An Outer Bracketing Approach for Empirical Process Central Limit Theorems of Weakly Dependent Data

Ruhr-University Bochum

Background / Motivation

Empirical Processes Indexed by Classes of Sets

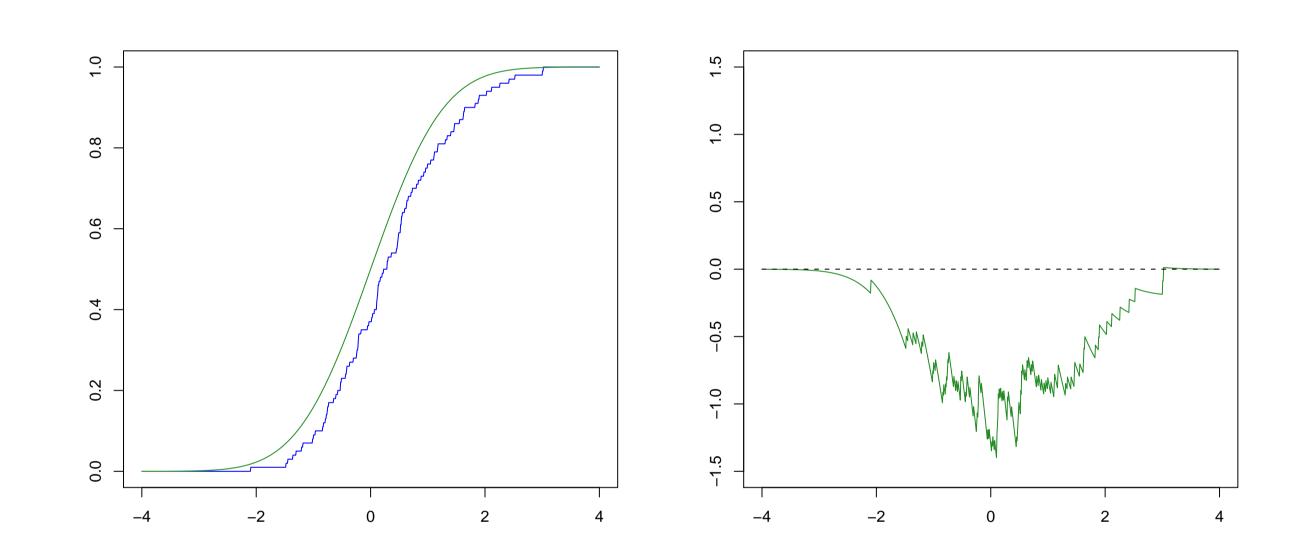
Let

- \triangleright $(X_i)_{i\in\mathbb{N}}$ be stationary sequence of μ distributed random variables in \mathbb{R}^d and
- $\triangleright \mathcal{A}$ a collection of measurable sets in \mathbb{R}^d .

The empirical process $(U_n(A))_{A \in \mathcal{A}}$ given by

$$U_n(A) \coloneqq n^{-1/2} \sum_{i=1}^n (\mathbf{1}\{X_i \in A\} - \mu(A))$$

describes the probabilistic behavior as the empirical distribution $\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\{X_i \in \cdot\}$ convergences to μ in terms of a process indexed by a class of sets $A \in \mathcal{A}$. We say that an Empirical Process Central Limit Theorem holds (with respect to \mathcal{A}), if $(U_n(A))_{A \in \mathcal{A}}$ converges weakly to a Gaussian Process.



Classical Approach

- ▶ Verify the pointwise CLT, i.e. $U_n(A) \rightsquigarrow \mathcal{N}(0, \sigma_A)$ for all $A \in \mathcal{A}$
- ► Show tightness of $(U_n(A))_{A \in A}$

To show this properties one needs certain conditions on the processes $1\{X_i \in A\}$, $A \in A$.

Our Setup

- ▶ No direct control over the processes $1\{X_i \in A\}, A \in A$
- Some control over the process under the class of Hölder functions \mathcal{H}_{α} , equipped with the α -Hölder norm $\|f\|_{\alpha} \coloneqq \|f\|_{\infty} + \sup_{x \neq y} |f(x) f(y)|/|x y|$

Let $\mu(f) := \mathbb{E}(f(X_0))$. As our central conditions, we assume that

- (1) $n^{-1/2} \sum_{i=1}^n (f(X_i) \mu(f)) \rightsquigarrow \mathcal{N}(0, \sigma_f)$ for all $f \in \mathcal{H}_{\alpha}$,
- (2) for some fixed M > 0, $a \in \mathbb{Z}$, we have for all $p \ge 1$ a moment bound

$$\mathbb{E}\left[\left(\sum_{i=1}^{n} (f(X_i) - \mu(f))\right)^{2p}\right] \ll \sum_{i=1}^{p} n^i \mathbb{E}(|f(X_0)|) \log^{2p+ai}(\|f\|_{\alpha} + 1)$$

for all $f \in \{g - h : g, h \in \mathcal{H}_{\alpha}, \|g\|_{\infty}, \|h\|_{\infty} \leq M\}$.

Main Result

Definition. For $l \leq u : \mathbb{R}^d \longrightarrow \mathbb{R}$ we define the *bracket*

$$[l,u] \coloneqq \{f \colon \mathbb{R}^d \longrightarrow \mathbb{R} : l \le f \le u\}.$$

[l, u] is a (ε, B) -bracket, if $\mathbb{E}|u(X_0) - l(X_0)| \le \varepsilon$ and $||l||_{\alpha}, ||u||_{\alpha} \le B$.

The bracketing number $N(\varepsilon, B)$ is defined as the smallest number of brackets [l, u] with $l, u \in \mathcal{H}_{\alpha}$, that are needed to cover $\{\mathbf{1}\{\cdot \in A\} : A \in \mathcal{A}\}.$

Theorem. Assume that (1) and (2) hold. If there is a r > -1, a $\gamma > \max\{2 + a, 1\}$, and a C > 0 such that

(3)
$$\int_0^1 \varepsilon^r \sup_{\varepsilon < \delta < 1} N^2 \left(\delta, \exp \left(C \delta^{-\frac{1}{\gamma}} \right) \right) \, d\varepsilon < \infty,$$

then an Empirical Process Central Limit Theorem holds with respect to A.

Applications

Our techniques can be applied in the situation of

- ▶ dynamical systems and Markov chains, where the Perron–Frobenius operator or the Markov operator satisfies a spectral gap condition,
- ▶ processes that feature the multiple mixing condition, i.e. $\exists \theta \in (0,1) \ \forall p \geq 1$ the exists a polynomial of bounded absolute degree such that

(4)
$$\left| \mathbf{Cov} \left(f(X_{i_0}) \cdots f(X_{i_{q-1}}), f(X_{i_q}) \cdots f(X_{i_p}) \right) \right|$$

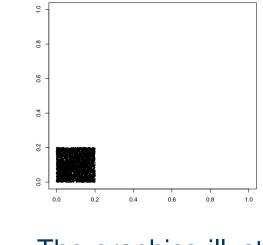
 $\leq P(i_1 - i_0, \dots, i_p - i_{p-1}) \mathbb{E} |f(X_0)| \|f\|_{\alpha}^{\ell} \theta^{i_q - i_{q-1}}$

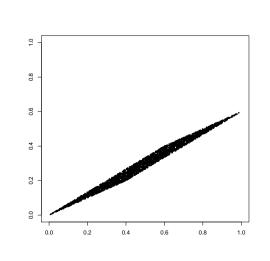
for all $f \in \mathcal{B}$ with $\mathbb{E}(f(X_0)) = 0$, $||f||_{\infty} = 1$, any integers $0 \le i_0 < \ldots < i_p$, and any $q \in 1, \ldots, p$.

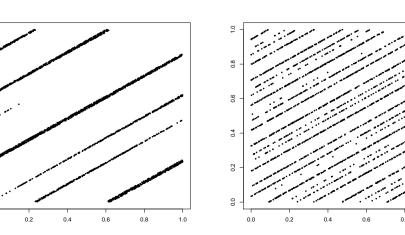
Example: Ergodic Automorphisms of the Multidimensional Torus

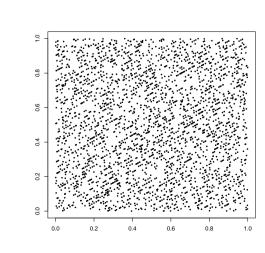
Let $T: \mathbb{T}^d \to \mathbb{T}^d$ be an ergodic automorphism on the d-dimensional torus $\mathbb{T}_d = \mathbb{R}_d/\mathbb{Z}_d$, which is identified with $[0,1]^d$, and $X_i := T^i(X_0)$, where X_0 is uniformly distributed on \mathbb{T}^d . Then an Empirical Process Central Limit Theorem holds with respect to

- \triangleright the class of indicators of rectangles of \mathbb{T}_d ,
- ▶ the class of indicators of Euclidean balls of \mathbb{T}_d ,
- \triangleright and the class of indicators of ellipsoids of bounded diameter of \mathbb{T}_d .









The graphics illustrate how the ergodic torus automorphism given by $T(x,y) = (3x + 2y, 2x + y) \mod 1$ acts on a sample of 3,000 uniform distributed points in $[0,0.2]^2$ in four steps.

Herold Dehling, Olivier Durieu, Marco Tusche

Generalizations

Our results also apply in more general cases. These are the following:

- ▶ Weaker assumptions on dependence structure of $(X_i)_{i \in \mathbb{N}}$
- Replace $\log^{2p+ai}(\mathbf{id}+1)$ in condition (2) by faster increasing functions Φ_i , e.g. $\Phi_i = \mathbf{id}^i$. This allows one e.g. to treat processes that satisfy a weaker version of the multiple mixing condition (4). However, in this situations one needs to use brackets with a stricter control of the α -Hölder norm (c.f. [2]).
- Replace $\mathbb{E}|f(X_0)|$ in (2) by the $L^s(\mu)$ -norm ($s \in \mathbb{N}^*$) of f. In this case one also has to work with brackets with a control of the $L^s(\mu)$ -norm instead of the $L^1(\mu)$ -norm (c.f. [3]).
- The \mathbb{R}^d valued random variables X_i can be generalized to random variables taking values in an arbitrary measurable space \mathcal{X} (c.f. [3]).
- ▶ Both \mathcal{A} (or rather $\{1\{\cdot \in \mathcal{A}\} : A \in \mathcal{A}\}$) and \mathcal{H}_{α} can be generalized to *more* abstract spaces of functionals (c.f. [3]).

Sequential Empirical Processes

Sequential empirical processes play an important role in determining the asymptotic distribution of change-point tests. A sequential empirical process is the process $(U_n(A,t))_{(A,t)\in\mathcal{A}\times[0,1]}$ given by

$$U_n(A,t) \coloneqq n^{-1/2} \sum_{i=1}^{[tn]} (\mathbf{1}\{X_i \in A\} - \mu(A)).$$

Our techniques can also be applied to this situation. However, here one needs a multidimensional version of (1): $\forall f_1, \ldots, f_k \in \mathcal{H}_{\alpha}, t_1, \ldots, t_k \in [0, 1]$

$$\frac{1}{\sqrt{n}} \left(\sum_{i=1}^{[nt_1]} (f_1(X_i) - \mu(f_1)), \dots, \sum_{i=1}^{[nt_k]} (f_k(X_i) - \mu(f_k)) \right) \rightsquigarrow N(0, \Sigma),$$

where Σ may depend on $t_1, \ldots, t_k, f_1, \ldots, f_k$.

We can still work with the same moment bound (2) and we only need a slightly stronger entropy condition (3), which still works with all our previous examples.

References

- [1] H. Dehling, O. Durieu and D. Volný (2009). "New techniques for empirical processes of dependent data". Stochastic Processes and their Applications, 119, p. 3699-3718.
- [2] O. Durieu, M. Tusche (2013). "An empirical process central limit theorem for multidimensional dependent data". Journal of Theoretical Probability. DOI: 10.1007/s10959-012-0450-3.
- [3] H. Dehling, O. Durieu, M. Tusche. "Empirical Processes of Markov Chains and Dynamical Systems Indexed by Classes of Functions". Preprint. Online on http://arxiv.org/abs/1201.2256 [State: January 12., 2012]

