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Agenda 

 Introduction to the ARM Cortex-A9 MPCore processor

 ARM Cortex-A9 MPCore RealView Development Platforms

 Analysis of benchmark results

 Memory bandwidth

 Memory latency

 Multiple outstanding transactions

 Context switching

 Cache to cache transfers

 Understanding the implications of system-wide benchmarks 

in order to design an optimal multi-core system
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The Cortex-A9 MPCore Processor
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The Cortex-A9 MPCore Processor
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 Superscalar out-of-order 

instruction execution

 Up to 4 instruction cache line 

pre-fetching

 Decode up to TWO full 

instructions per cycle and 

dispatch up to FOUR

 Register renaming for 

speculative execution and 

loop unrolling

 FPU/NEON

 Counters for performance 

monitoring and PTM

Cortex-A9: Technology Leadership

Recently announced

hard macro 40nm G (TSMC) implementation targeting 2GHz



7

ARM Versatile-PBX Cortex-A9 Platform

 Dual core ARM Cortex A9

 structured ASIC 

 CPU @ 70 to 140MHz

 1 NEON and 1 VFP

 Fast memory system

 32KB I&D L1 caches

 128K L2 cache

 1GB RAM

 Ethernet, USB, Flash, PrimeCells

 Same peripheral memory map as 

PB/11MPCore and PB/A8

 File-system on Compact Flash
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ARM Versatile Express Cortex-A9 Platform

 Motherboard Express uATX

 Support for two „Express‟ Daughterboards

(Processor or FPGA)

 Backwards compatible peripherals 

(PB11MPCore, PB-A8, PBX-A9 & EB)

 Ethernet, USB, Flash, PrimeCells, DVI/HDMI

 CoreTile Express 4xA9

 Quad core ARM Cortex-A9

 Silicon test-chip

 4 NEON/VFP

 CPU @ ~400MHz

 Core:Bus ~2:1

 32KB I&D L1 caches

 512K L2 cache

 1GB 32bit DDR @500Mbps
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Software Framework for Benchmarks

 Linux kernel 2.6.28

 from kernel.org

 pre-built images, boot-loaders, patches, file-systems etc 

available from ARM website

 Debian 5.0 “Lenny” Linux file-system 

 compiled for v4T
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lmbench3 benchmark

 Comprehensive system benchmark including:

 Micro-benchmarks, focusing on:

 Bandwidth

 Latency

 Other (system info diagnostics etc)

 Context switching

 Stream benchmark

 Version 3 provides infrastructure to measure the scalability of 

multi-processor systems

 Concurrent execution and accurate timing infrastructure

 Break out of the boundaries of  L1 cache subsystem

 For the purpose of this presentation we‟ll only look at a small 

subset of these benchmarks 
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Memory Bandwidth – PBX-A9

Single Instance 2 Instances 

 Consider a 2 core platform

 Knees indicate cache sizes (small [128k] L2 RAM for PBX-A9)

 Increased effective memory bandwidth for multicore (2 cores)

 Cache bandwidth – doubles

 DDR2 memory bandwidth – doubles 

 Agnostic to alignment

Note: Pre-fetching disabled for normalization
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Memory Bandwidth – V2-A9

Single Instance 4 Instances 

 Consider 4 core platform - running 4 concurrent benchmarks (instead of 2)

 Also at 4 times the frequency of the PBX-A9

 b/w showing good 4 cores scalability

 Increased effective memory bandwidth for higher parallel load 

 L1 Cache bandwidths – becomes 4 times

 DDR2 Memory bandwidth – is only showing a doubling….

 On single instance WR benefits more from OO, write-buffer, outstanding transactions

Note: Pre-fetching disabled for normalization



15

Example Misconfigured System !!!

 Write bandwidth greatly 

affected if caches are 

configured as write-through  

 Remember to configure 

caches as write-back, with 

allocate-on-write 
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Bandwidth-Latency Relation

 Latency determines 

the response time 

for applications on 

a multicore

 Applications 

requiring short 

bursts of memory 

accesses can run 

concurrently with 

bandwidth heavy 

applications without 

any observable 

degradation – if 

latency remains 

constant

Core0 Core1
Internet Browser

Video / Image 

Processing
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Memory Latency – PBX-A9

 Similar latencies for 

Single(S) and Two (M) 

Instances of LMBench 

running concurrently

 Memory latency 

almost unaffected by 

presence of multiple 

(2) cores

 32 byte cache line 

acts as pre-fetch for 

16 byte strides

 Cortex A9 supports prefetching for both forward and backward striding 

– disabled in these test for result normalization

 Backward striding is less common for real-life applications

 LMBench tries to use backward striding to „defeat‟ prefetching

Small but 

visible L2



18

Memory Latency – V2

 4 Instances of LMBench running - 4 times the application load

 Memory latency goes up only by about 20%

 32 byte cache line acts as pre-fetch for 16 byte strides

 Application on one CPU mostly unaffected by execution on other CPUs

 Within the limits of memory bandwidth to DDR Memory

Single Instance 4 Instances 
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STREAM Benchmarks – PBX-A9

 Bandwidth almost 

doubles for multiple  

(2) instances 

compared to the 

execution of a single 

instance

 Corresponding penalty 

on latency is marginal

 Good for streaming, 

data-intensive 

applications
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L2 Latency Configuration

 PL310 allows configuring 

the latencies for the L2 

cache data & tag RAMs

 Optimization: Find the 

minimal latency value for 

which the system would 

still work

 The difference in 

performance can  be 

double or more

 Remember DDR 

memory controllers 

(PL34x) have similar 

setting

Additional 

Latency 

(cycles)
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Memory Load Parallelism

 Indicates the number of possible 

outstanding reads

 Memory system design 

determines the ability of the 

processor to hide memory 

latency

 Support for number of 

outstanding read/writes essential 

for multicores – fully supported 

by PL310 / PL34x

 L1 supports 4 linefill requests on 

average while the implemented 

DDR2 memory system 2 

 Systems should support as much 

memory parallelization as 

possible
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Context Switch Time – PBX A9

 When all the processes fit in the cache the context switch 

time remains relatively low

 Beyond this it approaches a saturation determined by 

available main memory bandwidth

 Keeping the number of active processes low on a processor 

vastly improves the response time

 Context switch time is 

defined here as the time 

needed to save the state 

of one process and 

restore the state of 

another process
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Context Switching Time – PBX A9

 Peak context switch time increases by a small fraction ( < 20%)

 Indicates that context switches on separate processors are almost mutually 

orthogonal and enables the MPCore to support more active tasks than a 

single core time-sliced processor before the system becomes unresponsive

Single Instance 2 Instances 



24

A memory system optimized for MP

MODIFIED - Coherent 

cache line is not up to 

date with main memory

EXCLUSIVE - Up to date 

and no other copies exist

SHARED - Coherent cache 

line which is up to date 

with main memory

INVALID - This coherent 

cache line is not present

in the cache

In a MESI compliant SMP system, 

every cache line is marked with 

one of the four following states:

DUPLICATED TAG RAMs

DIRECT DATA INTERVENTION

MIGRATORY LINES

Stored in Snoop Control Unit for quicker access

Process of checking if requested data is in other 

CPUs‟ caches is performed without accessing them

(cache-2-cache transfer)

Copy clean data from one CPU cache to another

Move dirty data from one CPU to another 

and skip MESI shared state

Avoids writing to L2/L3 and reading the data 

back from external memory

ARM MPCore processors implement 

optimizations to the MESI protocol:



Modified → Shared

CPU 1

Memory

CPU 2

Writeback Linefill

Read from cache line

M → S I → S

Request



Exclusive → Shared

CPU 1

Memory

CPU 2

Linefill

Read from cache line

E → S I → S

Request
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Cache to Cache Latency

 Significant benefits 

achievable if the 

working set of the 

application partitioned 

between the cores can 

be contained within the 

sum of their caches

 Helpful for streaming 

data between cores 

 may be used in 

conjunction with 

interrupts between 

cores

 Though dirty lines have higher 

latency they still have 50% 

performance benefit
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Summary and Recommendations

 Memory bandwidth may be increased by 

 Increasing size of cache lines

 Increasing width of memory bus/interface

 Interleave accesses (and buffer reads/writes)

 Memory latency can be improved by

 Shortening paths

 Increasing rate of successful pre-fetching

 Understanding the current latencies in a system

 Spreading Memory and CPU intensive applications over the 

multiple cores provides better performance

 Subject to bandwidth and latencies of memory system

 ARM MPCore architecture mitigates migration overheads

 Running multiple memory intensive applications on a single CPU can 

be detrimental due to cache conflicts


