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Abstract

In the presence of catalytic [Ru(p-cym)l,], and the base guanidine carbonate, benzoic acids react with internal alkynes to give the

corresponding 2-vinylbenzoic acids. This alkyne hydroarylation is generally applicable to diversely substituted benzoic and acrylic acids. e -
Aryl(alkyl)acetylenes react regioselectively with formation of the alkyl-branched hydroarylation products, and propargylic alcohols are E@on Mlzmm( e on]
K ne. 1207 AcOH, 100 °C|
o
converted into y-alkylidene-6-lactones. The hydroarylation can also be conducted decarboxylatively with a different choice of catalyst and Fm; F GQY:L/AA:
conditions, opening up a regioselective, waste-minimized synthetic entry to vinylarenes. R

Versatility of COOH as Directing Group

Arguably, the most advantageous directing groups are carboxylates. Benzoic acids are
widely available in great structural diversity and at low cost, and can subsequently be
derivatized further, utilized as leaving groups in decarboxylative couplings,i) or removed
tracelessly by protodecarboxylation 12
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In conclusion, the carboxylate-directed C—H hydroarylation of internal alkynes with benzoic
or acrylic acids catalyzed by the inexpensive, easy-to-handle [Ru(p-cym)l,], complex
opens up a convenient and waste-free entry to a wide variety of 2-vinylbenzoic acids or
aromatic d-lactones from abundant precursors. In a less polar solvent mixture and at
higher temperatures, the carboxylate group is removed directly within the hydroarylation
process. Beyond being removable, the carboxylates thus become deciduous directing
groups, intrinsically preventing disubstitution in this directed C—H functionalization.

R = OAlK, Ar,
vinyl, alkyl...

Aryl(alky)acetylenes do not react under the decarboxylative hydroarylation conditions.
Further investigations to convert these asymmetrically substituted internal alkynes in a
regioselective way are currently running in our laboratory.

Moreover, the development of further application of deciduous directing groups, as a novel
concept, is highly desired and is part of our current research. See Poster P299 for an
inversion of the classical regioselectivity in a Mizoroki-Heck reaction via a deciduous shed
of the carboxylate directing group.
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