bandwidth for higher parallel load

 L1 Cache bandwidths – becomes 4 times

 DDR2 Memory bandwidth – is only showing a doubling….

 On single instance WR benefits more from OO, write-buffer, outstanding transactions

Note: Pre-fetching disabled for normalization

15

Example Misconfigured System !!!

 Write bandwidth greatly

affected if caches are

configured as write-through

 Remember to configure

caches as write-back, with

allocate-on-write

16

Bandwidth-Latency Relation

 Latency determines

the response time

for applications on

a multicore

 Applications

requiring short

bursts of memory

accesses can run

concurrently with

bandwidth heavy

applications without

any observable

degradation – if

latency remains

constant

Core0 Core1
Internet Browser

Video / Image

Processing

17

Memory Latency – PBX-A9

 Similar latencies for

Single(S) and Two (M)

Instances of LMBench

running concurrently

 Memory latency

almost unaffected by

presence of multiple

(2) cores

 32 byte cache line

acts as pre-fetch for

16 byte strides

 Cortex A9 supports prefetching for both forward and backward striding

– disabled in these test for result normalization

 Backward striding is less common for real-life applications

 LMBench tries to use backward striding to „defeat‟ prefetching

Small but

visible L2

18

Memory Latency – V2

 4 Instances of LMBench running - 4 times the application load

 Memory latency goes up only by about 20%

 32 byte cache line acts as pre-fetch for 16 byte strides

 Application on one CPU mostly unaffected by execution on other CPUs

 Within the limits of memory bandwidth to DDR Memory

Single Instance 4 Instances

19

STREAM Benchmarks – PBX-A9

 Bandwidth almost

doubles for multiple

(2) instances

compared to the

execution of a single

instance

 Corresponding penalty

on latency is marginal

 Good for streaming,

data-intensive

applications

20

L2 Latency Configuration

 PL310 allows configuring

the latencies for the L2

cache data & tag RAMs

 Optimization: Find the

minimal latency value for

which the system would

still work

 The difference in

performance can be

double or more

 Remember DDR

memory controllers

(PL34x) have similar

setting

Additional

Latency

(cycles)

21

Memory Load Parallelism

 Indicates the number of possible

outstanding reads

 Memory system design

determines the ability of the

processor to hide memory

latency

 Support for number of

outstanding read/writes essential

for multicores – fully supported

by PL310 / PL34x

 L1 supports 4 linefill requests on

average while the implemented

DDR2 memory system 2

 Systems should support as much

memory parallelization as

possible

22

Context Switch Time – PBX A9

 When all the processes fit in the cache the context switch

time remains relatively low

 Beyond this it approaches a saturation determined by

available main memory bandwidth

 Keeping the number of active processes low on a processor

vastly improves the response time

 Context switch time is

defined here as the time

needed to save the state

of one process and

restore the state of

another process

23

Context Switching Time – PBX A9

 Peak context switch time increases by a small fraction (< 20%)

 Indicates that context switches on separate processors are almost mutually

orthogonal and enables the MPCore to support more active tasks than a

single core time-sliced processor before the system becomes unresponsive

Single Instance 2 Instances

24

A memory system optimized for MP

MODIFIED - Coherent

cache line is not up to

date with main memory

EXCLUSIVE - Up to date

and no other copies exist

SHARED - Coherent cache

line which is up to date

with main memory

INVALID - This coherent

cache line is not present

in the cache

In a MESI compliant SMP system,

every cache line is marked with

one of the four following states:

DUPLICATED TAG RAMs

DIRECT DATA INTERVENTION

MIGRATORY LINES

Stored in Snoop Control Unit for quicker access

Process of checking if requested data is in other

CPUs‟ caches is performed without accessing them

(cache-2-cache transfer)

Copy clean data from one CPU cache to another

Move dirty data from one CPU to another

and skip MESI shared state

Avoids writing to L2/L3 and reading the data

back from external memory

ARM MPCore processors implement

optimizations to the MESI protocol:

Modified → Shared

CPU 1

Memory

CPU 2

Writeback Linefill

Read from cache line

M → S I → S

Request

Exclusive → Shared

CPU 1

Memory

CPU 2

Linefill

Read from cache line

E → S I → S

Request

27

Cache to Cache Latency

 Significant benefits

achievable if the

working set of the

application partitioned

between the cores can

be contained within the

sum of their caches

 Helpful for streaming

data between cores

 may be used in

conjunction with

interrupts between

cores

 Though dirty lines have higher

latency they still have 50%

performance benefit

28

Summary and Recommendations

 Memory bandwidth may be increased by

 Increasing size of cache lines

 Increasing width of memory bus/interface

 Interleave accesses (and buffer reads/writes)

 Memory latency can be improved by

 Shortening paths

 Increasing rate of successful pre-fetching

 Understanding the current latencies in a system

 Spreading Memory and CPU intensive applications over the

multiple cores provides better performance

 Subject to bandwidth and latencies of memory system

 ARM MPCore architecture mitigates migration overheads

 Running multiple memory intensive applications on a single CPU can

be detrimental due to cache conflicts

