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Abstract. We show that K(2)-locally, the smash product of the string bor-
dism spectrum and the spectrum T2 splits into copies of Morava E-theories.
Here, T2 is related to the Thom spectrum of the canonical bundle over ⌦SU(4).

1. Introduction and statement of results

In the late 80s [Wit88], Witten gave an interpretation of the level one elliptic genus
as the S

1-equivariant index of the Dirac operator on the free loop space LM of a
manifold. He needed the loop space of the manifold to carry a spin structure. This
is guaranteed if the classifying map of its stable tangent bundle lifts to BString, the
7-connected cover of BO. This classifying space and its associated Thom spectrum
MString have been extensively studied by homotopy theorists already in the 70s.
At that time, Anderson, Brown and Peterson had just succeeded in calculating
the spin bordism groups via a now famous splitting of the Thom spectrum MSpin

[ABP67]. The string bordism groups however have not been calculated yet. It is
known, that they have torsion at the primes 2 and 3, and the hope is to get new
insights using the Witten genus and the arithmetic of modular forms.
At the prime 3, Hovey and Ravenel [HR95, Corollary 2.2] have shown that the
product DA(0) ^MString is a wedge of suspensions of the Brown-Peterson spec-
trum BP . Here, DA(0) is the 8-skeleton of BP ; it is a 3-cell complex which is free
over P (0), the sub-Hopf algebra of the the mod 3 Steenrod algebra A generated
by P

1.
At the prime 2, they have shown that DA(1) ^ MUh6i splits into a wedge of
suspensions of BP s, where MUh6i is the Thom spectrum of the 5-connected cover
BUh6i of BU and DA(1) is an eight cell complex whose cohomology is free over
P (1), the double of A(1).
This paper is concerned with a similar decomposition of MString at the prime 2.
Starting point is the spectrum of topological modular forms tmf which was in-
troduced by Goerss, Hopkins and Miller, see [Goe10] or [DFHH14]. Its mod 2
cohomology is the quotient A//A(2) which is known to be a direct summand in the
cohomology of MString (cf. [BM80]). There even is a ring map from MString to
tmf which induces the Witten genus mentioned earlier (cf. [AHR]). Moreover, the
2-local equivalence

DA(1) ^ tmf ' BP h2i
(cf. [Mat16]) looks encouraging when looking for new splittings of products of known
spectra with MString into complex orientable spectra at the prime 2.
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When dealing with objects from derived algebraic geometry, it is convenient to
work with ring spectra rather than spectra. Ravenel introduced an important
filtration {X(n)}n2N of MU by ring spectra which arise from the thomification of
the filtration

⌦SU(1) ⇢ ⌦SU(2) · · · ⇢ ⌦SU = BU .

A multiplicative map from X(n) to a complex orientable spectrum E corresponds
to a complex orientation of E up to degree n . Locally at a prime p, X(n) is
equivalent to a wedge of suspensions of spectra T (m) with p

m  n < p
m+1. We

refer to [Rav86, Section 6.5] for a full report on these spectra. They can be regarded
as p-typical versions of the spectra X(n): they filter the Brown-Peterson spectrum
BP in the same way as the spectra X(n) filter the complex bordism spectrum MU .
In addition, they satisfy

⇡⇤E⇤ ^ T (m) ⇠= E⇤[t1, t2, . . . , tm]

for all complex orientable E. A multiplicative map from T (m) to E corresponds
to a p-typical orientation up to degree m. The homotopy groups of T (m) coincide
with the homotopy groups of BP up to dimension 2(pm � 2).
For p = 2, the homotopy groups of T (2) coincide with those of BP up to dimension
12. There is a map from the twelve dimensional even complex DA(1) to BP which
induces an isomorphism in ⇡0 (see for instance [Mat16]). It is unique in mod 2
homology and lifts to a map

DA(1) �! T (2)

by what was just said. Hence, when looking for splitting results we may replace
the finite spectrum DA(1) with the reasonably small spectra T (2) or X(4). Along
these lines, we mention that

⇡⇤X(4) ^ tmf ⇠= Z[a1, a2, a3, a4, a6]
carries the Weierstrass Hopf algebroid (cf. [DFHH14, Chapter 9]).
In order to state the main theorem, we work in the K(2)-local category and omit
the localization functor from the notation. In this category BP splits into a sum of
Johnson-Wilson spectra E(2) (see [HS99a]). We shall write T2 for the even periodic
version of T (2) by which we mean the following: the class v2 of degree 6 is a unit
in the local T (2) to which we may associate a root by setting

T2 = T (2)[u±]/(u3 � v2).(1.1)

Note that T (2) is related to E(2) in the same way as T2 to the Morava E-theory
spectrum E2 so that the notation fits well.

Theorem 1.1. K(2)-locally at the prime 2, there is a splitting of T2 ^ MString

into a wedge of copies of E2.

The proof of the theorem is in spirit of Thom’s and Wall’s original proof for the
splitting of MO and MSO (or even the refinements by Anderson-Brown-Peterson
for MSpin). It uses a generalized Milnor-Moore argument which we believe to be
of independent interest. One version of the original Milnor-Moore theorem states
that a graded connected Hopf algebra is free as a module over any of its sub-
Hopf algebras. There are dual versions for surjective coalgebra maps and Hopf
algebroids [Rav86, A1.1.17], but they all use connectivity and the grading. We will
show a version which only uses the coradical filtration of pointed coalgebras. The
assumptions needed to make it work are automatically satisfied if the comodules
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are graded and connected. This generalization applies in particular to the case of
the Hopf algebra ⌃ = ⇡0(K(n) ^ En). We mention that that for n = 1 it can be
used to give a new elementary proof of the Anderson-Brown-Peterson splitting of
MSpin into sums of KOs in the K(1)-local setting.
In the K(2)-local setting, we prove a key lemma which allows us to switch between
the complex and the Witten orientation for MUh6i by a comodule algebra auto-
morphism. It relies on results of Ando-Hopkins-Strickland [AHS01] and supplies
the requirements of the generalized Milnor-Moore theorem. Finally, we show that
in the K(2)-local category a spectrum already splits into sums of copies of E2 if its
K(2)-homology splits as a comodule over ⌃.

Acknowledgements. We would like to thank the referee for a careful revision.

2. A Milnor-Moore type theorem

Let C be a coalgebra over a field F. Assume that C is pointed, that is, all simple
subcoalgebras are 1-dimensional. (Recall that a coalgebra is simple if any proper
subcoalgebra is trivial.) The coradical R of a pointed coalgebra is generated by the
set G of grouplike elements (cf. [Swe69, p.182]) and

R = F[G]

is a subcoalgebra of C. The iterated coproduct defines an increasing filtration

Fk = ker(C �! C
⌦(k+1) �! (C/R)⌦(k+1))

which is called the coradical filtration. By definition, F0 = R. We call a filtration
exhaustive if every element of C lies in some Fk. The following result is [Swe69,
Theorem 9.1.6].

Lemma 2.1. The coradical filtration satisfies

�(Fn) ⇢
nX

i=0

Fi ⌦ Fn�i .

⇤

The following two lemmas are well known for irreducible coalgebras.

Lemma 2.2. For g 2 G define the subspace of g-primitives by

Pg = {c 2 C | �(c) = c⌦ g + g ⌦ c} .
Then the inclusion map

R�
⇣M

g2G

Pg

⌘
�! F1

is an isomorphism.

Proof. By the previous lemma we can write the diagonal of c 2 F1 in the form

�(c) =
X

ag ⌦ g + g ⌦ bg

for suitable ag, bg in F1. Coassociativity and linear independence of grouplike ele-
ments yield for each g 2 G the equality

�ag ⌦ g + g ⌦ g ⌦ bg = ag ⌦ g ⌦ g + g ⌦�bg .

Applying ✏⌦ 1⌦ ✏ to this equation we get

c = ag + ✏(bg)g = ✏(ag)g + bg .
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Set c̃ = c�
P
✏(ag + bg)g. Then

�(c̃) =
X

(ag � ✏(ag)g)⌦ g + g ⌦ (bg � ✏(bg)g) =
X

c̃⌦ g + g ⌦ c̃

and we conclude c̃ lies in
L

g2G Pg. Hence the map is surjective. Injectivity follows
from the linear independence of the grouplike elements. ⇤
Convention 2.3. In the sequel we suppose that ⌃ is a pointed bialgebra over F
with an exhaustive coradical filtration.

Let G be a group and suppose we are given an injective algebra map

F[G] �! ⌃

whose image is the set of grouplike elements. Then one verifies that the canonical
map

' : F[G]⌦ P1 �!
M

g2G

Pg, g ⌦ � 7�! g�

is an isomorphism.
Next, suppose M is a right ⌃-comodule with coaction  . Define a filtration Fk for
k � 0 on M by

Fk(M) =  
�1(M ⌦ Fk) .

Note that this filtration is preserved by maps f : M ! M
0 of ⌃-comodules. Indeed,

if m has filtration k in M and if  0 denotes the diagonal of M 0 then

 
0
f(m) = (f ⌦ id) (m) 2 f(M)⌦ Fk ⇢ M

0 ⌦ Fk

and hence f(m) 2 Fk(M 0).

Lemma 2.4. For g 2 G define the space of g-primitives by

Pg(M) = {m 2 M | (m) = m⌦ g}
and let the space of primitives P (M) be generated by all Pg(M). Then the maps

�g2GPg(M) ! P (M) and P (M) ! F0(M) induced by the inclusions are isomor-

phisms.

Proof. The first isomorphism follows from the linear independence of the grouplike
elements. It remains to show surjectivity of the second map. Suppose m 2 F0(M).
Then we can write  (m) in the form

 (m) =
X

g

mg ⌦ g

for some mg 2 M . When applying 1⌦ ✏ to this equation we obtain

m =
X

g

mg .

Hence, it su�ces to show that mg lies in Pg(M). Coassociativity implies
X

g

 (mg)⌦ g =
X

g

mg ⌦ g ⌦ g

and thus  (mg) = mg ⌦ g. ⇤
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There is another way to think of g-primitives. Recall from [Rav86, A.1.1.4] that
the cotensor product M⇤⌃M

0 of a right comodule (M, , ✏) with a left comodule
(M 0

, 
0
, ✏

0) is defined as the equalizer of  ⌦idM 0 and idM⌦ 0 . One readily verifies
that the maps

Pg(M) �! M⇤⌃Fg; m 7! m⌦ g

P (M) �! M⇤⌃R; (
X

g

mg) 7! (
X

g

m⌦ g)

are isomorphisms.

Lemma 2.5.  (Fn(M)) ⇢ P (M)⌦ Fn +M ⌦ Fn�1 .

Proof. Choose a set of representatives � for a basis in Fn/Fn�1. For m 2 Fn(M)
write  (m) in the form

 (m) =
X

�

m� ⌦ � + terms in M ⌦ Fn�1 .

Then coassociativity and Lemma 2.1 yield modulo terms in M ⌦ Fn�1
X

�

 (m�)⌦ � =
X

�

m� ⌦  (�) =
X

�,g

m� ⌦ g ⌦ �g.

Let h�g, ⌧i be the coe�cient of �g with respect to the basis element ⌧ . Then the
last equation gives

 (m�) =
X

⌧,g

m⌧ ⌦ h⌧g,�i g ⇢ M ⌦ F0 .

Thus m� has filtration 0, whence the claim. ⇤
In case M = ⌃ we have the two filtrations Fk and Fk(⌃). There is yet another
filtration given by

F̄k(⌃) =  
�1(Fk ⌦ ⌃) .

Fortunately, Lemma 2.1 says that all three filtrations agree.

Definition 2.6. Suppose the comodule M is equipped with maps of comodules
⌘ : F �! M and ✏ : M �! F which satisfy ✏⌘ = id. We write 1 for the image of 1
under ⌘ as well. Define the graded left primitives by

P̄1Grk(M) = {m 2 M | (m) = 1⌦ � mod M ⌦ Fk�1 for some � 2 Fk} .
We say a map of comodules f is ?-surjective if it is surjective and the induced map
on graded left primitives is surjective for all k.

Lemma 2.7. Suppose M is a ⌃-comodule F[G]-algebra. Then the map

' : F[G]⌦ P1(M) �! P (M); g ⌦m 7! gm

is an isomorphism.

Proof. For m 2 P1(M) the calculation

 (gm) = (g ⌦ g)(m⌦ 1) = gm⌦ g

shows gm 2 Pg(M). An inverse map is given by

'
�1(m) = '

�1(
X

g

mg) =
X

g

g ⌦ (g�1
mg) .

⇤
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A version of the classical Milnor-Moore theorem is the statement that a graded
connected Hopf algebra is free over each of its sub Hopf algebras. A generalization of
the dual statement for comodules is [MM65, Proposition 2.6]. For graded connected
Hopf algebroids the result can be found in [Rav86, A1.1.17]. The following result is
a generalization to comodules over pointed coalgebras with an exhaustive coradical
filtration.

Theorem 2.8. Let M be a right ⌃-comodule F[G]-algebra. Suppose that G is

grouplike in M . Let f : M �! ⌃ be a ⌃-comodule and F[G]-algebra map which is

?-surjective. Then there is an isomorphism of ⌃-comodules

h : M �! P1(M)⌦ ⌃ .

Proof. Choose a linear left inverse r of the inclusion map i : P (M) �! M . Define
h as the composite

M
 �! M ⌦ ⌃

r⌦id���! P (M)⌦ ⌃
'�1⌦id�����! F[G]⌦ P1(M)⌦ ⌃

✏⌦id⌦id�����! P1(M)⌦ ⌃

with ' as in Lemma 2.7. First we show that h is injective. Let m 2 Fn(M) be in
the kernel of h. As in Lemma 2.5 write

 (m) =
X

m� ⌦ � + terms in M ⌦ Fn�1

with m� 2 P (M). Write m� =
P

g m�,g, m�,g 2 Pg(M). Again, coassociativity
implies modulo terms of lower filtration the equality

X

�

m�,g ⌦ � =
X

�

m�,g ⌦ �g .

Here, �g is the term which comes up in

 (�) =
X

g

g ⌦ �g + terms of lower filtration.

Calculating modulo M ⌦ Fn�1

h(m) = (✏⌦ id⌦ id)('�1
r ⌦ id) (m) =

X

�,g

(✏⌦ id⌦ id)'�1(m�,g))⌦ �g

=
X

�,g

(✏⌦ id⌦ id)(g ⌦ g
�1

m�,g)⌦ �g =
X

�,g

g
�1

m�,g ⌦ �g.

Set
Grn,g = {� 2 Fn/Fn�1 |  (�) = g ⌦ � mod M ⌦ Fn�1} .

The map
M

g2G

Pg(M)⌦Grn,g �! P1(M)⌦
M

g2G

Grn,g

mg ⌦ �g 7�! g
�1

mg ⌦ �g

is an isomorphism. Thus the calculation of h(m) implies that  (m) vanishes modulo
terms in M ⌦ Fn�1. This means that m has filtration m and an obvious induction
shows that h is injective.
It remains to show that h is onto. For an element � 2 Fn write modulo terms in
⌃⌦ Fn�1

 (�) =
X

g ⌦ �g
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with � =
P

g �g and  (�g) = g⌦ �g. It su�ces to show that n⌦ �g for n 2 P1(M)
lies in the image of h modulo terms in P1(M) ⌦ Fn�1 . Choose an inverse m of
g
�1
�g in P̄1Grn(M). Then modulo those terms we have  (gm) = g⌦�g and hence

h(gmn) = (✏⌦ id)'�1(gn)⌦ �g = n⌦ �g .

The claim now follows by induction. ⇤

3. The spectrum T2 ^MString.

Let p be a prime and let E = En be the height n Morava E-theory spectrum at
the prime p. Let m = (p, u1, u2, . . .) be the unique homogeneous maximal ideal in
the coe�cient ring

E⇤ ⇠= WFpn [[u1, u2, . . . un�1]][u, u
�1] .

Then K = E/m is a variant of the Morava K-theory spectrum with the same
Bousfield localization as K(n). The group � of ring spectrum automorphisms of E
is a version of the Morava stabilizer group.

Theorem 3.1. [Hov04] The inclusion of � as a subgroup of E
0
E induces an iso-

morphism of the completed group ring

E
⇤[[�]] �! E

⇤
E .

Dually, we have the isomorphism

E
_
⇤ E �! C(�, E⇤)

between the homotopy groups of the K(2)-localized product E ^ E and the ring of

continuous maps from the profinite group � to E⇤.

The objects (E⇤, E
_
⇤ E) and C(�, E⇤) are graded formal Hopf algebroids. In fact,

they are evenly graded and since E⇤ has a unit in degree 2 we may as well restrict
our attention to the degree 0 part. Let V be BP⇤ as an ungraded ring and let V T be
the ungraded ring BP⇤BP . Then Landweber exactness furnishes the equivalence

E
_
0 E

⇠= E0 ⌦V V T [t0, t
�1
0 ]⌦V E0.

The algebra K0E is the reduction modulo the maximal ideal m and hence itself
carries the structure of a Hopf algebroid. (cf. [Hov04, Proposition 3.8]).
The paper at hand deals with the case p = 2 and n = 2. Here, it will prove useful
to employ a version of the Morava E-theory which comes from the deformation of
the elliptic curve

C : y
2 + y = x

3
.

The Hopf algebroid ⌃ = K0E is not pointed when we consider the curve over F4.
Hence, we will only consider it over F2 so that

E⇤ = Z2[[u1, u2, . . . un�1]][u, u
�1] .

The results stated above hold without changes. Since now left and right unit
coincide modulo the ideal m the ring ⌃ = K0E actually carries the structure of a
Hopf algebra. Explicitly we have (see [Hov04])

⌃ = F2[t0, t1, . . .]/(t
3
0 � 1, t41 � t1, t

4
2 � t2, . . .) .

Lemma 3.2. The Hopf algebra ⌃ is pointed and has an exhaustive coradical filtra-

tion.
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Proof. The elements 1, t0, t20 are grouplike. All classes ti with i � 1 come from the
graded Hopf algebroid BP⇤BP . (More precisely, the generators ti in ⌃ are obtained
from those of BP⇤BP by multiplication with a suitable power of the periodicity
element to place them in degree zero.) A complete formula for the diagonal is given
in [ABP67, A2.1.27], but from the grading it is already clear that

�(ti) = 1⌦ ti + ti ⌦ 1 + terms involving only t1, t2, . . . ti�1.(3.1)

Consider the surjection of coalgebras

⇢ : F2[Z/3][t1, t2, . . .] �! ⌃

which sends the generator 1 of Z/3 to t0. Note that the source is in fact a connected
graded coalgebra. Suppose S is a non trivial simple subcoalgebra of ⌃. Then ⇢�1

S

is a subcoalgebra of the polynomial algebra. From formula 3.1 it is clear that it
contains a grouplike element and so does S. Since S is simple it has to coincide
with the one-dimensional subcoalgebra generated by this element. It follows that
⌃ is pointed.
To show exhaustiveness one argues similarly: formula 3.1 implies that for each
monomial in the ti, the maximal degree of a tensor factor, modulo elements in the
group ring, decreases each time the diagonal � is applied. Hence the polynomial
ring is coradically exhaustive and so is ⌃. ⇤
Recall from [Rav86, Section 6.5] the ring spectrum T (2) which is part of a filtration
of BP and which was already mentioned in the introduction. Equation (1.1) defines
the ring spectrum T2. Note that T2 comes with a canonical map

can : T2 �! (LK(2)BP )[u±]/(v2 � u
3) �! E .

Set

M = K0(T2 ^MString)

M
C = K0(T2 ^MUh6i).

Then M and M
C are right ⌃-comodule F2[Z/3]-algebras. Moreover, we have the

Witten orientation
⌧W : MString �! E

and the complex orientation induced by the standard coordinate on the elliptic
curve C

⌧U : MUh6i �! MU �! E

(for details see e.g. [LO16]). The composite

⌧
C
W : MUh6i �! MString

⌧W�! E

gives another MUh6i-orientation on E. The di↵erence class

rU = ⌧
C
W /⌧U 2 E

0(BUh6i)
plays an important role in the theory of string characteristic classes (loc. cit.). The
orientations induce maps

⌧W ⇤ : M = K0(T2 ^MString)
(can^⌧W )⇤�������! K0(E2 ^ E2)

µ⇤�! K0(E) = ⌃

⌧U ⇤ : M
C = K0(T2 ^MUh6i) (can^⌧C

W )⇤�������! K0(E2 ^ E2)
µ⇤�! K0(E) = ⌃
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Lemma 3.3. There is a ⌃-comodule algebra automorphism ↵ of M
C
with the prop-

erty that

M
C ↵ //

✏✏

M
C

⌧U⇤
✏✏

M
⌧W ⇤ // ⌃

commutes.

Proof. Ando-Hopkins-Strickland have shown in [AHS01] that a ring map from
BUh6i+ to a complex oriented ring spectrum coincides with a cubical structure
on the associated formal group. In particular, such a map is determined by its
restriction to

P = CP1 ^ CP1 ^ CP1
.

The class rU 2 E
0
BUh6i corresponds to such a cubical structure and hence satisfies

the cocycle condition when restricted to P . We claim that the composite

r : BUh6i+
rU�! E

⌘R�! K ^ E

already maps to K ^ T2. This is clear when it is restricted to P because the
coe�cients of the power series already lie in ⌘R(⇡⇤E) and hence in the subring

⌘R(⇡⇤T2) ⇢ ⇡⇤(K ^ T2)

where ⌘R denotes the right unit. Since the restriction map satisfies the cocycle
condition it comes from a map r̂ in (K ^ T2)0BUh6i.
Consider the commutative diagram

K ^ T2 ^MUh6i

1^�
✏✏

// K ^ E ^MUh6i

1^�
✏✏

K ^ T2 ^BUh6i+ ^MUh6i

1^r̂^1
✏✏

// K ^ E ^BUh6i+ ^MUh6i

1^r^1
✏✏

K ^ T2 ^K ^ T2 ^MUh6i

µ^1

✏✏

// K ^ E ^K ^ E ^MUh6i

µ^1

✏✏
K ^ T2 ^MUh6i // K ^ E ^MUh6i

in which � is the Thom diagonal. The automorphism ↵ is induced by the composite
of the vertical maps on the left. Since the bottom horizontal map is injective in
homotopy it su�ces to prove commutativity of the claimed square for the map
induced by r instead of r̂. This in turn follows immediately from the equality

⌧W = rU⌧
C
U .

It remains to show that ↵ is a ⌃-comodule automorphism which again is obvious
for the the map induced by r instead of r̂. ⇤
Proposition 3.4. The maps ⌧U ⇤ and ⌧W ⇤ are ?-surjective. In particular, there

are isomorphisms of ⌃-comodules

h
C :MC �! P1(M

C)⌦ ⌃

h :M �! P1(M)⌦ ⌃



10 GERD LAURES AND BJÖRN SCHUSTER

Proof. As already mentioned in the introduction, Ravenel and Hovey show in
[HR95, Corollary 2.2(2)] that at p = 2 the spectrum DA(1) ^ MUh6i is a wedge
of suspensions of BP . A closer inspection of the proof reveals that the splitting
isomorphism can be chosen to make the diagram

DA(1) ^MUh6i ' //

✏✏

W
i2I ⌃

niBP

✏✏
MU ^BP // BP

commutative. Here the right vertical map is the projection onto the summand
which contains the unit in homotopy. Since K(2)-locally each BP -summand splits
further into sums of Johnson-Wilson spectra E(2) it follows that there is a section
of the composite

g : DA(1) ^MUh6i �! BP �! E(2) .

Let j be the map from E(2) to E. Then jg factors over T2 ^MUh6i and we obtain
a section s of the canonical map

T2 ^MUh6i �! E .

Now it is clear that ⌧U ⇤ is ?-surjective. Moreover, Lemma 3.3 implies the same is
true for the map ⌧W ⇤. Hence, the second claim is a corollary of Theorem 2.8. ⇤
Proposition 3.5. The module K⇤(T2 ^MString) is concentrated in even dimen-

sions.

Proof. It is clear that K⇤T2 is concentrated in even dimensions. For the module

K⇤MString ⇠= K⇤BString,

this is the main result of [KLW04] (see also [Lau16, Remark 3.1, Theorem 1.3] for
this version of Morava K-Theory). The claim follows from the Künneth isomor-
phism. ⇤
Proposition 3.6. Let X be a K(n)-local spectrum whose Morava K-homology is

concentrated in even degrees. Then X is a wedge of copies of E if and only if K0(X)
is cofree as a comodule over ⌃ = K0(E).

Proof. Obviously, the cofreeness as a comodule is a necessary condition for a split-
ting. In order to show the converse, we first observe with [HS99b, Proposition
8.4(e)(f)] that the Morava K-homology of X being even implies the profreenes of
E

_
⇤ (X) and

K⇤(X) ⇠= E
_
⇤ (X)/m.

Choose a wedge F of copies of E and an isomorphism of ⌃-comodules ↵̄ fromK0(X)
to K0(F ). Also, choose a lift of ↵̄ in the diagram

E
_
0 (X)

↵ //

mod m
✏✏

E
_
0 (F )

mod m
✏✏

K0(X)
↵̄ // K0(F )

.

The universal coe�cient theorem for E-module spectra yields an isomorphism

↵
⇤ : F ⇤(F ) ⇠= HomE⇤(E

_
⇤ F, F⇤)

⇠=�! HomE⇤(E
_
⇤ (X), F⇤) ⇠= F

⇤(X).
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Let f : X ! F be the image of 1 under this map. In other words, f corresponds to
the composite

E
_
⇤ (X)

↵⇤�! E
_
⇤ (F )

µ⇤�! F⇤

where µ is the multiplication. We claim that f induces the map ↵̄ in K-homology
and hence is a K-local isomorphism. Let p : F ! E be the projection onto a
summand. It su�ces to show the equality

p⇤f⇤ = p⇤↵̄ : K0X �! K0E

of ⌃-comodule maps or, dually, the equality of K0(E)-module maps from K
0
E to

K
0
X. By construction, the maps p⇤f⇤ and p⇤↵̄ coincide when composed with the

augmentation µ⇤ to K⇤. Hence, the dual maps coincide on the generator 1 2 K
0(E)

and the result follows. ⇤
Proof of Theorem 1.1. The theorem is a consequence of the Propositions 3.4, 3.5
and 3.6. ⇤
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ume 2008/2009. Exposés 997–1011. MR 2648680 (2011m:55003)

[Hov04] Mark Hovey, Operations and co-operations in Morava E-theory, Homology Homotopy
Appl. 6 (2004), no. 1, 201–236. MR 2076002

[HR95] Mark A. Hovey and Douglas C. Ravenel, The 7-connected cobordism ring at p = 3,
Trans. Amer. Math. Soc. 347 (1995), no. 9, 3473–3502. MR 1297530

[HS99a] Mark Hovey and Hal Sadofsky, Invertible spectra in the E(n)-local stable homotopy cat-
egory, J. London Math. Soc. (2) 60 (1999), no. 1, 284–302. MR 1722151 (2000h:55017)

[HS99b] Mark Hovey and Neil P. Strickland, Morava K-theories and localisation, Mem. Amer.
Math. Soc. 139 (1999), no. 666, viii+100. MR 1601906 (99b:55017)

[KLW04] Nitu Kitchloo, Gerd Laures, and W. Stephen Wilson, The Morava K-theory of spaces
related to BO, Adv. Math. 189 (2004), no. 1, 192–236. MR 2093483 (2005k:55002)

[Lau16] Gerd Laures, Characteristic classes in TMF of level �1(3), Trans. Amer. Math. Soc.
368 (2016), no. 10, 7339–7357. MR 3471093

[LO16] Gerd Laures and Martin Olbermann, TMF0(3)-characteristic classes for string bun-
dles, Math. Z. 282 (2016), no. 1-2, 511–533. MR 3448393

[Mat16] Akhil Mathew, The homology of tmf, Homology Homotopy Appl. 18 (2016), no. 2,
1–29. MR 3515195

[MM65] John W. Milnor and John C. Moore, On the structure of Hopf algebras, Ann. of Math.
(2) 81 (1965), 211–264. MR 0174052

[Rav86] Douglas C. Ravenel, Complex cobordism and stable homotopy groups of spheres,
Pure and Applied Mathematics, vol. 121, Academic Press Inc., Orlando, FL, 1986.
MR 860042 (87j:55003)

[Swe69] Moss E. Sweedler, Hopf algebras, Mathematics Lecture Note Series, W. A. Benjamin,
Inc., New York, 1969. MR 0252485



12 GERD LAURES AND BJÖRN SCHUSTER
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