NERVES VS PUSHOUTS

VIKTORIYA OZORNOVA AND MARTINA ROVELLI

1. Pushouts along Dwyer morphisms

The aim of this section is to prove the following result.

Proposition 1.1. Let

be a pushout of categories, and assume *i* to be a Dwyer morphism. Then the induced map $N\mathcal{B}_{N\mathcal{A}} \stackrel{\Pi}{\to} N\mathcal{C} \rightarrow N(\mathcal{B}\underset{\mathcal{A}}{\amalg}\mathcal{C})$ is a Joyal weak equivalence.

We will use the description of a pushout along a Dwyermorphism from [BMO⁺15, Proof of Lemma 2.5]; cf. also [Sch19, Construction 1.2] and [AM14, §7.1]. Let \mathcal{W} be the cosieve generated by \mathcal{A} and $r: \mathcal{W} \to \mathcal{A}$ be its right adjoint with $r|_{\mathcal{A}} = \mathrm{id}_{\mathcal{A}}$ and the counit $\varepsilon: r \Rightarrow \mathrm{id}_{\mathcal{W}}$ being identity on \mathcal{A} . In particular, the triangle identity asserts $r(\varepsilon_{-}) = \mathrm{id}_{r(-)}$. We will write $\xi: \mathcal{B} \to [1]$ for the functor with $\xi^{-1}(0) = \mathcal{A}$. We also write $\mathcal{V} := \xi^{-1}(1)$.

Remark 1.2. In \mathcal{B} , the counit $\varepsilon_z : rz \to z$ is a monomorphism for any z in \mathcal{W} . Indeed, let morphisms $f, g : x \to rz$ be given so that $\varepsilon_z \circ f = \varepsilon_z \circ g$. First, we observe that since $rz \in \mathcal{A}$ and \mathcal{A} is a sieve, then x is necessarily an object of \mathcal{A} , and both morphisms of f, g are thus also in \mathcal{A} . We apply r to the equation given, remembering $r|_{\mathcal{A}} = \mathrm{id}_{\mathcal{A}}$ and $r(\varepsilon_z) = \mathrm{id}_{r(z)}$. This implies exactly f = g, as desired.

Note that the objects of \mathcal{D} can be identified with $\operatorname{Ob} \mathcal{C} \sqcup \operatorname{Ob} \mathcal{V}$ (we are using that Ob has a right adjoint, as well as the fact that $\mathcal{A} \to \mathcal{B}$ is injective on objects). Under this identification, we can describe hom-sets in a pushout \mathcal{D} as follows:

$$\mathcal{D}(x,y) = \begin{cases} \mathcal{C}(x,y) \text{ if } x, y \in \operatorname{Ob} \mathcal{C}, \\ \mathcal{B}(x,y) = \mathcal{V}(x,y) \text{ if } x, y \in \operatorname{Ob} \mathcal{V}, \\ \varnothing \text{ if } x \in \operatorname{Ob} \mathcal{V}, y \in \operatorname{Ob} \mathcal{C}, \\ \varnothing \text{ if } x \in \operatorname{Ob} \mathcal{C}, y \in \operatorname{Ob} \mathcal{V} \setminus \operatorname{Ob} \mathcal{W}, \\ \mathcal{C}(x, Fr(y)) \text{ if } x \in \operatorname{Ob} \mathcal{C}, y \in \operatorname{Ob} \mathcal{W}, \end{cases}$$

and the last bijection is given by postcomposition with $\varepsilon_y \colon Fr(y) \sim r(y) \to y$.

Note that all simplices of $N(\mathcal{B}_{\mathcal{A}}^{\mathrm{IIC}})$ can be classified as follows. Either all vertices are in $\mathrm{Ob}\,\mathcal{C}$, or all vertices are in $\mathrm{Ob}\,\mathcal{V}$, and in these cases the simplices are in $N\mathcal{B}_{N\mathcal{A}}^{\mathrm{II}}N\mathcal{C}$, or the vertices are mixed. In this latter case, no object of \mathcal{C} can appear after an object of \mathcal{V} , so we have some vertices of \mathcal{C} followed by some vertices of \mathcal{V} , all of which are even necessarily in \mathcal{W} .

Definition 1.3. We define the suspect index of a d-simplex $\sigma: [d] \to \mathcal{B} \coprod_{\mathcal{A}} \mathcal{C}$ of $N\mathcal{D}$ as the maximal integer $0 \leq r \leq d$ so that $\sigma(i)$ is in Ob \mathcal{C} for $0 \leq i \leq r$. If no such integer exists, we set suspect index to be -1. A non-degenerate simplex of suspect index r < d is called suspect if $\sigma(r(r+1)) = \varepsilon_{\sigma(r+1)}$.

Remark 1.4. Any d-simplex of suspect index -1 has all its vertices in \mathcal{V} and is in particular contained in $N\mathcal{B}$. Any d-simplex of suspect index d has all its vertices in \mathcal{D} and is in particular contained in $N\mathcal{C}$. In particular, any (d+1)-suspect simplex of $N(\mathcal{B} \coprod \mathcal{C})$ not contained in $N\mathcal{B} \coprod_{N\mathcal{A}} N\mathcal{C}$ has a suspect index 0 < r+1 < d+1.

Lemma 1.5. Let $\tilde{\sigma}: [d+1] \to \mathcal{B} \underset{\mathcal{A}}{\coprod} \mathcal{C}$ be a non-degenerate suspect simplex of index 0 < r+1 < d+1. For $0 \leq a \leq d+1$, we have

$$d_a \tilde{\sigma} = \begin{cases} suspect & \text{if } 0 \le a \le r, \\ non-suspect \text{ simplex of suspect index } r & \text{if } a = r+1, \\ simplex \text{ of suspect index } r+1 & \text{if } a = r+2, \\ suspect & \text{if } r+3 \le a \le d+1. \end{cases}$$

Proof of Proposition 1.1. We define a filtration

$$N\mathcal{B}_{N\mathcal{A}} N\mathcal{C} =: X_0 \hookrightarrow X_1 \hookrightarrow X_2 \hookrightarrow \ldots \hookrightarrow X_d \hookrightarrow \ldots \hookrightarrow N(\mathcal{B}_{\mathcal{A}} \mathcal{C})$$

as follows: For $d \geq 1$, let X_d be the smallest simplicial subset of $N(\mathcal{B}_{\mathcal{A}}^{\amalg \mathcal{C}})$ containing X_{d-1} and all simplices of dimension d as well as all suspect simplices of dimension d+1. Note that X_0 in particular contains all 0-simplices and all suspect simplices of dimension 1 in $N(\mathcal{B}_{\mathcal{A}}^{\amalg \mathcal{C}})$.

We define a filtration

$$X_{d-1} =: Y_d \hookrightarrow Y_{d-1} \hookrightarrow Y_{d-2} \hookrightarrow \ldots \hookrightarrow Y_r \hookrightarrow \ldots \hookrightarrow Y_0 = X_d$$

as follows: For $d > r \ge 0$, let Y_r be the smallest simplicial subset of $N(\mathcal{B}_{\mathcal{A}}^{\mathrm{IIC}})$ containing Y_{r+1} , all simplices of dimension d and suspect index r as well as all suspect simplices of dimension d + 1 and suspect index r + 1. Note that Y_d contains all simplices of dimension d and suspect index d as well as all suspect simplices of dimension d + 1 and suspect index d + 1. Note moreover that Lemma 1.5 implies that no further d-simplices are added in each step. Next, we claim that the inclusion $Y_{r+1} \hookrightarrow Y_r$ is inner anodyne. First, we claim that we have a bijection between the non-degenerate non-suspect simplices of $Y_r \setminus Y_{r+1}$ and the non-degenerate suspect simplices of $Y_r \setminus Y_{r+1}$. If $\tilde{\sigma}$ is a non-degenerate suspect simplex in $Y_r \setminus Y_{r+1}$, we claim that $d_{r+1}\tilde{\sigma}$ is also a simplex of $Y_r \setminus Y_{r+1}$ which is not suspect. Indeed, to be a suspect, it would require the map $\tilde{\sigma}(r) \to \tilde{\sigma}(r+2)$ being $\varepsilon_{\tilde{\sigma}(r+2)}$. This would require $\varepsilon_{\tilde{\sigma}(r+2)} \circ \tilde{\sigma}(r(r+1)) = \varepsilon_{\tilde{\sigma}(r+2)}$ and thus given the description of morphisms \mathcal{D} , the map $\tilde{\sigma}(r) \to \tilde{\sigma}(r+1)$, would have been the identity, meaning that $\tilde{\sigma}$ is degenerate.

Now we proceed in the opposite direction: Let σ be a non-degenerate nonsuspect simplex of $Y_r \setminus Y_{r+1}$. We recall that there is a unique decomposition of the morphism $\sigma(r) \to \sigma(r+1) =: z$ into $\gamma: \sigma(r) \to Fr(z)$ followed by $\varepsilon_z: r(z) \to z$. (Note that $\gamma \neq id$ since σ would have been suspect otherwise.) Define $\tilde{\sigma}: [d+1] \to \mathcal{D}$ as

$$\sigma(0) \to \sigma(1) \to \ldots \to \sigma(r) \xrightarrow{\gamma} Fr(z) \xrightarrow{\varepsilon_z} z = \sigma(r+1) \to \sigma(r+2) \to \ldots \to \sigma(d).$$

This (d + 1)-simplex is a non-degenerate suspect simplex of suspect index r + 1 and thus in $Y_r \setminus Y_{r+1}$. Moreover, it is immediate that applying d_{r+1} gives σ again.

So to prove the bijection, we only have to check that this construction recovers any non-degenerate suspect $\tilde{\sigma}$ of dimension (d + 1) and suspect index (r+1) if we apply it to $d_{r+1}\tilde{\sigma}$. This follows again from the uniqueness property in the description of \mathcal{D} .

Now we claim that we can add all non-degenerate simplices of $Y_r \setminus Y_{r+1}$ by filling the (r+1)-st horn of the suspect simplices in question, and that all these horn-fillings can be done at once. Given the bijection we established, we only need to check that for any non-degenerate suspect simplex $\tilde{\sigma}$ in $Y_r \setminus Y_{r+1}$, its (r+1)-st horn is contained in Y_{r+1} . This is an immediate consequence of Lemma 1.5.

References

- [AM14] Dimitri Ara and Georges Maltsiniotis, Vers une structure de catégorie de modèles à la Thomason sur la catégorie des n-catégories strictes, Adv. Math. 259 (2014), 557–654. MR 3197667
- [BMO⁺15] Anna Marie Bohmann, Kristen Mazur, Angélica M. Osorno, Viktoriya Ozornova, Kate Ponto, and Carolyn Yarnall, A model structure on GCat., Women in topology: collaborations in homotopy theory. WIT: Women in topology workshop, Banff International Research Station, Banff, Alberta, Canada, August 18–23, 2013, Providence, RI: American Mathematical Society (AMS), 2015, pp. 123–134 (English).
- [Sch19] Stefan Schwede, Categories and orbispaces, Algebr. Geom. Topol. 19 (2019), no. 6, 3171–3215. MR 4023338

Fakultät für Mathematik, Ruhr-Universität Bochum, D-44780 Bochum, Germany

E-mail address: viktoriya.ozornova@rub.de

MATHEMATICAL SCIENCES INSTITUTE, THE AUSTRALIAN NATIONAL UNIVERSITY, CANBERRA, AUSTRALIA

E-mail address: martina.rovelli@anu.edu.au