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Agenda 

 Introduction to the ARM Cortex-A9 MPCore processor

 ARM Cortex-A9 MPCore RealView Development Platforms

 Analysis of benchmark results

 Memory bandwidth

 Memory latency

 Multiple outstanding transactions

 Context switching

 Cache to cache transfers

 Understanding the implications of system-wide benchmarks 

in order to design an optimal multi-core system
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The Cortex-A9 MPCore Processor
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The Cortex-A9 MPCore Processor
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 Superscalar out-of-order 

instruction execution

 Up to 4 instruction cache line 

pre-fetching

 Decode up to TWO full 

instructions per cycle and 

dispatch up to FOUR

 Register renaming for 

speculative execution and 

loop unrolling

 FPU/NEON

 Counters for performance 

monitoring and PTM

Cortex-A9: Technology Leadership

Recently announced

hard macro 40nm G (TSMC) implementation targeting 2GHz
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ARM Versatile-PBX Cortex-A9 Platform

 Dual core ARM Cortex A9

 structured ASIC 

 CPU @ 70 to 140MHz

 1 NEON and 1 VFP

 Fast memory system

 32KB I&D L1 caches

 128K L2 cache

 1GB RAM

 Ethernet, USB, Flash, PrimeCells

 Same peripheral memory map as 

PB/11MPCore and PB/A8

 File-system on Compact Flash
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ARM Versatile Express Cortex-A9 Platform

 Motherboard Express uATX

 Support for two „Express‟ Daughterboards

(Processor or FPGA)

 Backwards compatible peripherals 

(PB11MPCore, PB-A8, PBX-A9 & EB)

 Ethernet, USB, Flash, PrimeCells, DVI/HDMI

 CoreTile Express 4xA9

 Quad core ARM Cortex-A9

 Silicon test-chip

 4 NEON/VFP

 CPU @ ~400MHz

 Core:Bus ~2:1

 32KB I&D L1 caches

 512K L2 cache

 1GB 32bit DDR @500Mbps
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Software Framework for Benchmarks

 Linux kernel 2.6.28

 from kernel.org

 pre-built images, boot-loaders, patches, file-systems etc 

available from ARM website

 Debian 5.0 “Lenny” Linux file-system 

 compiled for v4T
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lmbench3 benchmark

 Comprehensive system benchmark including:

 Micro-benchmarks, focusing on:

 Bandwidth

 Latency

 Other (system info diagnostics etc)

 Context switching

 Stream benchmark

 Version 3 provides infrastructure to measure the scalability of 

multi-processor systems

 Concurrent execution and accurate timing infrastructure

 Break out of the boundaries of  L1 cache subsystem

 For the purpose of this presentation we‟ll only look at a small 

subset of these benchmarks 
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Memory Bandwidth – PBX-A9

Single Instance 2 Instances 

 Consider a 2 core platform

 Knees indicate cache sizes (small [128k] L2 RAM for PBX-A9)

 Increased effective memory bandwidth for multicore (2 cores)

 Cache bandwidth – doubles

 DDR2 memory bandwidth – doubles 

 Agnostic to alignment

Note: Pre-fetching disabled for normalization
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Memory Bandwidth – V2-A9

Single Instance 4 Instances 

 Consider 4 core platform - running 4 concurrent benchmarks (instead of 2)

 Also at 4 times the frequency of the PBX-A9

 b/w showing good 4 cores scalability

 Increased effective memory bandwidth for higher parallel load 

 L1 Cache bandwidths – becomes 4 times

 DDR2 Memory bandwidth – is only showing a doubling….

 On single instance WR benefits more from OO, write-buffer, outstanding transactions

Note: Pre-fetching disabled for normalization
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Example Misconfigured System !!!

 Write bandwidth greatly 

affected if caches are 

configured as write-through  

 Remember to configure 

caches as write-back, with 

allocate-on-write 
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Bandwidth-Latency Relation

 Latency determines 

the response time 

for applications on 

a multicore

 Applications 

requiring short 

bursts of memory 

accesses can run 

concurrently with 

bandwidth heavy 

applications without 

any observable 

degradation – if 

latency remains 

constant

Core0 Core1
Internet Browser

Video / Image 

Processing
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Memory Latency – PBX-A9

 Similar latencies for 

Single(S) and Two (M) 

Instances of LMBench 

running concurrently

 Memory latency 

almost unaffected by 

presence of multiple 

(2) cores

 32 byte cache line 

acts as pre-fetch for 

16 byte strides

 Cortex A9 supports prefetching for both forward and backward striding 

– disabled in these test for result normalization

 Backward striding is less common for real-life applications

 LMBench tries to use backward striding to „defeat‟ prefetching

Small but 

visible L2
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Memory Latency – V2

 4 Instances of LMBench running - 4 times the application load

 Memory latency goes up only by about 20%

 32 byte cache line acts as pre-fetch for 16 byte strides

 Application on one CPU mostly unaffected by execution on other CPUs

 Within the limits of memory bandwidth to DDR Memory

Single Instance 4 Instances 
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STREAM Benchmarks – PBX-A9

 Bandwidth almost 

doubles for multiple  

(2) instances 

compared to the 

execution of a single 

instance

 Corresponding penalty 

on latency is marginal

 Good for streaming, 

data-intensive 

applications
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L2 Latency Configuration

 PL310 allows configuring 

the latencies for the L2 

cache data & tag RAMs

 Optimization: Find the 

minimal latency value for 

which the system would 

still work

 The difference in 

performance can  be 

double or more

 Remember DDR 

memory controllers 

(PL34x) have similar 

setting

Additional 

Latency 

(cycles)
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Memory Load Parallelism

 Indicates the number of possible 

outstanding reads

 Memory system design 

determines the ability of the 

processor to hide memory 

latency

 Support for number of 

outstanding read/writes essential 

for multicores – fully supported 

by PL310 / PL34x

 L1 supports 4 linefill requests on 

average while the implemented 

DDR2 memory system 2 

 Systems should support as much 

memory parallelization as 

possible
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Context Switch Time – PBX A9

 When all the processes fit in the cache the context switch 

time remains relatively low

 Beyond this it approaches a saturation determined by 

available main memory bandwidth

 Keeping the number of active processes low on a processor 

vastly improves the response time

 Context switch time is 

defined here as the time 

needed to save the state 

of one process and 

restore the state of 

another process
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Context Switching Time – PBX A9

 Peak context switch time increases by a small fraction ( < 20%)

 Indicates that context switches on separate processors are almost mutually 

orthogonal and enables the MPCore to support more active tasks than a 

single core time-sliced processor before the system becomes unresponsive

Single Instance 2 Instances 
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A memory system optimized for MP

MODIFIED - Coherent 

cache line is not up to 

date with main memory

EXCLUSIVE - Up to date 

and no other copies exist

SHARED - Coherent cache 

line which is up to date 

with main memory

INVALID - This coherent 

cache line is not present

in the cache

In a MESI compliant SMP system, 

every cache line is marked with 

one of the four following states:

DUPLICATED TAG RAMs

DIRECT DATA INTERVENTION

MIGRATORY LINES

Stored in Snoop Control Unit for quicker access

Process of checking if requested data is in other 

CPUs‟ caches is performed without accessing them

(cache-2-cache transfer)

Copy clean data from one CPU cache to another

Move dirty data from one CPU to another 

and skip MESI shared state

Avoids writing to L2/L3 and reading the data 

back from external memory

ARM MPCore processors implement 

optimizations to the MESI protocol:



Modified → Shared

CPU 1

Memory

CPU 2

Writeback Linefill

Read from cache line

M → S I → S

Request



Exclusive → Shared

CPU 1

Memory

CPU 2

Linefill

Read from cache line

E → S I → S

Request
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Cache to Cache Latency

 Significant benefits 

achievable if the 

working set of the 

application partitioned 

between the cores can 

be contained within the 

sum of their caches

 Helpful for streaming 

data between cores 

 may be used in 

conjunction with 

interrupts between 

cores

 Though dirty lines have higher 

latency they still have 50% 

performance benefit
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Summary and Recommendations

 Memory bandwidth may be increased by 

 Increasing size of cache lines

 Increasing width of memory bus/interface

 Interleave accesses (and buffer reads/writes)

 Memory latency can be improved by

 Shortening paths

 Increasing rate of successful pre-fetching

 Understanding the current latencies in a system

 Spreading Memory and CPU intensive applications over the 

multiple cores provides better performance

 Subject to bandwidth and latencies of memory system

 ARM MPCore architecture mitigates migration overheads

 Running multiple memory intensive applications on a single CPU can 

be detrimental due to cache conflicts


