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Abstract. We provide a splitting of TMF0(7) at the prime 3 as TMF -
module into two shifted copies of TMF and two shifted copies of TMF1(2).

1. Introduction

The study of modules over the real K-theory spectrum KO has been central in
Bous�eld's work on the classi�cation of K-local spectra [3]. If we localize further at
a prime p, localization at K-theory becomes equivalent to localization at the �rst
Johnson�Wilson theory E(1). If we want to study E(2)-local spectra, topological
modular forms are a natural substitute for KO.

Topological modular forms come in many variants. First, there is the periodic
version TMF that is based on the moduli stack of elliptic curvesMell. It has the
disadvantage that its homotopy groups are in�nitely generated in most degrees,
which is di�erent in the re�nement Tmf that is based on the compacti�ed moduli
stackMell. Its connective cover is called tmf . We refer to [10] as a basic reference
for these spectra.

It has a long tradition in arithmetic geometry not only to consider the moduli
stack of elliptic curves itself, but also to consider moduli of elliptic curves with level
structures. A Γ0(n)-level structure on an elliptic curve E/S is a sub-group scheme
that is étale locally on S isomorphic to (Z/n)S . A Γ1(n)-level structure on E is a
sub-group scheme of E with a chosen isomorphism to (Z/n)S . This leads to moduli
stacksM0(n) andM1(n) and to spectra TMF0(n) and TMF1(n). Hill and Lawson
[15] were able to de�ne spectra Tmf0(n) and Tmf1(n) based on the compacti�ed
moduliM0(n) andM1(n) as well. Note that n is here always inverted.

When studying Tmf -modules, Tmf0(n) and Tmf1(n) are among the �rst exam-
ples to consider. In [25], the �rst-named author has proven splittings for Tmf1(n)
and Tmf0(n) in many cases if we localize at a prime p. If p = 3, the splittings
are into shifted copies of Tmf1(2)(3). As π∗Tmf1(2)(3) is torsionfree, splittings
into shifted copies of Tmf1(2)(3) can only exist if π∗Tmf0(n)(3) is also torsionfree,

which is not expected if 3 divides |(Z/n)×|. The �rst case where this occurs is
Tmf0(7), where we prove nevertheless the following modi�ed splitting result.

Theorem 1.1. The Tmf(3)-module Tmf0(7)(3) decomposes as

Tmf(3) ⊕ Σ4Tmf1(2)(3) ⊕ Σ8Tmf1(2)(3) ⊕ L,

where L ∈ Pic(Tmf(3)), i.e. L is an invertible Tmf(3)-module.
The TMF(3)-module TMF0(7)(3) decomposes as

TMF(3) ⊕ Σ4TMF1(2)(3) ⊕ TMF1(2)(3) ⊕ Σ36TMF(3).
1
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Using unpublished work of M. Olbermann, one can deduce that L is actually
an exotic Picard element, i.e. is not of the form ΣkTmf(3) for any k. The group
Pic(Tmf(3)) was determined in [24] and one can explictly identify L. This shows
that exotic Picard group elements of Tmf actually occur quite naturally.

Our main theorem is based on the following algebraic theorem.

Theorem 1.2. Let h : M0(7)(3) → Mell,(3) and f : M1(2)(3) → Mell,(3) be the
maps induced by forgetting the level structure on an elliptic curve and let O be the
structure sheaf of Mell,(3). Then the quasi-coherent sheaf h∗OM0(7)

∼= h∗h
∗O on

Mell,(3) is a vector bundle of rank 8, which can be decomposed as a sum

O ⊕ ω−6 ⊕ f∗f∗O ⊗ ω−2 ⊕ f∗f∗O ⊗ ω−4.

Here, ω is the generator of Pic(Mell) that can be constructed as the pushforward
of the sheaf of di�erentials on the universal generalized elliptic curve.

Let us simultaneously describe the proof strategy and give an overview of the
di�erent sections. We will always work (implicitly) 3-locally.

Let mf1(7)∗ = mf(Γ1(7),Z(3)) be the subring of the ring of holomorphic Γ1(7)-
modular forms mf(Γ1(7),C) with coe�cients in Z(3). This can be identi�ed with

the sections of ω⊗∗ onM1(7). It has an action by the automorphism group of Z/7,
namely (Z/7)× ∼= Z/2 × Z/3. In Section 2, we exhibit an isomorphism mf1(7)∗ ∼=
Z(3)[z1, z2, z3]/(z1z2 + z2z3 + z3z1) and identify the (Z/7)× ∼= Z/2× Z/3-action to
be given by the sign action of Z/2 and a cyclic permutation action of Z/3 on the zi.
It is not hard to compute the group cohomology H∗(Z/6; mf1(7)∗), which already
suggests a decomposition as in Theorem 1.2.

In the next step, we exhibit in Section 3 a Weierstraÿ equation for the elliptic
curve over mf1(7)∗[∆

−1] which corresponds to the composition

Spec mf1(7)∗[∆
−1]→M1(7)→M0(7)→Mell.

To do so, we use the Tate curve description as e.g. in [31], Theorem V.3.1. It
turns out that the coe�cients are indeed holomorphic modular forms, and can be
identi�ed with explicit elements of Z(3)[z1, z2, z3]/(z1z2 + z2z3 + z3z1).

Our strategy to show Theorem 1.2 is to show a statement about comodules. It is
more convenient to do this not onMell, but onMcub instead (as in [22]). The latter
stack has a presentation by the Hopf algebroid (B,Γ) with B = Z[a1, a2, a3, a4, a6].
To formulate a version of Theorem 1.2 onMcub we de�ne cubical versions ofM1(n)
and M0(n) by a normalization procedure in Section 4. We stress that M0(n)cub
is not the stack quotient of M1(7)cub by the (Z/7)×-action as this stack quotient
is not representable over Mcub. We also provide a �atness criterion for the map
M1(n)cub →Mcub.

The next step is to make the Hopf algebroids corresponding to M1(7)cub and
M0(7)cub explicit. In Section 5, we produce explicit B-bases of B-algebras RB and
SB , which are de�ned by

SpecRB ∼=M1(7)cub ×Mcub
SpecB and SpecSB ∼=M0(7)cub ×Mcub

SpecB.

This allows us to prove in Section 6 a splitting of SB as a comodule over (B,Γ),
which implies Theorem 1.2. In Section 7 we apply standard techniques (the transfer
and the descent spectral sequence) to deduce our topological main theorem.

We end with an appendix that gives an exposition of the theory of modular forms
with level over general rings and their q-expansion. The reason for the length of
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this appendix is the subtle di�erence between so-called arithmetic and naive level
structures, which only agree in the presence of an n-th root of unity. To achieve
a q-expansion principle in the form we need, care is needed how to identify the
sections of ω⊗∗ onM1(n)C with holomorphic Γ1(n)-modular forms in the classical
sense.

After giving this overview, let us add two directions of further research. First,
we can also ask for a splitting of the connective spectrum tmf0(7) = τ≥0Tmf0(7).

Indeed, our algebraic theorem suggests this as it works over not only overMell but
overMcub. It remains unclear though howM0(7)cub is exactly related to tmf0(7) as
its complex bordism remains uncomputed. Secondly, our main topological theorem
suggests the following optimistic conjecture:

Conjecture 1.3. The spectrum TMF0(n)(3) decomposes for every n ≥ 2 into
shifted copies of TMF(3) and of TMF1(2)(3).

This is related to a question asked in [27], namely whether all vector bundles
onMell,(3) decompose (up to tensoring with powers of ω) into the structure sheaf
O, f∗f∗O and a certain vector bundle Eα of rank 2. Also note that TMF1(n)(3)

always decomposes into shifted copies of TMF1(2)(3) after 3-completion as shown
in [25].

1.1. Conventions. All quotients of schemes by group schemes (like Gm) are un-
derstood to be stack quotients. Unless clearly otherwise, all rings and algebras are
assumed to be commutative and unital. Tensor products of quasi-coherent sheaves
are always over the structure sheaf.

1.2. Acknowledgments. We thank Martin Olbermann for helpful discussions and
sharing his unpublished work with us. The �rst-named author thanks SPP 1786
for its support.

2. Modular forms of level 7

We refer for the basics about modular forms and in particular about the q-
expansion principle to the appendix. We specialize mainly to the case of modular
forms for Γ1(7). Our goal is to get an understanding of mf(Γ1(7);Z). We also

want to determine the action of (Z/7)
× ∼= Z/6 on the ring of modular forms

mf(Γ1(7)) with respect to the congruence group Γ1(7). Observe that the action

of Γ0(7)/Γ1(7) ∼= (Z/7)
×
by precomposition is the same as the action induced by

the (Z/7)
× ∼= Z/6-action on the torsion points of precise order 7 in the modular

interpretation.

Lemma 2.1. The stack M1(n) is equivalent to P1
Z[ 1
n ]

for 5 ≤ n ≤ 10 and n = 12.

For n = 7, the line bundle ω corresponds to O(2).

Proof. The �rst statement is proven in Section 2 of [25]. The Picard group of P1
Z[ 1
n ]

is isomorphic to Z. Indeed, by [13, Prop 6.5c], we have a short exact sequence

0→ Z→ PicP1
Z[ 1
n ] → PicA1

Z[ 1
n ] → 0,

where the �rst map is split by degree and PicA1
Z[ 1
n ]
∼= PicZ[ 1

n ] = 0 by [13, Prop

6.6].
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Thus, we have only to compute the degree of ω onM1(7). In general, the degree
of ω on M1(n) is 1

24n
2
∏
p|n

(1 − 1
p2 ) [25, Section 5]. Thus, for n = 7, the degree is

2. �

First, we use Theorem 4.8.1 of [9] to identify mf(Γ1(7);C)1 and the Z/6-action
on it. As explained in Section 3.9 of [9], the genus of X1(7) = M1(7)C is 0, and
using Theorem 3.6.1 of [9], we conclude that there are no cusp forms of weight 1 in
mf(Γ1(7);C); thus there is a basis of Eisenstein series of weight 1 for mf(Γ1(7);C)1,

given as follows. Fix a generator t for Z/6 and the isomorphism (Z/7)
× ∼= Z/6 via

α :
〈
t | t6 = 1

〉
→ (Z/7)

×

t 7→ 3

t2 7→ 2

t3 7→ −1

t4 7→ 4

t5 7→ 5

(We list all the values for convenience.)
Then the three odd characters ϕ1, ϕ2, ϕ3 : Z/6→ C× are described by

ϕ1(t) = ζ6,

ϕ2(t) = −1,

ϕ3(t) = −ζ6 + 1,

where ζ6 = exp( 2πi
6 ) is a sixth primitive root of unity.

By Theorem 4.8.1 of [9], there are (modi�ed) Eisenstein series E(ϕ1), E(ϕ2), E(ϕ3)
which form the basis of mf(Γ1(7);C)1 and on which the Z/6-action is described ex-
actly by the multiplication with the respective character. From Section 4.8 and
Formula (4.33) of [9] (or [4]) we obtain

E(ϕj)(τ) = − 1

14

6∑
n=1

nϕj(n) +

∞∑
k=1

 ∑
l|k,l>0

ϕj(l)

 qk, with q = exp(2πiτ).

MAGMA-calculations suggest to consider the following modular forms in mf(Γ1(7);C)1:

z1 =
1

3
(3ζ6 − 1)E(ϕ1) +

2

3
E(ϕ2) +

1

3
(−3ζ6 + 2)E(ϕ3),

z2 =
1

3
(−ζ6 − 2)E(ϕ1) +

2

3
E(ϕ2) +

1

3
(ζ6 − 3)E(ϕ3),

z3 =
1

3
(−2ζ6 + 3)E(ϕ1) +

2

3
E(ϕ2) +

1

3
(2ζ6 + 1)E(ϕ3).

Note that the base change matrix

1

3

 3ζ6 − 1 −ζ6 − 2 −2ζ6 + 3
2 2 2

−3ζ6 + 2 ζ6 − 3 2ζ6 + 1


has determinant 2

27 (84ζ6 − 42), which is invertible in C, so that z1, z2, z3 is a new
C-basis of mf(Γ1(7);C)1.

Lemma 2.2. The zj have only Z-coe�cients in their q-expansion.
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Proof. Denote the coe�cient of qn in zj by cn(zj).
First, we compute c0(zj). This calculation is somewhat di�erent from the ones

for higher coe�cients:

c0(z1) =
1

3
(3ζ6 − 1) ·

(
− 1

14

6∑
n=1

nϕ1(n)

)
+

2

3
·

(
− 1

14

6∑
n=1

nϕ2(n)

)

+
1

3
(−3ζ6 + 2) ·

(
− 1

14

6∑
n=1

nϕ3(n)

)

Evaluating the sum for ϕ1, we obtain

6∑
n=1

nϕ1(n) = 1 + 2ζ2
6 + 3ζ6 + 4ζ4

6 + 5ζ5
6 + 6ζ3

6 .

Using ζ2
6 = ζ6 − 1 and ζ3

6 = −1, we obtain

6∑
n=1

nϕ1(n) = 1 + 2(ζ6 − 1) + 3ζ6 − 4ζ6 − 5(ζ6 − 1)− 6

= − 4ζ6 − 2.

For ϕ2, we obtain

6∑
n=1

nϕ2(n) = 1 + 2− 3 + 4− 5− 6 = −7.

For ϕ3, recall that 1− ζ6 = ζ5
6 , so we obtain

6∑
n=1

nϕ3(n) = 1 + 2ζ4
6 + 3ζ5

6 + 4ζ2
6 + 5ζ6 + 6ζ3

6 .

Using the properties of ζ6 again, we obtain

6∑
n=1

nϕ3(n) = 1− 2ζ6 + 3(1− ζ6) + 4(ζ6 − 1) + 5ζ6 − 6

= 4ζ6 − 6.

Inserting this values into the formula for c0(z1), we obtain

c0(z1) =
1

3
(3ζ6 − 1) ·

(
− 1

14
(−4ζ6 − 2)

)
+

1

3

+
1

3
(−3ζ6 + 2) ·

(
− 1

14
(4ζ6 − 6)

)
= 0.
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Next, we use the values computed above to compute c0(z2):

c0(z2) =
1

3
(−ζ6 − 2) ·

(
− 1

14

6∑
n=1

nϕ1(n)

)
+

2

3
·

(
− 1

14

6∑
n=1

nϕ2(n)

)

+
1

3
(ζ6 − 3) ·

(
− 1

14

6∑
n=1

nϕ3(n)

)

=
1

3
(−ζ6 − 2) ·

(
− 1

14
(−4ζ6 − 2)

)
+

1

3

+
1

3
(ζ6 − 3) ·

(
− 1

14
(4ζ6 − 6)

)
= 0.

Finally, we compute c0(z3):

c0(z3) =
1

3
(−2ζ6 + 3) ·

(
− 1

14

6∑
n=1

nϕ1(n)

)
+

2

3

(
− 1

14

6∑
n=1

nϕ2(n)

)

+
1

3
(2ζ6 + 1) ·

(
− 1

14

6∑
n=1

nϕ3(n)

)

=
1

3
(−2ζ6 + 3) ·

(
− 1

14
(−4ζ6 − 2)

)
+

1

3

+
1

3
(2ζ6 + 1) ·

(
− 1

14
(4ζ6 − 6)

)
= 1.

Now we will show that ck(zj) for k > 0 and j ∈ {1, 2, 3} is always an integer.
This is somewhat di�erent from the previous argument. For z1, we obtain

ck(z1) =
1

3
(3ζ6 − 1) ·

 ∑
l|k,l>0

ϕ1(l)

+
2

3
·

 ∑
l|k,l>0

ϕ2(l)


+

1

3
(−3ζ6 + 2) ·

 ∑
l|k,l>0

ϕ3(l)


=

∑
l|k,l>0

1

3
((3ζ6 − 1)ϕ1(l) + 2ϕ2(l) + (−3ζ6 + 2)ϕ3(l)) .

where l denotes also its congruence class in Z/7.
We give the values of the summands depending on l: (Note we would only need

to compute the values for one half because of the symmetry)

l mod 7 0 1 2 3 4 5 6
Summand 0 1 −1 −2 2 1 −1

In particular, the sum we obtain has only integer summands, thus is itself an integer.
We now look at z2:
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ck(z2) =
1

3
(−ζ6 − 2) ·

 ∑
l|k,l>0

ϕ1(l)

+
2

3
·

 ∑
l|k,l>0

ϕ2(l)


+

1

3
(ζ6 − 3) ·

 ∑
l|k,l>0

ϕ3(l)


=

∑
l|k,l>0

1

3
· ((−ζ6 − 2)ϕ1(l) + 2ϕ2(l) + (ζ6 − 3)ϕ3(l))

We give again the values of the summands depending on l:

l mod 7 0 1 2 3 4 5 6
Summand 0 −1 2 −1 1 −2 1

Finally, for z3 we obtain:

ck(z3) =
1

3
(−2ζ6 + 3) ·

 ∑
l|k,l>0

ϕ1(l)

+
2

3

 ∑
l|k,l>0

ϕ2(l)


+

1

3
(2ζ6 + 1) ·

 ∑
l|k,l>0

ϕ3(l)


=

∑
l|k,l>0

1

3
· ((−2ζ6 + 3)ϕ1(l) + 2ϕ2(l) + (2ζ6 + 1)ϕ3(l)) .

Again, we put the values of the summands depending on l into a table:

l mod 7 0 1 2 3 4 5 6
Summand 0 2 1 1 −1 −1 −2

Thus, we have seen that all coe�cients of z1, z2, z3 in the q-expansion are integers,
so we have z1, z2, z3 ∈ mf(Γ1(7);Z)q1. �

We want to show that z1, z2, z3 ∈ mf(Γ1(7);Z)1 is a basis. For this, we consider
the q-expansions of z1, z2, z3 modulo q3:

z1 ≡ q mod q3

z2 ≡ −q + q2 mod q3

z3 ≡ 1 +2q + 3q2 mod q3

This is obviously a Z-basis of ZJqK/(q3). Thus, mf(Γ1(7);Z)1 → ZJqK/(q3) is sur-
jective. It is also injective as it is over C. Alternatively, we can argue that by the
following more general lemma the source is a free abelian group of rank ≤ 3 and
this also implies the map to be injective.

Lemma 2.3. The Z-module mf(Γ1(n);Z)k is free of at most the same rank as the
C-dimension of mf(Γ1(n);C)k for every weight k.

Proof. As mf(Γ1(n);Z) is a subring of mf(Γ1(n);C), it is Z-torsionfree. As mf(Γ1(n);C)k
is �nite-dimensional, the composition

mf(Γ1(n);C)k → CJqK→ CJqK/qN
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is injective for N big enough. Thus, also the map

mf(Γ1(n);Z)k → ZJqK/qN → CJqK/qN

is injective and hence the �rst map as well. Thus, mf(Γ1(n);Z) is �nitely generated
free.

Tensoring the injection mf(Γ1(n);Z)k → ZJqK/qN with C gives an injection

mf(Γ1(n);Z)k ⊗Z C→ CJqK/qN

and hence the map mf(Γ1(n);Z)k ⊗Z C→ mf(Γ1(n);C)k is also injective. �

This implies that z1, z2, z3 ∈ mf(Γ1(7);Z)1 is indeed a basis. The same is thus
true in mf(Γ1(7);Z[ 1

7 ])1.
Our next goal is to understand all of mf1(7)∗ in terms of zi's. We will prove the

following proposition:

Proposition 2.4. There is an isomorphism of rings

Z[
1

7
][z1, z2, z3]/(z1z2 + z2z3 + z3z1)→ mf(Γ1(7);Z[

1

7
]).

Proof. We will �rst show that the relation z1z2 + z2z3 + z3z1 = 0 is satis�ed in
mf(Γ1(7);Z)2. For this, we will use an analoguous argument as for z1, z2, z3 being
a basis of weight 1 modular forms. More precisely, we will consider the q-expansion
of the modular forms zizj for 1 ≤ i ≤ j ≤ 3 modulo q5. This will be enough
since using the formulae of Section 3.9 of [9], we conclude that mf(Γ1(7);C)2 is
5-dimensional (and due to the form of the generators we will obtain) and because
mf(Γ1(7);Z)2 embeds into mf(Γ1(7);C)2.

First, the zi themselves are given via

z1 ≡ q −q3 + 2q4 mod q5

z2 ≡ −q + q2 −2q3 + 2q4 mod q5

z3 ≡ 1 +2q + 3q2 +3q3 + 2q4 mod q5

One computes the following products of those:

z2
1 ≡ q2 −2q4 mod q5

z1z2 ≡ −q2 + q3 −q4 mod q5

z1z3 ≡ q +2q2 + 2q3 +3q4 mod q5

z2
2 ≡ q2 − 2q3 +5q4 mod q5

z2
3 ≡ 1 + 4q +10q2 + 18q3 +25q4 mod q5

z2z3 ≡ − q −q2 − 3q3 −2q4 mod q5

First, observe that we immediately obtain that the q-expansion of z1z2 +z2z3 +z3z1

is 0 mod q5. Next, we observe that the matrix mapping the basis 1, q, q2, q3, q4 to
the �rst �ve truncated power series is

0 0 0 0 1
0 0 1 0 4
1 −1 2 1 10
0 1 2 −2 18
−2 −1 3 5 25


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The determinant of this matrix is 1; thus it is invertible over Z and the �rst 5
truncated power series above are a basis of ZJqK/(q5). This implies that a Γ1(7)-
modular form of weight 2 is zero i� its q-expansion is zero modulo q5; this in turn
implies the relation.

We have noted before that

mf(Γ1(7);Z[ 1
7 ]) ∼= H0(M1(7);ω⊗∗) ∼= H0(P1

Z[
1
7 ]

;O(2∗)).

Thus, this ring is abstractly isomorphic to polynomials of even degree in variables
x1, x2 of degree 1 (and the degree of the modular form is half the degree of the
polynomial). The ring of such polynomials is generated by the three monomials of
degree 2 with one quadratic relation between those. Thus, the ring mf(Γ1(7);Z

[
1
7

]
)

is generated in degree 1 and so by the z1, z2, z3. Thus, we get a surjective map

Z[ 1
7 ][z1, z2, z3]/(z1z2 + z2z3 + z3z1)→ mf(Γ1(7);Z[ 1

7 ]),

which has to be an isomorphism by counting the ranks. �

Next, we want to identify the (Z/7)× action on the left-hand side.

Lemma 2.5. Let the generator t of Z/6 correspond to [3] ∈ (Z/7)× as above. Then
t.z1 = −z3 and t.z2 = −z1 and t.z3 = −z2.

Proof. Recall that we already know the action on the Eisenstein series by de�nition,
so we can conclude as follows:

t.z1 =
1

3
(3ζ6 − 1)ϕ1(t)E(ϕ1) +

2

3
ϕ2(t)E(ϕ2) +

1

3
(−3ζ6 + 2)ϕ3(t)E(ϕ3)

=
1

3
(3ζ6 − 1)ζ6E(ϕ1)− 2

3
E(ϕ2) +

1

3
(−3ζ6 + 2)(−ζ6 + 1)E(ϕ3)

=
1

3
(2ζ6 − 3)E(ϕ1)− 2

3
E(ϕ2)− 1

3
(2ζ6 + 1)E(ϕ3)

= −z3,

t.z2 =
1

3
(−ζ6 − 2)ϕ1(t)E(ϕ1) +

2

3
ϕ2(t)E(ϕ2) +

1

3
(ζ6 − 3)ϕ3(t)E(ϕ3)

=
1

3
(−ζ6 − 2)ζ6E(ϕ1)− 2

3
E(ϕ2) +

1

3
(ζ6 − 3)(−ζ6 + 1)E(ϕ3)

=
1

3
(−3ζ6 + 1)E(ϕ1)− 2

3
E(ϕ2) +

1

3
(3ζ6 − 2)E(ϕ3)

= −z1,

t.z3 =
1

3
(−2ζ6 + 3)ϕ1(t)E(ϕ1) +

2

3
ϕ2(t)E(ϕ2) +

1

3
(2ζ6 + 1)ϕ3(t)E(ϕ3)

=
1

3
(−2ζ6 + 3)ζ6E(ϕ1)− 2

3
E(ϕ2) +

1

3
(2ζ6 + 1)(−ζ6 + 1)E(ϕ3)

=
1

3
(ζ6 + 2)E(ϕ1)− 2

3
E(ϕ2) +

1

3
(−ζ6 + 3)E(ϕ3)

= −z2.

�

Note that the resulting action on Z[z1, z2, z3] makes it isomorphic as a Z/6 ∼=
Z/2 × Z/3-representation to Zsign ⊗ Z[z1, z2, z3], where Zsign is the permutation
representation of Z/2 and Z/3 acts on Z[z1, z2, z3] now permuting the variables
as indicated above. Thus in any degree k, the Z/3-module Z[z1, z2, z3]k can be
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decomposed as Z/3-module as a direct sum of permutation modules, generated by

orbits of monomials of degree k. Note also that the orbit of a monomial zi1z
j
2z
k
3

has exactly three elements (and we have a free Z/3-action) unless i = j = k.
So the cohomology of the summands of the former type will be concentrated in
cohomological degree 0, whereas the submodules Z〈zk1zk2zk3 〉 have trivial Z/3-action
and hence

Hj(Z/3,Z〈zk1zk2zk3 〉) =


Z, for j = 0,

Z/3, for j > 0 even,

0, for j odd.

Now observe that σ2 := z1z2 + z2z3 + z3z1 is an invariant element under this action
(and also under the Z/2-action), so we have a short exact sequence of Z[Z/3]-
modules

0→ Z[z1, z2, z3]σ2 → Z[z1, z2, z3]→ Z[z1, z2, z3]/(σ2)→ 0.

Note that the module Z[z1, z2, z3]σ2 admits a decomposition into permutation mod-
ules shifted from the one of Z[z1, z2, z3]. The long exact cohomology sequence yields
the following, taking into account the internal grading:

Lemma 2.6. For j > 0, we have:

Hj(Z/3, (Z[z1, z2, z3]/(σ2))k) ∼=


Z/3, for j even and k ≡ 0 mod 3 and k ≥ 0 or

j odd and k ≡ 2 mod 3 and k ≥ 0

0, else.

For the full group Z/6, we obtain for j > 0 furthermore:

Hj(Z/6, (Z[z1, z2, z3]/(σ2))k) ∼=


Z/3, for j even and k ≡ 0 mod 6 and k ≥ 0 or

j odd and k ≡ 2 mod 6 and k ≥ 0

0, else.

Last, after we invert ∆ , we obtain for j > 0

Hj(Z/6, (Z[z1, z2, z3]/(σ2))k) ∼=


Z/3, for j even and k ≡ 0 mod 6 or

j odd and k ≡ 2 mod 6

0, else.

Proof. The �rst statement was already explained above.
For the second statement, we use e.g. the Hochschild�Lyndon�Serre spectral

sequence. Thus, the cohomology groups of Z/6 are the Z/2-�xed points of

Hj(Z/3, (Z[z1, z2, z3]/(σ2))k),

i.e. just the even degrees k. �

Last, we compute the invariants of the Z/3-action in Z[z1, z2, z3]/(σ2). For this,
consider �rst the Z/3-action on Z[z1, z2, z3]. This is done in the following well-
known lemma:

Lemma 2.7. Let σ1, σ2, σ3 denote the elementary symmetric polynomials in z1, z2, z3.
Then the invariants of the Z/3 ∼= A3-action on Z[z1, z2, z3] are a free module over
Z[σ1, σ2, σ3] with basis 1, p = z2

1z2 + z2
2z3 + z2

3z1.

Remark 2.8. A similar/better description can be found in Lemma 3.4 of [12].
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Proof. We follow the proof of the Proposition 1.1.3 in [33]. Observe that Z[z1, z2, z3]
is a module over Z[σ1, σ2, σ3], and that its submodule generated by 1, p is surely
among Z/3-invariants. We still have to show that all Z/3-invariants lie in this
submodule, and that 1, p are linearly independent over Z[σ1, σ2, σ3].

Let τ ∈ S3 be any transposition. Then we observe that

p+ τp = σ1σ2 − 3σ3,

p− τp = (z1 − z2)(z2 − z3)(z1 − z3).

In particular, it follows that (z1−z2)(z2−z3)(z1−z3) = 2p−(σ1σ2−3σ3). Let now f
be any polynomial in Z[z1, z2, z3]Z/3. Then the polynomial f+τf is symmetric, thus
can be written as a polynomial Q(σ1, σ2, σ3) in elementary symmetric polynomials.

Next, f ′ := f − τf has the property

f ′(zη(1), zη(2), zη(3)) = sgn(η)f ′(z1, z2, z3)

for any η ∈ S3 (i.e. f ′ is alternating) and thus is divisible by (z1 − z2)(z2 −
z3)(z1− z3), and the quotient is then a symmetric polynomial, thus can be written
as Q′(σ1, σ2, σ3).

So in Q[z1, z2, z3], we obtain the following identity for f :

f =
1

2
((f + τf) + (f − τf))

=
1

2
Q(σ1, σ2, σ3) +

1

2
Q′(σ1, σ2, σ3)(z1 − z2)(z2 − z3)(z1 − z3)

=
1

2
Q(σ1, σ2, σ3) +

1

2
Q′(σ1, σ2, σ3)(2p− (σ1σ2 − 3σ3))

=
1

2
(Q(σ1, σ2, σ3)−Q′(σ1, σ2, σ3)(σ1σ2 − 3σ3)) +Q′(σ1, σ2, σ3)p.

Thus, the polynomial f −Q′(σ1, σ2, σ3)p is symmetric on the one hand, since it can
be written as a polynomial in σ1, σ2, σ3 over Q. On the other hand, it is integral as
a sum of two integral polynomials, thus in total, it lies in Z[σ1, σ2, σ3], proving that
1, p are a generating system of all Z/3-invariants as a a module over Z[σ1, σ2, σ3].

Last, we have to check that 1, p are linearly independent over Z[σ1, σ2, σ3]. As-
sume on contrary that there are P,Q ∈ Z[σ1, σ2, σ3] with P + pQ = 0. Thus we
also have P + τp ·Q = 0, and this yields

(p− τp)Q = 0.

Since p − τp 6= 0 and Z[z1, z2, z3] is an integral domain, we conclude that Q = 0
and thus P = 0. This completes the proof. �

Corollary 2.9. The invariants H0(Z/6,Z[z1, z2, z3]/σ2) are the even degrees of the
free Z[σ1, σ3]-module on 1 and p.

Proof. This follows, as H1(Z/6,Z[z1, z2, z3]) = 0 in every degree. �

Recall that we work over Z(3) here and that we use the notation O for the
structure sehaf ofMell.

Corollary 2.10. The cohomology of h∗h
∗O ⊗ ω⊗∗ is given for j > 0 by

Hj(Mell, h∗h
∗O ⊗ ω⊗k) ∼=


Z/3, for j even and k ≡ 0 mod 6 or

j odd and k ≡ 2 mod 6

0, else.
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Moreover, H0(Mell, h∗h
∗O⊗ω⊗∗) is isomorphic to Z(3)[σ1, σ3,∆

−1]⊕Z(3)[σ1, σ3,∆
−1]p.

Proof. Since h is a�ne, h∗ is an exact functor, and since h is separated and quasi-
compact, we can also apply the projection formula. Altogether, we obtain

Hj(Mell, h∗h
∗O ⊗ ω⊗k) ∼= Hj(M0(7), ω⊗kM0(7)).

We use Galois descent and the fact thatM1(7) is a�ne. This implies

Hj(M0(7), ω⊗kM0(7))
∼= Hj((Z/7)×,Γ(ω⊗kM1(7))).

Last, we have Γ(ω⊗kM1(7))
∼= MFk(Γ1(7),Z3) ∼= Z3[z1, z2, z3,∆

−1]/(σ2). So the claim

follows from Lemma 2.6 and Corollary 2.9. �

Remark 2.11. Since the cohomology of the known indecomposable vector bundles
ω⊗∗, Eα ⊗ ω⊗∗, f∗f∗O ⊗ ω⊗∗ on Mell over Z(3) is known (see e.g. [27], Sections
4.1 and 4.2), we can conclude that if h∗h

∗O can be decomposed as a sum of such,
it has necessarily exactly the summands O⊕ω⊗−6 and two shifted copies of f∗f

∗O.

3. q-expansion of αi as Γ1(7)-modular forms using Tate curve

The aim of this section is to obtain q-expansions for the coe�cients of the Weier-
straÿ equations of elliptic curve with a Γ1(7)-level structure. It is known that for
such curves, the coe�cients of the Weierstraÿ equations yield at least meromorphic
Γ1(7)-modular forms. Our computations show that they are indeed holomorphic,
and thus we can identify them unter the isomorphism of Proposition 2.4 with poly-
nomials in z1, z2, z3.

We start with the following classical theorem.

Theorem 3.1. ([31], Theorem V.1.1) For any q, u ∈ C with |q| < 1, de�ne the
following quantities:

σk(n) =
∑
d|n

dk,

sk(q) =
∑
n≥1

σk(n)qn =
∑
n≥1

nkqn

1− qn
,

a4(q) = − 5s3(q),

a6(q) = − 5s3(q) + 7s5(q)

12
,

X(u, q) =
∑
n∈Z

qnu

(1− qnu)2
− 2s1(q),

Y (u, q) =
∑
n∈Z

(qnu)2

(1− qnu)3
+ s1(q).

(1) Then the equation

y2 + xy = x3 + a4(q)x+ a6(q)
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de�nes an elliptic curve Eq over C, and X,Y de�ne a complex analytic
isomorphism

C×/qZ → Eq

u 7→

{
(X(u, q), Y (u, q)), if u /∈ qZ,
O, if u ∈ qZ

(2) As power series in q, both a4(q), a6(q) have integer coe�cients.
(3) Every elliptic curve over C is isomorphic to Eq for some q with |q| < 1.

Remark 3.2. The complex analytic isomorphism is automatically also an isomor-
phism of abelian groups (cf. e.g. [30], Theorem VI.5.3).

Our aim now is to compute the q-expansions of the coe�cients αi of the Tate
normal form

y2 + α1xy + α3y = x3 + α2x
2

for an elliptic curve with a chosen N -torsion point. Since these coe�cients are
unique after we have �xed an invariant di�erential, and transform accordingly,
they indeed de�ne (at least) meromorphic modular forms for Γ1(N) with N ≥ 4.

We recall that we use the notion of Γ1(N) level structure on an elliptic curve
called Γ00(N)naive level structure in [17], Section 2. As explained there, the injective
q-expansion map is given by evaluation of the modular form at the test object
(Tate(qN ), ωcan, q), where q ∈ C×/qNZ is the chosen point of exact order N and
ωcan is the invariant di�erential coming from dx

x on C×. For more details, see
appendix A.

First, observe from [30], formulae in Section III.1, that transforming any Weier-
straÿ equation of the form

y2 + xy = x3 + a4x+ a6

into Tate normal form with a chosen torsionpoint (x0, y0) on this curve moving to
(0, 0) has the transformation parameter (if they exist in the ring; setting u = 1)

r = x0,

t = y0,

s =
a4 − y0 + 3x2

0

x0 + 2y0
,

and the resulting coe�cients of the Tate normal form are

α1 = 1 + 2s =
x0 + 6x2

0 + 2a4

x0 + 2y0
,

α2 = − s− s2 + 3r,

α3 = r + 2t = x0 + 2y0.

Now we use methods from [31], Section V.3, to simplify the expressions for
X(uqk, qN ) and Y (uqk, qN ) in our case, where u 6= 0 is a complex number and
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0 ≤ k < N .First, we reindex the sum over positive natural numbers:

X(uqk, qN ) =
∑
n∈Z

uqnN+k

(1− uqnN+k)2
− 2s1(qN ),

=
uqk

(1− uqk)2
+
∑
n≥1

(
uqnN+k

(1− uqnN+k)2
+

u−1qnN−k

(1− u−1qnN−k)2
− 2

qnN

(1− qnN )2

)
.

Recall the following formulae for |x| < 1, obtained e.g. by di�erentiating the geo-
metric series:

x

(1− x)2
=
∑
l≥1

lxl and
x2

(1− x)3
=
∑
l≥1

l(l − 1)

2
xl and

x

(1− x)3
=
∑
l≥0

l(l + 1)

2
xl.

Inserting this into the expression for X(uqk, qN ), we obtain

X(uqk, qN ) =
uqk

(1− uqk)2
+
∑
n≥1

(
uqnN+k

(1− uqnN+k)2
+

u−1qnN−k

(1− u−1qnN−k)2
− 2

qnN

(1− qnN )2

)
=

∑
l≥1

lulqkl +
∑
n≥1

∑
l≥1

(
lulq(nN+k)l + lu−lq(nN−k)l − 2lqnNl

)
Similarly, for Y (uqk, qN ) we get

Y (uqk, qN ) =
∑
n∈Z

u2q2(nN+k)

(1− uqnN+k)3
+ s1(qN ),

=
u2q2k

(1− uqk)3
+
∑
n≥1

(
u2q2(nN+k)

(1− uqnN+k)3
− u−1qnN−k

(1− u−1qnN−k)3
+

qnN

(1− qnN )2

)
.

Using again the formulae derived from geometric series, we obtain

Y (uqk, qN ) =
u2q2k

(1− uqk)3
+
∑
n≥1

(
u2q2(nN+k)

(1− uqnN+k)3
− u−1qnN−k

(1− u−1qnN−k)3
+

qnN

(1− qnN )2

)

=
∑
l≥2

(l − 1)l

2
ulqkl +

∑
n≥1

∑
l≥1

(
(l − 1)l

2
ulq(nN+k)l − l(l + 1)

2
u−lq(nN−k)l + lqnNl

)
Note that for every u 6= 0 , both X(uqk, qN ) and Y (uqk, qN ) are not just Laurent
series in q, but actually power series. In particular, so is a3 = X + 2Y . For
0 ≤ k < N

2 , the term uqk is the lowest power of q occuring in both in X(uqk, qN )

and Y (uqk, qN ) is divisible by qk+1; hence the lowest power of q occuring in a3 is
uqk.

We would like to show that for every u 6= 0 and for every 0 < k < N , also
the resulting values of a1 and a2 turn out to be power series and not only general
Laurent series in q. To this end, we determine the lowest power of q in a non-
vanishing summand in a3. In our Tate curve, we have

a4(qN ) = −5s3(qN )
∑
n≥1

n3qnN

1− qnN
=
∑
n≥1

n3
∑
l≥1

qnNl

 ,

so this power series has N > k as lowest exponent of q.
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Given the expressions for a1, a2, we only need to check that

s =
a4(qN )−X(uqk, qN ) + 3X(uqk, qN )2

X(uqk, qN ) + 2Y (uqk, qN )

is a power series. This follows from the analysis above.
Inserting these values into procedure above and comparing the results with our

previously chosen basis of mf∗(Γ1(7),Z[ 1
7 ]) using MAGMA, we obtain

α1 = z1 − z2 + z3,

α2 = z1z2 + z1z3,

α3 = z1z
2
3 .

4. The flatness of M0(7)cub

We will work throughout this section over a Z[ 1
n ]-algebra A. Set

B = A[a1, . . . , a4, a6].

LetMcub =Mcub,A be the algebraic stack associated with the graded Weierstraÿ
Hopf algebroid (B,Γ = B[r, s, t]) (see e.g. [1] for the precise structure maps).This
containsMell =Mell,A as an open substack as it is the stack associated with the
graded Weierstraÿ Hopf algebroid (B[∆−1],Γ[∆−1]). We want to extend the moduli
stacksM0(n) =M0(n)A andM1(n) =M1(n)A to algebraic stacks that are �nite
overMcub via a normalization construction.

Let us recall the notion of normalization. Let X be an Artin stack and A a
quasi-coherent sheaf of OX -algebras. Let A′ ⊂ A be the presheaf that evaluated on
any SpecC smooth over X consists of those elements in A(SpecC) that are integral
over A. This is an fpqc (and in particular étale) sheaf because being integral for
an element can be tested fpqc-locally (as generating a �nite module can be checked
fpqc-locally). Thus, we obtain a sheaf on the lisse-étale site of X (see [21, Section
12] or [32, Tag 0786] for the de�nition). As relative normalization commutes with
localization, A′ is a quasi-coherent sheaf after pullback to every smooth SpecC → X
and thus quasi-coherent by de�nition. We de�ne the normalization of X in A to be
the relative Spec of A′ over X . For a quasi-compact and quasi-separated morphism
f : Y → X , we de�ne the normalization of X in Y to be the normalization of X in
f∗OY (here, f∗ denotes the pushforward of quasi-coherent sheaves as in [32, Tag
070A]).

Lemma 4.1. Relative normalization commutes with smooth base change.

Proof. The case of schemes is treated in [32, Tag 03GV], and the general case is
similar. �

We de�ne M0(n)cub and M1(n)cub as the normalizations of Mcub in M0(n)
and M1(n). Note that the normalization maps are by de�nition a�ne. If we
demand more of A, we get even �niteness. More precisely, we will need that A is
quasi-excellent. The source [32, Tag 07QS] contains everything we will need about
quasi-excellent rings; in particular, they show that Z[ 1

n ] is quasi-excellent.

Lemma 4.2. Assume that A is a quasi-excellent ring. Then M1(n)cub → Mcub

andM0(n)cub →Mcub are �nite.
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Proof. Let X →Mell be an a�ne map of �nite type from a reduced algebraic stack
(note that reducedness is local in the smooth topology [32, Tag 034E]). We want to
show that the normalization ofMcub in X is �nite overMcub. The relevant cases
for us are X =M1(n) and X =M0(n).

Let B = A[a1, . . . , a6] → Mcub be the usual smooth cover. Denote by T the
global sections of the pullback X ×Mcub

SpecB, which is an a�ne scheme. By the
last lemma, we have to show that the normalization of B in T is �nite over B (as
�niteness can be checked after faithfully �at base change). By [32, Tag 03GR], we
just have to check that B is a Nagata ring, SpecT → SpecB is of �nite type and
T is reduced. As B is a polynomial ring over a quasi-excellent ring, it is quasi-
excellent again and hence Nagata. The second point is clear by base change. For
the last one note that SpecT is equivalent to SpecB[∆−1]×Mell

X ; this is reduced
as SpecB[∆−1] → Mell is smooth (as smoothness can be checked after faithfully
�at base change and Spec Γ[∆−1] ' SpecB[∆−1]×Mell

SpecB[∆−1] is smooth over
SpecB[∆−1]) and being reduced is local in the smooth topology. Hence, we have
�niteness. �

Lemma 4.3. Let R be a graded normal domain and with a graded ring map B → R.
Consider the induced map

SpecR[∆−1]/Gm → SpecB[∆−1]/Gm →Mell.

Then the normalization of Mcub in SpecR[∆−1]/Gm is equivalent to SpecR/Gm
if RB = R⊗B Γ is �nite over B.

Proof. Note �rst that SpecB ×Mcub
SpecR/Gm is equivalent to SpecRB . Thus,

SpecR/Gm is �nite overMcub.
Let now SpecC →Mcub be any smooth map and denote by SpecRC the �ber

product SpecC ×Mcub
SpecR/Gm. As RC is �nite over C, every element of RC is

integral over C. As R is normal and RC is smooth over R, also RC is normal [32,
Tag 033C]. Thus, every element that is integral over C (and hence RC) in RC [∆−1]
is already in RC . Thus, RC is the normalization of C in RC [∆−1]. As SpecRC [∆−1]
is the equivalent to the �ber product SpecC ×Mcub

SpecR[∆−1]/Gm, this shows
the result. �

Lemma 4.4. Let R be a graded B-algebra that is Cohen�Macaulay. Assume fur-
thermore that R is concentrated in nonnegative degrees and satis�es R0 = A. Then
RB is �at over B if it is �nite.

Proof. As RB ∼= R[r, s, t], we see that RB is Cohen�Macaulay as well. By localizing
A we can assume that A is local and thus B and RB are graded local rings as well.
As RB is �nite over B, we see that dimR = dimRB . We obtain by a graded version
of Hironaka's �atness criterion (see e.g. [11, Theorem 18.16]) that RB is �at over
B. �

Proposition 4.5. The maps M1(n) → Mell and M0(n) → Mell are �nite and
�at.

Proof. This is contained in Theorem 4.1.1 of [5]. �

Proposition 4.6. Assume that R = mf(Γ1(n), A)∗ = mf1(n)∗ is normal and
Cohen�Macaulay. Then M1(n)cub → Mcub is �nite and �at and M1(n)cub is
equivalent to SpecR/Gm.
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Proof. We can assume that A = Z[ 1
n ] as this is the universal case. We know that

M1(n) = Spec mf(Γ1(n))[∆−1]/Gm for all n ≥ 2. Thus, we just have to show that
RB is �nite over B.

Consider the two cartesian squares

M1(n)
j //

h
��

SpecR/Gm

h̃

��
Mell

i //Mcub

and

U
k //

q

��

SpecB

p

��
Mell

i //Mcub

As a quasi-coherent sheaf on SpecR/Gm is determined by its graded global sections,
we see that j∗OM1(n) is exactly OSpecR/Gm . We see that RB are the global sections

of
p∗h̃∗j∗OM1(n)

∼= p∗i∗h∗OM1(n).

As p is �at, we have an isomorphism p∗i∗h∗OM1(n)
∼= k∗q

∗h∗OM1(n). As h is �nite

�at by the last proposition, q∗h∗OM1(n) is a vector bundle. As SpecB is normal

and the complement V (c4,∆) of U is codimension 2, we see that k∗F is re�exive
and hence coherent for any re�exive sheaf F on U . Indeed, we can extend F by a
re�exive sheaf E on SpecB (by picking a coherent subsheaf E ′ of k∗F with k∗E ′ ∼= F
and setting E to be the double-dual of E ′). By [14, Proposition 1.6], we see that
k∗F ∼= k∗k

∗E ∼= E . If we apply this argument to F = q∗h∗OM1(n), we see that

k∗q
∗h∗OM1(n) is coherent and hence its global sections RB are �nitely generated

over B. �

Example 4.7. Let n = 7. Then

mf1(7)∗ = mf(Γ1(7);A) ∼= A[z1, z2, z3]/σ2.

This is a regular ring (and in particular normal and Cohen�Macaulay). Thus, the
assumptions of Proposition 4.6 are true.

The �atness of M0(n)cub → Mcub seems to be more subtle in general and we
will be content here to introduce some notation and make a simple observation.

We know that M0(n)cub ×Mcub
SpecB is a�ne and thus we can write it as

SpecSB for a B-algebra SB . We claim that the map SB → (RB)(Z/n)× is an
isomorphism. Indeed: By construction, SB → SB [∆−1] is an injection (because SB
consists of those elements in SB [∆−1] that are integral over B). We know that

R
(Z/n)×

B [∆−1] = (RB [∆−1])(Z/n)× ∼= SB [∆−1].

Thus, the map

SB → R
(Z/n)×

B → R
(Z/n)×

B [∆−1] ∼= SB [∆−1]

is an injection and thus also the �rst arrow. We know that (RB)(Z/n)× is �nite
over B (as B is noetherian) and thus every element is integral over B. Thus,

SB = R
(Z/n)×

B .
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5. Computation of invariants

We consider the elements 1, σ2
1 , σ

4
1 , σ

2
3 as well as

n4 := σ2
1r − z3

1z3 − z1z
3
2 − z2

1z
2
3 ,

σ2
1n4 = σ4

1r − σ2
1 · (z3

1z3 + z1z
3
2 + z2

1z
2
3),

n6 := σ2
1r

2 − 2z3
1z3r − 2z1z

3
2r − 2z2

1z
2
3r + 2z3

1z
3
3 − z2

1z
4
3

= 2n4r − σ2
1r

2 + 2z3
1z

3
3 − z2

1z
4
3 ,

σ2
1n6 = σ2

1 · (σ2
1r

2 − 2z3
1z3r − 2z1z

3
2r − 2z2

1z
2
3r + 2z3

1z
3
3 − z2

1z
4
3),

which are all elements in SB . Our aim is to prove the following proposition.

Proposition 5.1. The elements

1, σ2
1 , σ

4
1 , n4, σ

2
1n4, n6, σ

2
1n6, σ

2
3

form a B-basis of SB; in particular, SB is a free B-module of rank 8.

We can write the invariants with respect to our chosen B-basis of RB ∼= B48

(found with MAGMA):

{1, z2, z3, s, z2s, z
2
3 , z3s, s

2, r, z2
3s, z3s

2, z3r, s
3, t, rs, z2r, z

2
3s

2, z3rs, z3t, s
4, rs2, r2,

z2
3r, z2rs, z2r

2, z2
3rs, z3rs

2, z3r
2, s5, r2s, rt, rs3, z2r

2s, z2
3rs

2, z3r
2s, z2

3r
2,

z3rt, rs
4, r2s2, z3r

2s2, z2
3r

2s, rs5, r2s3, r2t, z2
3r

2s2, z3r
2t, r2s4, r2s5}.

We want to show that the 8 invariants listed above are B-linearly independent
elements of RB . To do so, we will show that they are linearly independent when
viewed as elements of RB⊗Q/(a1, a2, a3, a4, a6), which is enough since RB is a free
B-module (and B is an integral domain).

In RB⊗Q/(a1, a2, a3, a4, a6), we have the following expressions in terms of basis
elements (computed by MAGMA):

1 =1

σ2
1 =4z2

3 − 8z3s+ 12r

σ4
1 =48z2

3r + 16z2
3s

2 − 192z3rs+ 384r2 − 96rs2 + 16s4

n4 =4z2
3r + 4z2

3s
2 − 32z3rs+ 4z3t+ 54r2 − 12rs2 + 2s4

n6 =60/7z2r
2s− 236/7z2

3r
2 + 116/7z2

3rs
2 − 38z3r

2s+ 260/7z3rt+ 36/7r2s2 + 4rs4

σ2
1n4 =1188/7z2r

2s− 5244/7z2
3r

2 + 2644/7z2
3rs

2

− 864z3r
2s+ 5400/7z3rt+ 1032/7r2s2 + 88rs4

σ2
3 =− 15/7z2r

2s+ 45/7z2
3r

2 − 15/7z2
3rs

2 + 3z3r
2s− 72/7z3rt+ 12/7r2s2

σ2
1n6 =52768/355z2

3r
2s2 − 406572/355z3r

2t+ 61336/355r2s4
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In the 48 × 8-matrix which has the following 8 × 8-submatrix, corresponding to
basis elements 1, z2

3 , s
4, z3t, r

2s2, z3r
2s, rs4, r2s4:

1 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 4 ∗ ∗ ∗ ∗ ∗ ∗
0 0 16 ∗ ∗ ∗ ∗ ∗
0 0 0 4 ∗ ∗ ∗ ∗
0 0 0 0 36

7
1032

7
12
7 ∗

0 0 0 0 −38 −864 3 ∗
0 0 0 0 4 88 0 ∗
0 0 0 0 0 0 0 61336

355


.

Here, by ∗ we denote (potentially di�erent) ring elements which do not matter for
the computation of the determinant. Again using MAGMA, this determinant can
be computed to be

66325315584

2485
6= 0.

This implies that the 8 invariants listed above are B-linearly independent elements
of RB , so they generate a free sub-B-module of RB of rank 8, which we denote by
V .

Our next goal is to show that this module is already all of SB , (identi�ed with)
invariants of RB under Z/6-action.

First, observe that the inclusion induces an isomorphism over B ⊗ Q. Indeed,
recall �rst that SB⊗Q ∼= SB ⊗ Q using �atness of Q over Z(3) and the fact that

H1(Z/6,Q) = 0. As the order of Z/6 is invertible in Q, we know that SB⊗Q is
a direct summand of the free B ⊗ Q-module RB⊗Q and thus projective. By the
Quillen-Suslin Theorem (see e.g. [20], Theorem XXI.3.7), it implies that SB⊗Q
is also free, automatically of rank 8 as this is true after inverting ∆. We claim
that V ⊗Q → SB⊗Q is surjective. It is enough to show this after quotiening by
a1, . . . , a6 by the graded Nakayama lemma. The 8×8-minor argument above shows
that V ⊗Q→ RB ⊗Q is injective after quotiening by a1, . . . , a6 and thus the same
is true for

V ⊗B B/(a1, . . . , a6)⊗Q→ SB ⊗B B/(a1, . . . , a6)⊗Q.

As an injective map between 8-dimensional Q-vector spaces, it must be surjective
as well, showing our claim.

Thus, it is enough to show that the map from the free B-module generated by
the 8 invariants to SB (or to RB) is injective when we tensor it with F3. (This will
imply surjectivity. Indeed, let x ∈ SB be some element. By the rational statement,
we know that there is an element y in the B-span of the invariants above and k ∈ N
s.t. 3kx = y. If k = 0, we are done; otherwise we can conclude that y is mapped to
0 in RB after tensoring with F3, so by injectivity we assumed it can be divided by
3 in the module generated by our chosen invariants. Inductively, this implies the
claim.)

Thus we do a similar computation over F3 as above rationally. We use the same
basis for RB ⊗ F3 over B ⊗ F3. As before, we use MAGMA to express the chosen
invariants in terms of the basis.

σ2
1 =a2

1 + 2a1z3 + a2 + z2
3 + z3s

σ4
1 =a4

1 + a3
1z3 + 2a2

1a2 + 2a2
1z

2
3 + 2a2

1z3s+ a2
1r + a2

1s
2
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+ a1a2z3 + a1a2s+ a1a3 + a1z
2
3s+ 2a1s

3 + 2a2
2 + a2z

2
3

+ 2a2z3s+ a2r + a2s
2 + 2a4 + z2

3s
2 + s4

n4 =2a3
1z3 + a2

1z
2
3 + a2

1z3s+ 2a2
1r + 2a2

1s
2 + 2a1a2z3

+ 2a1a2s+ a1a3 + a1z
2
3s+ a1z3r + a1s

3 + 2a2
2 + a2z3s+ 2a2r

+ 2a2s
2 + 2a3z3 + 2a4 + z2

3r + z2
3s

2 + z3rs+ z3t+ 2s4

n6 =2a3
1z2r + 2a3

1z
2
3s+ 2a3

1z3r + a3
1rs+ a2

1a2z
2
3

+ 2a2
1a2r + 2a2

1a3z2 + a2
1a3z3 + a2

1a3s+ a2
1z2rs

+ 2a2
1z

2
3s

2 + 2a2
1z3rs+ 2a2

1z3t+ 2a2
1rs

2 + 2a1a2a3

+ 2a1a2z2r + 2a1a2z
2
3s+ 2a1a2z3r + 2a1a2rs+ a1a3z2s

+ a1a3z
2
3 + 2a1a3r + a1a3s

2 + a1a4z2 + 2a1a4s+ 2a1z
2
3rs

+ 2a1rs
3 + a2

2z
2
3 + a2a3z3 + a2a4 + a2z2rs+ a2z

2
3r

+ 2a2z
2
3s

2 + 2a2z3rs+ 2a2z3t+ 2a2rs
2 + a3z3r + 2a4z2s

+ 2a4z
2
3 + a4r + 2a4s

2 + z2
3r

2 + 2z2
3rs

2 + z3r
2s+ 2z3rt+ rs4

σ2
1n4 =2a5

1z3 + a4
1z

2
3 + a4

1z3s+ a3
1a2z3 + 2a3

1a3 + a3
1z

2
3s

+ 2a3
1z3r + 2a3

1rs+ a2
1a2z

2
3 + 2a2

1a2z3s+ a2
1a2r

+ a2
1a3z3 + 2a2

1a3s+ a2
1a4 + 2a2

1z
2
3r + a2

1z
2
3s

2

+ a2
1z3rs+ a2

1r
2 + 2a1a

2
2z3 + a1a2z

2
3s+ 2a1a2z3r

+ 2a1a3z3s+ a1a3r + 2a1a3s
2 + 2a1a4z3 + a1a4s+ a1z

2
3rs

+ 2a1rs
3 + a2

2z3s+ 2a2
2r + a2z

2
3r + a2z

2
3s

2 + a2z3rs

+ a2r
2 + a4z3s+ 2a4r + a4s

2 + z2
3rs

2 + rs4

σ2
3 =a3

1z2r + a3
1z

2
3s+ a3

1z3r + 2a3
1rs+ 2a2

1a2z
2
3 + a2

1a2r

+ a2
1a3z2 + a2

1a3z3 + 2a2
1a3s+ 2a2

1z2rs+ a2
1z

2
3s

2

+ 2a2
1z3rs+ 2a2

1rs
2 + a1a2a3 + a1a2z2r + a1a2z

2
3s

+ a1a2z3r + 2a1a2rs+ 2a1a3z2s+ 2a1a3z3s+ 2a1a3s
2

+ 2a1a4z2 + 2a1a4z3 + a1a4s+ 2a2
2z

2
3 + a2

2r + 2a2a4

+ 2a2z2rs+ a2z
2
3s

2 + 2a2z3rs+ 2a2rs
2 + a4z2s+ a4z3s+ a4s

2

σ2
1n6 =2a5

1rs+ a4
1a2r + 2a4

1a3z3 + 2a4
1a3s+ 2a4

1z3rs+ a4
1z3t

+ a4
1r

2 + 2a4
1rs

2 + a3
1a2a3 + a3

1a2rs+ a3
1a3z

2
3+

2a3
1a3r + 2a3

1a3s
2 + a3

1a4s+ a3
1z

2
3rs+ a3

1z3r
2+

a3
1r

2s+ 2a2
1a

2
2r + a2

1a2a3z3 + 2a2
1a2a3s+ 2a2

1a2a4+

2a2
1a2z

2
3r + a2

1a2z3rs+ 2a2
1a2z3t+ a2

1a2r
2+

a2
1a2rs

2 + 2a2
1a

2
3 + 2a2

1a3z
2
3s+ a2

1a3z3r + a2
1a3rs

+ 2a2
1a4z

2
3 + a2

1a4r + a2
1a4s

2 + 2a2
1a6 + 2a2

1z
2
3r

2+

a2
1z

2
3rs

2 + 2a2
1z3rt+ 2a2

1r
2s2 + a1a

2
2a3+

2a1a
2
2rs+ 2a1a2a3z

2
3 + a1a2a3r + 2a1a2a3s

2 + a1a2a4s+
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a1a2z
2
3rs+ a1a2z3r

2 + 2a1a2r
2s+ a1a

2
3z3+

2a1a3z
2
3s

2 + a1a3z3rs+ 2a1a3z3t+ a1a3r
2 + a1a3rs

2+

a1a4z
2
3s+ 2a1a4rs+ a1z

2
3r

2s+ 2a1r
2s3 + a3

2r+

2a2
2a3z3 + 2a2

2a4 + 2a2
2z

2
3r + 2a2

2z3rs+ a2
2z3t+

a2
2r

2 + 2a2
2rs

2 + 2a2a
2
3 + a2a3z3r + a2a4z

2
3 + 2a2a4r+

a2a4s
2 + 2a2a6 + a2z

2
3r

2 + a2z
2
3rs

2 + 2a2z3rt+

2a2r
2s2 + 2a3a4z3 + a4z

2
3s

2 + 2a4z3rs+ a4z3t+ 2a4r
2+

2a4rs
2 + z2

3r
2s2 + r2s4

There is a nonvanishing 8 × 8-minor in the corresponding 48 × 8-matrix and thus
our claim follows.

6. Comodule Structures

Recall we denote by B the ring B = A[a1, a2, a3, a4, a6]. Similarly to the case of
elliptic curves, we obtain a Hopf algebroid (B,Γ), where Γ arises from the pullback
diagram

Spec(Γ) Spec(B)

Spec(B) Mcub.

ηR

ηL 2nd

1st

By fpqc descent, evaluation at SpecB de�nes an equivalence between quasi-
coherent sheaves on Mcub,A and (B,Γ)-comodules. Thus it su�ces for our main
algebraic theorem to provide an isomorphism of certain comodules, which will de-
scribe explictly.

6.1. The comodule corresponding to f∗f
∗O. Recall that at the prime 3, we

have mf1(2)∗ ∼= Z(3)[b2, b4], and the B-module structure is given by

a2 7→ b2 and a4 7→ b4 and a1, a3, a5 7→ 0.

Thecorresponding (B,Γ)-comodule is given by Γ ⊗B mf1(2)∗ with extended co-
module structure. In this tensor product, we use the right B-module structure of
Γ.

Lemma 6.1. There is a monic polynomial P of degree 3 over B so that there is a
ring isomorphism Γ⊗Bmf1(2)∗ ∼= B[r]/P , and the comodule structure is determined
by r 7→ 1⊗ r + r ⊗ 1.

Forgetting the ring structure, we can identify this comodule with the free B-
module Bw1 ⊕Bw2 ⊕Bw3 with (B,Γ)-comodule structure given by

w1 7→ 1⊗ w1,

w2 7→ 1⊗ w2 + r ⊗ w1,

w3 7→ 1⊗ w3 + 2r ⊗ w2 + r2 ⊗ w1.

Proof. Identifying the B-module structures, we obtain a ring isomorphism

Γ⊗B mf1(2)∗ ∼= B[r, s, t, b2, b4]/(R),
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where the relations R are generated by

a1 + 2s = 0,

a2 − sa1 + 3r − s2 = b2,

a3 + ra1 + 2t = 0,

a4 − sa3 + 2ra2 − (t+ rs)a1 + 3r2 − 2st = b4,

a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1 = 0.

Here, we use the formulae for ηR from [1, Section 3]. Exploiting in particular the
fact that 2 is invertible in Z(3), we can express s, t, b2, b4 as polynomials in r over
B. This yields the ring isomorphism

B[r, s, t, b2, b4]/(R) ∼= B[r]/(R′),

where the relation R′ is given by

a6 + ra4 + r2a2 + r3 +
1

2
(a3 + ra1)a3 −

1

4
(a3 + ra1)2 +

1

2
(a3 + ra1)ra1 = 0,

which is a monic polynomial in r over B of degree 3, which we denoted by P in the
statement.

The �rst statement about the comodule structure is immediate since Γ ⊗B
mf1(2)∗ carries the extended comodule structure.

For the second description of the comodule structure, observe that since P is a
monic polynomial of degree 3, there is an isomorphism of B-modules Bw1⊕Bw2⊕
Bw3 → B[r]/(P ) given by wi 7→ ri−1. Thus, to identify the comodule structure,
we only need to compute it on 1, r, r2 on the left-hand side, and transfer it via this
isomorphism, using the compatibility of comodule structure with ring structure of
B[r]/(P ). This yields the claim. �

6.2. The comodule corresponding to (f7)∗(f7)∗O. Recall from Proposition 2.4
that 3-locally, mf1(7)∗ ∼= Z(3)[z1, z2, z3]/(σ2). Weobserve that RB := Γ⊗B mf1(7)∗
with the extended comodule structure.

Lemma 6.2. There is a ring isomorphism RB ∼= Z(3)[z1, z2, z3, r, s, t]/(σ2), and
the (B,Γ)-comodule structure is completely determined by

zi 7→ 1⊗ zi, for i ∈ {1, 2, 3},
s 7→ 1⊗ s+ s⊗ 1,

r 7→ 1⊗ r + r ⊗ 1,

t 7→ 1⊗ t+ t⊗ 1 + s⊗ r.

6.3. The comodule corresponding to (h7)∗(h7)∗O. Recall that we identi�ed

SB ∼= (RB)(Z/7)× as B-module with a free 8-dimensional B-module with basis

1, σ2
1 , σ

4
1 , n4, σ

2
1n4, n6, σ

2
1n6, σ

2
3 .

We will now describe the comodule structure on this B-module.
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Lemma 6.3. The (B,Γ)-comodule structure on SB is given by

1 7→ 1⊗ 1,

σ2
1 7→ 1⊗ σ2

1 ,

σ4
1 7→ 1⊗ σ4

1 ,

n4 7→ 1⊗ n4 + r ⊗ σ2
1 ,

σ2
1n4 7→ 1⊗ σ2

1n4 + r ⊗ σ4
1 ,

n6 7→ 1⊗ n6 + 2r2 ⊗ σ2
1 + r ⊗ n4,

σ2
1n6 7→ 1⊗ σ2

1n6 + 2r2 ⊗ σ4
1 + r ⊗ σ2

1n4,

σ2
3 7→ 1⊗ σ2

3 .

Proof. This follows from Lemma 6.2 and Proposition 5.1 by a straightforward com-
putation. �

6.4. The conclusion. We continue to work 3-locally.

Proposition 6.4. There is an isomorphism of comodules

B ⊕ (Γ⊗B mf1(2)∗)[2]⊕ (Γ⊗B mf1(2)∗)[4]⊕B[6]→ SB ,

given by
1B 7→ 1,

w1[2] 7→ σ2
1 ,

w2[2] 7→ n4,

w3[2] 7→ n6,

w1[4] 7→ σ4
1 ,

w2[4] 7→ σ2
1n4,

w3[4] 7→ σ2
1n6,

1B [6] 7→ σ2
3 .

Proof. This follows by inspection from Lemma 6.1 and Lemma 6.3. �

This implies our main algebraic theorem by the equivalence of (B,Γ)-comodules
and quasi-coherent sheaves onMcub,A:

Theorem 6.5. There is 3-locally an isomorphism

(h′)∗OM0(7)cub
∼= OMcub

⊕ ω⊗(−6) ⊕ (f ′)∗OM1(2)cub ⊗(ω⊗(−2) ⊕ ω⊗(−4)

of vector bundles onMcub.

By restricting toMell,(3), this implies Theorem 1.2.

7. Topological conclusions

In the following, we will work in the homotopy category of modules over the sheaf
Otop of E∞-ring spectra onMell =Mell,R, where R is a localization of the integers
(the case R = Z(3) being the most important for us). We denote the derived smash
product over Otop by ⊗Otop and the internal Hom in this category by HomOtop .
We denote morphism sets by [−,−]O

top

. We will call an Otop-module F locally free
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if there is an étale covering {Ui →Mell} such that F restricted to Ui is equivalent
to
⊕

J Otop|Ui .
A related lemma already appears in [2, Lemma 2.2.2].

Lemma 7.1. Let A be a sheaf of Otop-algebras onMell that is locally free of rank
n as an Otop-module. There is a trace map

trA : A → Otop

such that the composite trA u with the unit map

u : Otop → A
equals multiplication by n.

Proof. Consider the composite

trA : A → HomOtop(A,A)
'←− A⊗Otop HomOtop(A,Otop) ev−→ Otop.

Here, the middle map is an equivalence because A is locally free. We claim that
the composite

trA u : Otop → Otop

equals multiplication by n.
Note �rst that the map

π0 : [Otop,Otop]O
top

→ Homπ0Otop(π0Otop, π0Otop)
is a bijection. Indeed, the source agrees with π0Γ(Otop) = π0TMF and the mor-
phism is the edge homomorphism of the descent spectral sequence. It can be de-
duced from [19] that this edge homomorphism is an isomorphism.

As A is locally free, π0 trA : π0A → π0Otop agrees with the trace map of π0A
over π0Otop. Its precomposition with π0u equals n as it does locally (as we get
exactly the trace of the identity map of a free module of rank n). This shows the
claim. �

We will need the following variant of Lemma 5.2.2 from [26]

Lemma 7.2. Let F be a locally free Otop-module on Mell of �nite rank. Let
galg : f∗f

∗ω⊗(−i) → π0F be a split inclusion. Then galg can be uniquely realized by
a split map

g : Σ2if∗f
∗Otop → F

with π0g = galg.

Proof. If F and G are locally free Otop-modules, then

πkHomOtop(F ,G)→ Homπ∗Otop(π∗F , π∗+kG)

is an isomorphism as this is true locally; moreover, the target is isomorphic to
Homπ0Otop(π0F , πkG) as F and G are even periodic.

For simplicity we assume now that i = 0. The dual of the vector bundle
f∗f
∗OMell

∼= f∗OM1(2) is isomorphic to ω⊗ 4⊗OMell
f∗OM1(2)

∼= f∗f
∗ω⊗ 4 as can

be deduced from Lemma 6.1.
This implies that

HomOMell
(f∗f

∗OMell
, πkF) ∼= f∗f

∗ω⊗ 4⊗Mell
πkF

∼= f∗f
∗(ω⊗ 4⊗Mell

πkF).
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As f is a�ne and every quasi-coherent sheaf on M1(2) ' P1
R(2, 4) (the weighted

projective line) has cohomology at most in degrees 0 and 1, the descent spectral
sequence

Hq(Mell;πpHomOtop(f∗f
∗Otop,F)⇒ πp−q HomOtop(f∗f

∗Otop,F)

is concentrated in the lines 0 and 1. Moreover, the E2-term is zero for p odd and
thus the edge homomorphism

[f∗f
∗Otop,F ]O

top

= π0 HomOtop(f∗f
∗Otop,F)→ HomOMell

(f∗f
∗OMell

, π0F)

is an isomorphism.
Similarly, one shows that

[F , f∗f∗Otop]O
top

) = π0 HomOtop(F , f∗f∗Otop)→ HomOMell
(π0F , f∗f∗OMell

)

is an isomorphism. The lemma follows. �

Theorem 7.3. We can decompose Tmf0(7)(3) as

Tmf(3) ⊕ Σ4Tmf1(2)(3) ⊕ Σ8Tmf1(2)(3) ⊕ L,

where L ∈ Pic(Tmf(3)), i.e. L is an invertible Tmf(3)-module.

Proof. Throughout this proof, we will implicitly localize at 3. Denote as before the
map M0(7) → Mell by h. By Lemma 7.1, the unit map Otop → h∗h

∗Otop splits
o� as an Otop-module; denote the co�ber by F . Note that πkF = 0 for k odd. By
Theorem 6.5,

π0F ∼= ω⊗(−6) ⊕ f∗f∗ω⊗(−2) ⊕ f∗f∗ω⊗(−4).

By Lemma 7.2, we obtain a decomposition

F ∼= L ⊕ Σ4f∗f
∗Otop ⊕ Σ8f∗f

∗Otop

with π0L ∼= ω⊗(−6). Thus, L is an invertible Otop-module. We obtain our result
by taking global sections because the global sections of h∗h

∗Otop are Tmf0(7). To
see that L = Γ(L) is an invertible Tmf -module, we use that the global sections
functor

Γ: QCoh(Mell,Otop)→ Tmf−mod

is a symmetric monoidal equivalence of ∞-categories by one of the main results of
[23]. �

Remark 7.4. In [24], the Picard group Pic(Tmf(3)) is identi�ed with Z ⊕ Z/3,
where

Z→ Pic(Tmf(3))

is the map k 7→ ΣkTmf(3). The image of the generator of Z/3 is called Γ(J ) [24,

Construction 8.4.2]. As the homotopy groups of all ΣkJ⊗ l can be easily calculated
from those of Tmf , one can deduce the identity of L in the previous theorem by
calculating π∗Tmf0(7). This was done in unpublished work by Martin Olbermann
and he shows that L ' Σ36Γ(J⊗ 2).

Note that Γ(J⊗ l) is in the kernel of Pic(Tmf(3)) → Pic(TMF(3)) so that L

becomes Σ36TMF(3) after base changing to TMF(3).
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Appendix A. Modular forms and q-expansions

The aim of this appendix is to give the reader a quick introduction to the di�erent
�avors of modular forms and to introduce and justify the q-expansion principle in
the speci�c form we will need. We refer to [9] for an introduction to modular forms
and to [8], [16] and [17, Section 2] for treatments closer to our needs. We also refer
to [6] for a thorough treatment of the analytic side.

A.1. Modular forms. In this section, we will give three de�nitions of modular
forms and compare them.

We start with the classical de�nition and denote by MFk(SL2(Z),C) the set of

holomorphic functions f : H → C satisfying for every z ∈ H and every

(
a b
c d

)
∈

SL2(Z) the compatibility condition

f

(
az + b

cz + d

)
= (cz + d)kf(z),(A.1)

and meromorphic at∞. (To make this last condition precise, recall that the SL2(Z)-
compatibility implies in particular that f is 1-periodic, and so there is a well-de�ned
holomorphic function g : D2 \ {0} → C satisfying f(z) = g(e2πiz), and we require
this g to be meromorphically extended to 0. We will say that the Laurent expansion
of g at 0 is the classical q-expansion of f at ∞.) Elements of MFk(SL2(Z),C) are
called meromorphic modular forms. Denote by MFk(SL2(Z), R0) for a subring R0

of C the subset of MFk(SL2(Z),C) of modular forms with coe�cients of classical
q-expansion of f lying in R0.

For the algebro-geometric de�nitions of modular forms, we denote for an elliptic
curve p : E → T the quasi-coherent sheaf p∗Ω

1
E/T by ωE .

Proposition A.1 (Proposition II.1.6 of [7]). Let p : E → T be an elliptic curve,
and denote its chosen section by e : T → E. Then the sheaf ωE = p∗Ω

1
E/T is a line

bundle on T . Moreover, the adjunction counit

p∗p∗Ω
1
E/T → Ω1

E/T

is an isomorphism, implying also p∗Ω
1
E/T
∼= e∗Ω1

E/T .

An invariant di�erential for E is a nowhere vanishing section of Ω1
E/T or equiv-

alently a trivialization of ωE .
Our second de�nition of modular forms will de�ne them as a certain kind of

natural transformations. Fix a (commutative) ring R0. For any R0-algebra R,
denote by Ell1(R) the set of isomorphism classes of pairs (E,ω) consisting of an
elliptic curve E over R together with an invariant di�erential. This de�nes (together
with pullback of elliptic curves and of invariant di�erentials) a functor

Ell1(−) : (AffSh / Spec(R0))op → Sets .

As in [16], Section 1.1, we can consider a notion of a modular form of level 1
and weight k over R0 as the subset of the set of natural transformations f ∈
Nat(Ell1(−),Γ(−)) with the following scaling property: For any R0-algebra R,
elliptic curve with chosen invariant di�erential (E,ω) and any λ ∈ R×, we have

f(E, λω) = λ−kf(E,ω).(A.2)

Denote the set of such natural transformations by Natk(Ell1(−),Γ(−)).
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For the third de�nition, let Mell,R0
be the moduli stack of elliptic curves over

Spec(R0) (see e.g. [7] or [28]). On its big étale site, one de�nes a line bundle ω
as follows. For a morphism t : T → Mell,R0 from a scheme T , let p : E → T be
the corresponding elliptic curve with unit section e. We associate with (T, t) the
line bundle ωE on T . To check that this actually de�nes a line bundle consider a
cartesian square

E′

p′

��

f̃ // E

p

��
T ′

f // T

with unit section e′ : T ′ → E′. We obtain a chain of natural isomorphisms

f∗ωE ∼= f∗e∗Ω1
E/T
∼= (e′)∗f̃∗Ω1

E′/T ′
∼= (e′)∗Ω1

E′/T ′
∼= ωE′

as required.
The third de�nition of the meromorphic modular forms over R0 of weight k is

H0(Mell,R0
;ω⊗ kR0

).

A.1.1. Comparision of de�nitions of modular forms. There is an easy map

α : H0(Mell,R0
, ω⊗kMell,R0

)→ Natk(Ell1(−),Γ(−)),

constructed as follows. Given an element f ∈ H0(Mell,R0
, ω⊗kMell,R0

), an R0-algebra

R and an elliptic curve E/R together with an invariant di�erential ω. If E is

classi�ed by ϕ : Spec(R) → Mell,R0
, we have ϕ∗(ω⊗kMell,R0

) ∼= ω⊗kE . By de�nition,

f de�nes an element in Γ(ϕ∗(ω⊗kMell,R0
)), which via the previous isomorphism and

via the isomorphism ω⊗k from O⊗kR to ω⊗kE/R is identi�ed with

Γ(ϕ∗(ω⊗kMell,R0
)) ∼= Γ(ω⊗kE ) ∼= Γ(O⊗kR ) ∼= Γ(OR) = R.

De�ne α(f)(E,ω) to be the image in R of the element de�ned by f in the left-hand
side. The naturality of α(f) is clear. Replacing ω by λω for λ ∈ R× multiplies the
chosen isomorphism above by λk, so we obtain

α(f)(E, λω) = λ−kα(f)(E,ω).

Let us sketch why α is an iso. By de�nition, the section f corresponds to a
compatible choice of sections in H0(T ;ω⊗ kE ) for all T → Mell,R0 classifying an
elliptic curve E. As ωE is locally trivial, f is uniquely determined by its values on
those T where ωE is already trivial and T = SpecR is a�ne. In this case, a section of
ω⊗ kE corresponds exactly to associating with each trivialization ω of ωE an element

f(E,ω) such that f(E, λω) = λ−kf(E,ω). This describes Natk(Ell1(−),Γ(−)).
Moreover, for any subring R0 of C we also have an easy map

β : Natk(Ell1(−),Γ(−))→ MFk(SL2(Z), R0),

de�ned as follows. For any f ∈ Natk(Ell1(−),Γ(−)) and any τ ∈ H, set β(f)(τ) =
f(C/Z · 1⊕ Zτ, dz) ∈ C.
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We will check SL2(Z)-compatibility of β(f). Let

(
a b
c d

)
∈ SL2(Z) be given.

Observe that we have a biholomorphism

ψ : C/ (Z · 1⊕ Zτ)→ C/
(
Z · 1⊕ Z

aτ + b

cτ + d

)
,

[z] 7→
[

z

cτ + d

]
.

This shows that, since f is well-de�ned on isomorphism classes and the scaling
property,

β(f)

(
aτ + b

cτ + d

)
= f

(
C/
(
Z · 1⊕ Z

aτ + b

cτ + d

)
, dz

)
= (cτ + d)kf(C/Z · 1⊕ Zτ, dz) = (cτ + d)kβ(f)(τ).

We will later sketch why this is holomorphic in the interior and meromorphic at
the cusp and why β is an isomorphism.

A.1.2. Holomorphic modular forms. In each of the three de�nitions above, we can
also restrict to modular forms that are �holomorphic at the cusps�. In the classical
de�nition we just require function g to be holomorphic at 0. By requiring that
the classical q-expansion is in R0JqK, we obtain the R0-module mfk(SL2(Z),C) of
holomorphic modular forms.

For the algebro-geometric version, we have to work with generalized elliptic
curves instead [7, De�nition II.1.12]. We can de�ne ωE in the same way as for
usual elliptic curves and the analogue of Proposition A.1 is still valid. This de�nes
a line bundle ω on the compacti�ed moduli stack Mell (which is our notation for
M1 from [7, Remarque III.2.6]). Our algebro-geometric de�nition of holomorphic
modular forms of weight k is H0(Mell,R0

, ω⊗ k).
We will later sketch the comparison between these two de�nitions.

A.2. Level structures. Throughout this section, let R0 be a Z[ 1
n ]-algebra.

We begin with the classical de�nition of modular forms with level structure. Let
Γ1(n) ⊂ SL2(Z) be the subgroup of matrices that reduce to a matrix of the form(

1 ∗
0 ∗

)
modulo n.

A meromorphic/holomorphic modular form of level n and weight k is a holo-
morphic function f : H → C satisfying the transformation formula (A.1) and is
meromorphic/holomorphic at all cusps. We will say more about cusps later, but
for the moment see [9, Section 1.2] for details. Note that modular forms of level
n are still 1-periodic and thus the classical q-expansion still makes sense. Assume
that R0 ⊂ C. We will denote by MFk(Γ1(n);R0) the meromorphic modular forms
of level n and weight k that have classical q-expansion with coe�cients in R0 and
by mfk(Γ1(n);R0) the analogue for holomorphic modular forms.

For the algebro-geometric de�nitions of modular forms with level structure, we
have to distinguish between two di�erent ways to phrase them, the naive and the
arithmetic level structures.

A.2.1. Naive level structures.
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De�nition A.2 ([7], Construction 4.8). For an R0-algebra R, let Ell1Γ1(n)(R)

denote the set of isomorphism classes of triples (E,ω, j), where E is an ellip-
tic curve over R, further ω is a chosen trivialization of the line bundle ωE, and
j : Z/nZR → E is a morphism of group schemes over Spec(R) and a closed immer-
sion. This morphism j is called a Γ1(n)-level structure.

Recall that Z/nZR =
∐

Z/nZ Spec(R) as a scheme, with the obvious map to

SpecR and group structure coming from the group structure on Z/nZ. The group
structure on the elliptic curve is explained in [18], Section 2.1. We can identify j
with the image P = j(1) ∈ E(R) since it determines j completely.

Remark A.3. We should remark that this variant of level structures is often called
�naive� in the literature. Note also that the analogous de�nition in [8], Section 8.2,
looks slightly di�erent, but is equivalent by using that being closed immersion can
be checked for proper schemes on geometric points.

Using again the scaling condition (A.2) we can de�ne Natk(Ell1Γ1(n)(−),Γ(−))
analogously to our de�nition without level in Section A.1.

We can also de�ne a moduli stack M1(n) classifying elliptic curves over Z[ 1
n ]-

schemes with Γ1(n)-level structure. We obtain a morphism fn : M1(n) → Mell

by forgetting the level structure. As in Section A.1.1 we obtain a comparison
isomorphism

α : H0(M1(n); (fn)∗ω⊗ k)→ Natk(Ell1Γ1(n)(−),Γ(−)).

There are di�erent ways to compare modular forms with and without level struc-
ture. The particular form of compatibility is expressed in the following commutative
diagram.

Natk(Ell1Γ1(n)(−),Γ(−)) Natk(Ell1(−),Γ(−))

MF(Γ1(n), R0) MFk(SL2(Z), R0)

(C/Z+nτZ,dz,τ)

(E,P )7→E/〈P 〉

(C/Z+τZ,dz)

We will denote the left vertical morphism by β1. The reason for our particu-
lar choice of β1(n) might become clearer in the next subsection and even clearer
when we discuss q-expansions. Note that we have not shown yet that the vertical
morphism actually land in the indicated target, but we will later.

A.2.2. Arithmetic level structures. Now we would like to discuss a di�erent variant
of level structures, called �arithmetic� in the literature.

De�nition A.4. For an R0-algebra R, let Ell1Γµ(n)(R) denote the set of isomor-

phism classes of triples (E,ω, ι), where E is an elliptic curve over R, again ω is
a chosen trivialization of the line bundle ωE, and ι : µn,R → E is a morphism of
group schemes over Spec(R) and a closed immersion. Here, µn,R is a group scheme
given by the spectrum of the bialgebra R[t]/(tn−1) with comultiplication determined
by t 7→ t⊗ t. The morphism ι is called an arithmetic (or Γµ(n)-) level structure on
E.

One can check that for a Z
[

1
n , ζn

]
-algebra R, both group schemes µn,R and

Z/nZ(R) are isomorphic, but this is not true in general. Now we can de�ne the set of
weight k modular forms with arithmetic level structure to be Natk(Ell1Γµ(n)(−),Γ(−))
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with the same scaling condition as before. Likewise, we can de�ne a moduli stack
Mµ(n) of elliptic curves with Γµ(n)-level structure (over bases with n invertible).
Denoting the forgetful mapMµ(n)→Mell by f

′
n we obtain as before comparison

isomorphisms

α : H0(Mµ(n); (f ′n)∗ω⊗ k)→ Natk(Ell1Γµ(n)(−),Γ(−)).

We need to discuss a relation between Γ1(n)- and Γµ(n)-level structures. Observe
we have a morphism ϕ : M1(n)→Mµ(n) sending (E → S, P ) to (E/〈P 〉 → S, α),
where we de�ne α : µn,S → E/〈P 〉 as follows: As explained in [18, Section 2.8] there
is an alternating pairing

〈−,−〉π : ker(π)× ker(πt)→ Gm,S

for π : E → E/〈P 〉 the projection and πt the dual isogeny. This induces an isomor-
phism

ker(πt)→ HomS−gp ker(π),Gm,S)
evP−−→ µn,S

and α is the composition of the inverse of this isomorphism with the natural inclu-
sion ker(πt)→ E composed with [−1]. The reasons for composing with [−1] will be
apparent in the example below.

We remark that an analogous construction provides an inverse of ϕ (using the
isomorphism E/E[n] ∼= E induced by [n], the multiplication-by-n morphism) and
thus ϕ : M1(n)→Mµ(n) is an equivalence of stacks. See also [17, Section 2.3].

One can compute φ in terms of the Weil pairing as follows: As ππt = [n], [18,
2.8.4.1] implies that 〈Q, π(R)〉π for Q ∈ ker(π)(T ) and R ∈ E[n](T ) with T → S
can be computed as en(Q,R), where en denotes the Weil pairing.

Example A.5. Let E = C/(Z+nτZ) with chosen n-torsion point τ . We clam that

φ(E, τ) = (C/Z + τZ, ζn 7→ 1
n ) with ζn = e

2πi
/
n.

Indeed, we have en(τ, 1
n ) = ζ−1

n by [18, 2.8.5.3] and thus 〈τ, 1
n 〉π = ζ−1

n . The
claim follows.

Under the isomorphism

C/Z + τZ→ C×/qZ, z 7→ e2πiz

with q = e2πiτ the morphism α corresponds thus just to the obvious inclusion of µn.

The example implies directly the following lemma.

Lemma A.6. The following diagram commutes:

H0(Mµ(n)R0 , ω
⊗k
Mµ(n)R0

) H0(M1(n)R0 , ω
⊗k
M1(n)R0

)

Natk(Ell1Γµ(n)(−),Γ(−)) Natk(Ell1Γ1(n)(−),Γ(−))

MF(Γ1(n), R0)

ϕ∗

α α

ϕ∗

(C/Z+τZ,dz,ζn 7→ 1
n )

(C/Z+nτZ,dz,τ)

We will denote the diagonal arrow by βmu. As a last point, we mention the
following lemma.
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Lemma A.7. Let E/S be an elliptic curve and n be invertible on S. Let ι : µn,S →
E be a Γµ(n)-structure. Then we have a short exact sequence

1→ µn,S
ι−→ E[n]

κ−→ (Z/n)S → 1

of étale sheaves of abelian groups.

Proof. The Weil pairing discussed in [18, Section 2.8] induces an isomorphism

E[n]
∼=−→ HomS−gp(E[n],Gm,S).

Postcomposing with ι∗ induces a surjection

E[n]→ HomS−gp(µn,S ,Gm,S) ∼= (Z/n)S ,

which we call κ. The composition κι is zero by [18, 2.8.7]. �

A.2.3. Compacti�cations and comparison of algebraic and analytic theory. In this
section we discuss how to compactifyM1(n) and also the comparison of the alge-
braic and the analytic theory. The basic sources are [7] and [6] and we will just
give a short summary.

The moduli stack Mell has a compacti�cation Mell classifying suitable gener-
alized elliptic curves (this is M1 in the sense of [7, Section III]). The moduli stack
M1(n) has as well a compacti�cationM1(n). It can be de�ned as the normaliza-
tion ofMell inM1(n) (see ... for the normalization construction). It is shown in
[7, Section IV] thatM1(n)→ SpecZ[ 1

n ] is proper and smooth of relative dimension
1.

For n ≥ 5, the stackM1(n) is representabe by a projective scheme (see ... or ...).
It is shown in [6, Thm 2.2.2?] that the Riemann surface associated withM1(n)C is
isomorphic to a more classical construction, namely the compacti�cation X1(n) of
the quotient Y1(n) of the upper half plane H by Γ1(n). Indeed, Conrad shows that
bothM1(n)C and X1(n) classify generalized elliptic curves over complex analytics
spaces with Γ1(n)-level structure. The family of elliptic curves (C/Z+nτZ, τ) with
Γ1(n)-level structure over H descends to Y1(n) and extends to X1(n). This speci�es
a possible isomorphismM1(n)C → X1(n).

The compacti�cation X1(n), for example, studied in [6] and in [9, Chapter 2].
In particular, [6, Lemma 1.5.7.2?] shows that mfk(Γ1(n);C) ∼= H0(X1(n);ω⊗ k),
where ω on X1(n) is the analyti�cation of a line bundle ω onM1(n) that extends ω
onM1(n) as we de�ned it before. By GAGA, holomorphic and algebraic sections
of ω⊗ k agree.

The complement of Y1(n) in X1(n) is a �nite set consisting of the cusps. One
can see thatMFk(Γ1(n);C) corresponds to those meromorphic sections of ω⊗ k that
are holomorphic on Y1(n) (but have possibly poles at the cusps). Likewise, sections
of ω⊗ k onM1(n) correspond to meromorphic sections of ω⊗ k onM1(n) that are
algebraic onM1(n). This implies that our comparison map

H0(M1(n)C;ω⊗ k
∼=−→ Natk(EllΓ1(n)(−),Γ(−))→MF (Γ1(n);C)

is an isomorphism, where we restricted the domain of EllΓ1(n) and Γ to C-algebras.
For n < 5,M1(n) is no longer a scheme. In these case, one can analogously use

a GAGA theorem for stacks as, for example, proven in [29]. In our situation the
proof should be considerably simpli�ed though asM1(n)C has a �nite faithfully �at
cover by a scheme (e.g. byM1(5n)C) and one should be able to deduce a su�ciently
strong GAGA theorem just by descent from the scheme case.
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A.3. The Tate curve. In this section, we will discuss the Tate curve, which will
give us an algebraic way to de�ne q-expansions of modular forms. We �rst discuss
the situation over the complex numbers.

Theorem A.8. ([31], Theorem V.1.1) For any q, u ∈ C with |q| < 1, de�ne the
following quantities:

σk(n) =
∑
d|n

dk,

sk(q) =
∑
n≥1

σk(n)qn =
∑
n≥1

nkqn

1− qn
,

a4(q) = − 5s3(q),

a6(q) = − 5s3(q) + 7s5(q)

12
,

X(u, q) =
∑
n∈Z

qnu

(1− qnu)2
− 2s1(q),

Y (u, q) =
∑
n∈Z

(qnu)2

(1− qnu)3
+ s1(q).

(1) Then the equation

(A.3) y2 + xy = x3 + a4(q)x+ a6(q)

de�nes an elliptic curve Eq over C, and X,Y de�ne a complex analytic
isomorphism

C×/qZ → Eq

u 7→

{
(X(u, q), Y (u, q)), if u /∈ qZ,
O, if u ∈ qZ

(2) As power series in q, both a4(q), a6(q) have integer coe�cients.
(3) The power series a4(q) and a6(q) de�ne holomorphic functions on the open

unit disk D.
(4) The discriminant of Eq is given by

∆(q) = q
∏
n≥1

(1− qn)24 ∈ ZJqK.

(5) Every elliptic curve over C is isomorphic to Eq for some q with |q| < 1.

Let Conv ⊂ ZJqK be the subset of �convergent� power series, i.e. those that
de�ne holomorphic functions on D; in particular, a4, a6 ∈ Conv. By the explicit
description of the discriminant, we can use the Weierstraÿ equation (A.3) to de�ne
an elliptic curve Tate(q) over Conv.

Let q0 ∈ D be a nonzero point and consider the morphism evq0 : Conv→ C. By
the theorem above, we see that the analytic space associated with ev∗q0 Tate(q) is

isomorphic to C×/qZ0 . The invariant di�erential ηcan associated to the Weierstraÿ

equation corresponds under this isomorphism to dq
q .

Next, we want to describe a group homomorphism ι : µn,Conv → Tate(q)[n] for
n ≥ 2. Here, we denote for an abelian group scheme G over a scheme S by G[n]
the n-torsion, i.e. the pullback G×G S, where we use the multiplication-by-n-map
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[n] : G→ G and the unit map S → G. For simplicity, we will only describe it over
Conv[ 1

n ]. We �rst describe ι after base change to Conv[ 1
n , ζn] = Conv⊗Z Z[ 1

nζn].
As µn is isomorphic to Z/n over this ring, it su�ces to give an n-torsion point
in Tate(q)[n](Conv[ 1

n , ζn]); we take [X(ζn, q), Y (ζn, q), 1]. This is compatible with
the Galois action and thus, we obtain a morphism µn,Conv[ 1

n ] → Tate(q)[n]Conv[ 1
n ].

Note that we can check that this is indeed a group homomorphism into the n-
torsion by evaluating at in�nitely many points in D. For a nonzero q0 ∈ D, this
ι corresponds under the isomorphism of ev∗q0 Tate(q) with C×/qZ0 exactly to the

composite µn(C)→ C× → C×/qZ0 . Note that ι de�nes a Γµ(n)-structure on Tate(q).
We remark that there are other possible choices to de�ne ι, corresponding to

di�erent constructions of the Tate curve. To avoid possible ambiguity, we show the
following uniqueness statement.

Proposition A.9. The morphism

Z/n→ Hom(µn,Conv,Tate(q)), k 7→ kι

is a bijection.

Proof. The group Tate(q)[n]ConvC [q1/n] is isomorphic to (Z/n)2 with

(X(ζaqb/n, q), Y (ζaqb/n, q), 1)

as the non-trivial torsion points, where ζ = e2pi/n; indeed these are all n-torsion
points as we can check on in�nitely many points in D (away from some chosen ray
so that q1/n makes sense as a holomorphic function) and there cannot be more
n-torsion points.

We see that only n of these torsion points have coordinates in ConvC and thus
Tate(q)[n]ConvC

∼= Z/n. We obtain that Hom(µn,ConvC ,Tate(q)ConvC) ∼= Z/n and
the existence of ι shows that the injective map

Hom(µn,Conv,Tate(q))→ Hom(µn,ConvC ,Tate(q)ConvC)

is also a surjection. �

By Lemma A.7, we obtain for each n ≥ 1 a short exact sequence

0→ µn,Conv[ 1
n ]

ι′−→ Tate(q)[n]
κ−→ (Z/nZ)Conv[ 1

n ] → 0

of étale sheaves of abelian groups. We can normalize κ in the following way: For
any Conv[ 1

n ]-algebra R, any ζ ∈ µn(R) and X ∈ Tate(q)[n](R), the Weil pairing

en(ι(ζ), X) equals ζκ(X).
We remark that by comparing the explicit equations , one sees that our de�nition

of the Tate curve agrees with the one discussed in [18, Section 8.8] (and e.g. in [7]
before).

A.4. q-expansions. Our goal in this section is to de�ne the q-expansion both in
the holomorphic and in the algebraic context, to compare them and to obtain a
q-expansion principle.

Given a modular form f in MF (Γ1(n),C) (possibly n = 1 so Γ1(n) = SL2(Z)),
we note that f(τ) = f(τ + 1) and thus f factors through a meromorphic function

f̃ : D → C, where D denotes the open disk with radius 1; more precisely, we have
f̃(q) = f(τ), where q = q(t) = e2πiτ . Taylor expansion of f̃ at 0 yields a map

Φhol : MFk(Γ1(n),C)→ C((q)).
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On the algebraic side, we obtain a map

Φµ,R0 Natk(Ell1Γµ(n)(−),Γ(−))→ R0((q))

(for Ell living over a �xed Z[ 1
n ]-algebra R0 again) by evaluating the natural trans-

formation at the Tate curve (Tate(q), ηcan, ι) from the last section. More precisely,
we evaluating on the pullback of the Tate curve to R0((q)).

We want to show that Φhol and Φµ,C correspond to each other under βµ. Note

�rst that both have actually image in the subring C̃onv ⊂ C((q)) of Laurent series
that converge on D \ {0}. We can check the agreement of Φholβµ(n) with Φµ,C

after postcomposing these two maps with evq0 : Conv → C for in�nitely many
q0 ∈ D \ {0}.

Choose τ0 ∈ H with e2πiτ0 = q0. By de�nition, evq0 Φhol(f) = f̃(q0) = f(τ0).
Using that C/(Z + τ0Z) ∼= C×/qZ0 , we observe that evq0 Φholβµ(g) (with g ∈
Natk(Ell1Γµ(n)(−),Γ(−))) equals g(C×/qZ0 ,

dq
q ), ιcan), where ιcan denotes the com-

position µn(C)→ C× → C×/qZ0 .
On the other hand, evq0 Φµ,C(g) equals (ev∗q0 Tate(q), ev∗q0 ι, ev∗q0 η

can). We have

seen in the last section that this triple is isomorphic to (C×/qZ0 , ιcan,
dq
q ), what was

to be shown. Thus, the following triangle commutes:

Natk(Ell1Γµ(n)(−),Γ(−))
Φµ,C //

βµ

��

C((q))

MFk(Γ1(n),C)

Φhol
66

We obtain the q-expansion morphism

Φ1,R0 : Natk(Ell1Γµ(n)(−),Γ(−))→ Conv[q−1]⊗R0

as the composition Φµ,R0(ϕ∗)−1, where ϕ is as in Subsection A.2.2.

Lemma A.10. Assume that R0 ⊂ C and let q0 6= 0 be a point in the open unit
disk. Evaluating at q0 yields a morphism evq0 : Conv[q−1]⊗R0 → C. Then

evq0 Φ1,R0(g) = g(C×/qnZ,
dq

q
, q)

for every g ∈ Natk(Ell1Γµ(n)(−).

Proof. It su�ces to show that

ϕ(C×/qnZ,
dq

q
, q) = (C×/qZ,

dq

q
, ιcan).

This follows from Example A.5. �

Note that these discussions actually show that β1 and βµ actually have target
MF (Γ1(n);R0), i.e. that the classical q-expansion of β1 of a modular form over R0

actually has coe�cients in R0 and similarly for βµ.

Theorem A.11 (q-expansion principle). Let R0 be a subring of C. The morphisms

βµ : Natk(Ell1Γµ(n)(−),Γ(−))→MF (Γ1(n);R0)

and
βq : Natk(Ell1Γq(n)(−),Γ(−))→MF (Γ1(n);R0)
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are isomorphisms. In other words: If the coe�cients of the q-expansion of a complex
modular form are in R0, it is actually already de�ned over R0.

Proof. By the considerations above, it su�ces to show the �rst statement. For
R0 = C, this was discussed in Subsection A.2.3. The general case follows by the
q-expansion principle as stated in [8, Theoem 12.3.4]. �

A.5. Summary. Let R be any ring. We can de�ne holomorphic modular forms for
Γ1(n) of weight k over R as H0(M1(n);ω⊗ k) and meromorphic modular forms as
H0(M1(n)R;ω⊗ k). We have a morphism SpecC →M1(n) classifying the elliptic
curve C/Z + nτZ with chosen point τ of order n. Pulling f ∈ H0(M1(n);ω⊗ k)
back to SpecC and using the trivialization ω⊗ k induced by the choice of di�erential
dz, de�nes a holomorphic function of τ ∈ H that is a meromorphic modular form
for Γ1(n) in the classical sense. This de�nes an isomorphism

β1 : H0(M1(n)C;ω⊗ k)→MFk(Γ1(n);C).

The q-expansion of β1(f) lies in R ⊂ C if and only if f is in the image of the
injection

H0(M1(n)R;ω⊗ k)→ H0(M1(n)C;ω⊗ k).
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