RUHR-UNIVERSITÄT BOCHUM

Synthesis of Non-Estrogenic Polymer Precursors by **Isomerizing Metathesis**

Jacqueline Pollini, Stefania Trita, Lukas J. Gooßen **Department of Organic Chemistry, Ruhr-Universität Bochum**

RUB

The increasing concern about the side-effects of Bisphenol A (BPA), one of the most common polymer precursors, is raising the interest in finding safer, non-toxic alternatives. Isomerizing metathesis was applied to renewable resources such as eugenol or cashew nut shell liquid (CNSL) in order to obtain stilbene derivatives as potential replacements for BPA. We measured the estrogenic activity of these monomers and studied their reactivity in polymer synthesis in comparison to BPA.

Introduction

Bisphenol A is the main precursor of polycarbonates and epoxy resins¹ used in the fabrication of many materials and commodity chemicals. However, BPA mimics the activity of estradiol $(17\beta)^2$ and upon leaching from food packages, it causes side-effects such as cardiovascular diseases or fertility issues.³

Synthesis of Polymer Precursors

The cardanol mixture was converted into 3-(non-8-enyl)phenol after ethenolysis and distillation. This reaction was followed by a one-pot derivatization consisting of an isomerizing ethenolysis and a subsequent double bond metathesis, which leads to the dihydroxystilbene.

Different interaction with estrogen receptors (ER)

Stilbene derivatives as alternatives to BPA

For a sustainable synthesis of monomers, widely available renewable resources, such as eugenol and cashew nut shell liquid (CNSL) were chosen as starting materials.^{4,5}

The aliphatic side chain is shortened using isomerizing metathesis as key step.⁶ This process is mediated by the uniquely active isomerization catalyst $[Pd(\mu-Br)(^{t}Bu_{3}P)]_{2}$ (**Pd-cat.**)⁷ and state-of-the-art ruthenium metathesis catalysts.

double bond

double bond

Starting from eugenol, a one-pot reaction afforded the corresponding stilbene.

For diversification of the building blocks, diphenylethane analogues of both stilbenes could be synthesized after a one-pot hydrogenation step.

Estrogenicity assay – Yeast Estrogen Screen (YES)⁸

Polycarbonate synthesis and sustainable thiol-ene the polymerization were chosen as applications to test the reactivity of these substrates towards polymer synthesis.

The isomerization catalyst continuously moves a double bond along a carbon chain, while the metathesis catalyst simultaneously shuffles the substituents at the double bond to form the stilbene.

The polymers present similar properties to the ones derived BPA, showing the from potential of these monomers as alternatives structures.

References:

[1] A. M. Nelson and T. E. Long, *Polym. Int.* **2012**, *61*, 1485.

[2] E. C. Dodds and W. Lawson, *Nature* **1936**, *137*, 996.

[3] J. Michałowicz, Environ. Toxicol. Pharmacol. 2014, 37, 738.

[4] K. Hüsnü, C. Başer and F. Demirci, in *Flavours and Fragrances*, ed. P. D. R. G. Berger, Springer Berlin Heidelberg, 2007, 43.

[5] A. Velmurugan, M. Loganathan, World Acad. Sci. Eng. Technol., 2011, 5, 738.

[6] D. M. Ohlmann, N. Tschauder, J.-P. Stockis, K. Gooßen, M. Dierker, L. J. Gooßen, J. Am. Chem. Soc. 2012, 134, 13716; S. Baader, D. M. Ohlmann, L. J. Gooßen, Chem. Eur. J. 2013, 19, 9807; S. Baader, P. E. Podsiadly, D. J. Cole-Hamilton, L. J. Gooßen, Green Chem. 2014, 16, 4885.

[7] P. Mamone, M. F. Grünberg, A. Fromm, B. A. Khan and L. J. Gooßen, Org. Lett. 2012, 14, 3716. [8] E. J. Routledge, J. P. Sumpter, Environ. Toxicol. Pharmacol. 1996, 15, 241.

