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1. Introduction

1.1 The multi-matrix model In this note we study Hermitian matrices whose distribution is given

by a small convex perturbation of the Gaussian Unitary Ensemble, denoted by GUE. We fix m ∈ N the

number of random matrices we shall consider. Let HN (C)m be the set of m-tuples A = (A1, . . . , Am)

of N × N hermitian matrices, such that ReAi(kl), k < l, ImAi(kl), k < l, 2−
1
2Ai(kk) is a family of

independent real Gaussian variables of variance (2N)−1. We will consider the following perturbation

of the GUE:

µNVt
(dA) =

1
ZNVt

exp {−Ntr (Vt(A1, . . . , Am))}µN (dA), (1.1)

where ZNVt
is the normalizing constant, Vt(A1, . . . , Am) :=

∑n
i=1 tiqi(A1, . . . , Am) a polynomial poten-

tial with n ∈ N, t = (t1, . . . , tn) ∈ Cn and monomials (qj)1≤j≤n fixed, and

µN (dA) =
1
ZN

exp

{
−N

2
tr

(
m∑
i=1

A2
i

)}
dN A,

the law of the m-dimensional GUE with dN A the Lebesgue measure on HN (C)m. In this note we will

prove a moderate deviation principle (MDP) and a central limit theorem (CLT) for normalized traces

of a non-commutative monomial, tr(ql(A1, . . . , Am)), under µNVt
.

For m = 1 and Vt(A) = 0 we recover the classical GUE. In this case, a MDP for the difference of the

cumulative distribution function (cdf) of the semicircle distribution and the cdf of the eigenvalues was

proved in [4].

Matrix models, in which general polynomials Vt(A) were allowed in (1.1) while still keeping m = 1,

have been studied intensively in physics. The choice Vt(A) = t A4, t ∈ C, was a commonly studied

object, see [1, 2]. What was really striking, is the connection their analysis established between matrix

integrals like ZNVt
and map enumeration. A genus expansion of

ZN
Vt

ZN and log
ZN

Vt

ZN respectively in powers

of N was given for Vt(x) = 1
2x

2 +
∑ν

k=1 tkx
k with suitable chosen parameters (t1, . . . , tν) and it was

placed on solid mathematical grounds by Ercolani and McLaughlin [6], who proved their results via

a Riemann-Hilbert approach. It turned out, that the coefficients of the powers of N in the expansion

[6, Theorem 1.1] are closely related to map enumeration.

Moreover, for m = 1 and for a polynomial potential Vt of even degree and with a positive leading

coefficient, Johansson [13] proved a CLT for
∑N

i=1 f(λi), where λi are the eigenvalues of the hermitian

matrix, for functions f fulfilling some kind of regularity condition, being pointwise bounded by C(Vt+1)

for a constant C > 0 and its derivative being pointwise bounded by a polynomial.

Since many interesting models like the Ising model on random graphs, the q-Potts model on random

graphs, the Chain model and the so-called induced QCD model (quantum chromodynamics, see [15])
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are of form (1.1) and have m > 1, the question arose, whether a genus expansion for this multi-matrix

model with general polynomial potentials Vt could be obtained. A first order expansion was obtained

by Guionnet [7], a paper that relied on [12]. Guionnet and Maurel-Segala refined the expansion up to

second order [11] until Maurel-Segala [16] gave the full genus expansion for the multi-matrix model

of form (1.1). In [11], the authors also derived a CLT for N times the difference of the empirical

measure and its limit, the solution of a Schwinger-Dyson equation. It was also shown that the CLT

still holds, when the limit of the empirical measure is replaced by its expectation. For a special case

of that CLT, we will give an alternative proof. Finally, notice that Cabanal-Duvillard [3] introduced a

stochastic calculus approach and proved a CLT for traces of non-commutative polynomials of Gaussian

Wigner and Wishart matrices, as well as for traces of non-commutative polynomials of pairs (m = 2)

of independent Gaussian Wigner matrices.

After introducing a technical assumption for the polynomial potential Vt in (1.1), we will state our

main result in the next subsection. Since the results of the paper [16] are the crucial foundation of

this note, we will give the two main theorems of [16] in section 2, in which we finally prove our main

result.

In the last section, we compare the two different admissible regions of parameters of the polynomial Vt

as they appear in [6] and [16] and finally, we will apply our result to the Ising model and the q-Potts

model.

1.2 Main results Before stating our main result, we introduce the notion of c-convexity for the

potential Vt.

Definition 1.1. If there exists c > 0, such that for all N in N, the function

ϕNVt
:
HN (C)m = (RN2

)m −→ C

(A1, . . . , Am) −→ tr
(
Vt(A1, . . . , Am) + 1−c

2

∑m
i=1A

2
i

)
is real and convex as a function of the entries of the matrices, we say that Vt is c-convex.

If Vt is c-convex, the Hessian of the trace of Vt(A1, . . . , Am) + 1
2

∑m
i A

2
i is symmetric and positive

definite with eigenvalues bigger than c for any N ∈ N. Remark, that the condition implies that ZNVt
is

automatically finite. An example of a c-convex Vt is

Vt =
n∑
i=1

Pi

( m∑
k=1

αikAk

)
+
∑
k,l

βk,lAkAl

with convex real polynomials Pi in one unknown and for all l,
∑

k |βk,l| ≤ (1 − c). This is due to

Klein’s Lemma [9, Lemma 6.2] which states that the trace of a real convex function of a self-adjoint
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matrix is a convex function as function of the entries of the matrix. Hence, a special class of examples

are Vt of the form

Vt =
n∑
i=1

ti

( m∑
k=1

αikAk

)2 pi

with non-negative ti’s, integers pi’s and real α’s (see the potentials Vt considered in [6] in the one

matrix case m = 1).

Taking the potential Vt := Vt(A) := Vt(A1, . . . , Am) of form
∑n

i=1 tiqi(A1, . . . , Am), n ∈ N, with

complex t = (t1, . . . , tn) ∈ Cn and non-commutative monomials (qj)1≤j≤n, we next define for any

η > 0 and c > 0

Bη,c =
{
t ∈ Cn| |t| = max

i
|ti| ≤ η, Vt is c−convex

}
.

Let E denote the expectation with respect to the probability measure µNVt
, defined in (1.1).

Besides being c-convex, we require the potential function to also be self-adjoint in terms of the following

definition.

Definition 1.2. We say that the potential Vt is self-adjoint, if Vt = V †t holds with respect to the

involution † that is given for all z ∈ C and all monomials ql(H1, . . . ,Hm) = Hl1 . . .Hlp by

(zql)† = (zHl1 . . .Hlp)
† = zHlp . . .Hl1 . (1.2)

Thus, if the potential Vt is self-adjoint, all the appearing monomials ql are also self-adjoint. Note

that a self-adjoint potential Vt or monomial ql always has a real trace.

We say that a sequence of probability measures (µn)n∈N, on some topological space X obeys a large

deviation principle with speed an and good rate function I(·) : X → R+
0 if

• I is lower semi-continuous and has compact level sets NL := {x ∈ X : I(x) ≤ L}, for every

L ∈ [0,∞).

• For every open set G ⊆ X it holds

lim inf
n→∞

1
an

logµn(G) ≥ − inf
x∈G

I(x).

• For every closed set A ⊆ X it holds

lim sup
n→∞

1
an

logµn(A) ≤ − inf
x∈A

I(x).

Similarly, we will say that a sequence of random variables (Yn)n∈N with topological state spaceX obeys

a large deviation principle with speed an and good rate function I(·) : X → R+
0 if the sequence of their

distributions does. Formally a moderate deviation principle is nothing but an LDP. However, we will

speak about a moderate deviation principle (MDP) for a sequence of random variables, whenever the
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scaling of the corresponding random variables is between that of an ordinary Law of Large Numbers

and that of a Central Limit Theorem.

Now our result is as follows. For a non-commutative monomial ql, we define φl :=

tr(ql(A1, . . . , Am))− E[tr(ql(A1, . . . , Am))], where the expectation is with respect to µNVt
.

Theorem 1.3 (A Moderate Deviation Principle (MDP)). Let t = (t1, . . . , tn) ∈ Rn, c > 0 and Vt =∑n
i=1 tiqi(A1, . . . , Am) be self-adjoint with tl 6= 0. Then there exists η > 0, such that for n ∈ N, with

t ∈ Bη,c ∩ Rn the sequence of distributions
(
µNVt

◦
(

1
Nγ φl

)−1)
N

obeys a MDP with speed N2γ and rate

function

I(x) =
x2

2

(
∂2

∂tl
2F

0(t)
)−1

for any 0 < γ < 1. The function F 0(·) is given by (1.3).

Since F 0(t) is the connection between matrix models and map enumeration, we will give some more

details (for a detailed explanation of that connection see [19]). A map is a connected graph drawn on a

compact oriented connected surface, such that the edges are not intersecting (do not cross each other),

the number of holes in the surface in order to avoid intersections is minimal, which is equivalent to

obtaining a disjoint union of sets, where each set (or face) is homeomorphic to open disks after cutting

the surfaces along the edges. That minimal number of holes is called the genus g of the surface. Thus

a planar graph can be drawn on a surface of genus 0. We consider maps that are colored in m colors,

i.e. each edge has a color c ∈ {1, . . . ,m}.

For a non-commutative monomial in m indeterminants,

ql(H1, . . . ,Hm) = Hl1Hl2 · · ·Hlkl
, with kl ∈ N, lj ∈ {1, . . . ,m}, 1 ≤ j ≤ kl,

we define vertices, that are of type ql as follows: We say that a vertex is of type ql, if it has kl colored

half-edges, one marked half edge and an orientation, such that the marked half-edge is of color l1,

the next one with respect to the orientation is of color l2 and so forth, until the last half-edge is

colored with lkl
. Thus, we obtain a bijection between monomials and stars. Moreover, the graphical

interpretation of the involution † as defined in (1.2) is quite simple. Just shift the marker of the first

half-edge towards the next neighboring half-edge against the orientation of the vertex and afterwards

reverse the orientation of the vertex.

The function F 0(t), which appears in the rate function of the MDP, is a generating function for maps

of genus 0 associated with Vt,

F 0(t) =
∑
k∈Nn

(−t)k

k!
Ck0 , (1.3)



6 PETER EICHELSBACHER AND JENS C. SOMMERAUER

where k! =
∏n
i=1 ki!, (−t)k =

∏n
i=1(−ti)ki and Ck0 being the number of maps on a surface of genus 0

with ki vertices of type qi.

It is not quite obvious, how the second derivative of F 0(t) with respect to tl looks like and we will see

below (in Theorem 2.2) that it can be regarded as a generating function for maps of genus 0, which

have two fixed stars ql:
∂2

∂t2l
F 0(t) =

∑
k∈Nn

(−t)k

k!
Ck+j0 , (1.4)

where j = (0, . . . , 0, jl = 2, 0, . . . , 0)) and everything else as above.

Now, we also state a special case of the CLT [11, Theorem 4.7] of which we will give an alternative

proof.

Theorem 1.4 (A Central Limit Theorem (CLT)). Let t = (t1, . . . , tn) ∈ Rn and c > 0. Then

there exists η > 0, such that for self-adjoint Vt =
∑n

i=1 tiqi(A1, . . . , Am), tl 6= 0, n ∈ N, with t ∈

Bη,c∩Rn and any fixed l ∈ {1, . . . , n} the distribution of the random variable φl := tr(ql(A1, . . . , Am))−

E[tr(ql(A1, . . . , Am))] with respect to µNVt
converges towards the normal distribution with expectation 0

and variance ∂2

∂tl
2F

0(t).

2. Proof of main results

Before we give the proofs, we state the two main theorems of [16], on which the proofs build upon.

In physics it is known that the perturbed GUE is related to the enumeration of graphs on surfaces.

The main result in [16] is, that for small convex perturbations, the moments of the empirical measure

can be developed into a series whose g-th term is a generating function of graphs on a surface of genus

g:

Theorem 2.1 (Theorem 1.1 in [16]). Let Vt =
∑n

i=1 tiqi(A1, . . . , Am) and c > 0. For all g ∈ N, there

exists ηg > 0, such that for all t ∈ Bηg ,c, ZNVt
has the following expansion

FNVt
:=

1
N2

logZNVt
= F 0(t) +

1
N2

F 1(t) + · · ·+ 1
N2g

F g(t) + o

(
1
N2g

)
, (2.1)

where F g is the generating function for maps of genus g associated with Vt,

F g(t) =
∑
k∈Nn

(−t)k

k!
Ckg ,

and k! =
∏
i ki!, (−t)k =

∏
i(−ti)ki and Ckg is the number of maps on a surface of genus g with ki

vertices of type qi.
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Now it is obvious, why such an expansion is called genus expansion and why the leading term F 0(t)

was called the planar approximation. For our purposes, we will only apply that theorem for g = 1.

That the expansion in (2.1) can be derived term by term is the content of the next theorem. In fact,

this means that the asymptotics of much more observables are available. For j=(j1, . . . , jn) ∈ Nn, we

introduce the operator of derivation

Dj =
∂

P
i ji

∂tj11 · · · ∂t
jn
n

.

Theorem 2.2 (Theorem 1.3 in [16]). Let Vt as above, c > 0. For all j = (j1, . . . , jn) ∈ Nn, for all

g ∈ N, there exists ηg > 0, such that for all t ∈ Bηg ,c,

DjFNVt
= DjF 0(t) + · · ·+ 1

N2g
DjF g(t) + o

(
1
N2g

)
, (2.2)

where DjF g(t) is the generating function for rooted maps of genus g associated with Vt with some fixed

vertices:

DjF g(t) =
∑
k∈Nn

(−t)k

k!
Ck+jg ,

where Ckg is again the number of maps on a surface of genus g with ki vertices of type qi. For details

see [16, Theorem 7.4].

Thus, we find for example for m = 2, Vt = t1H
2
1H

2
2H

2
1 + t2H2H1H2 and j = (2, 0), that DjF

0 counts

all planar maps with k1 + 2 vertices of type q1 = H2
1H

2
2H

2
1 and k2 vertices of type q2 = H2H1H2.

Moreover, because of Theorem 2.2 the rate function I from Theorem 1.3 is the same as

I(x) =
x2

2

(∑
k∈Nn

(−t)k

k!
Ck+2el

0

)−1

.

Theorems 2.1 and 2.1 yield asymptotic information concerning the statistics of words of the multi-

matrix models. For example, by differentiating logZNVt
, one obtains

∂

∂tl
logZNVt

= −N E
[
tr(ql(A1, . . . , Am))

]
. (2.3)

In conjunction with (2.2), one learns the following:

lim
N→∞

E
(

1
N

tr(ql(A1, . . . , Am))
)

=
∂

∂tl
F 0(t).

Out of these two theorems, we deduce an asymptotic expansion for the moment generating function

of φl := φl(A) := tr(ql(A1, . . . , Am)) and φl := φl(A) := φl(A)− E[φl(A)]. Remember, that E denotes

the expectation with respect to the probability measure µNVt
.
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Lemma 2.3. Let t ∈ Rn and c > 0. Then there exists η > 0, such that for self-adjoint Vt =∑n
i=1 tiqi(A1, . . . , Am), n ∈ N, with t in Bη,c ∩Rn, and any fixed l ∈ {1, . . . , n} we have for any s ∈ R

that

E
(
exp
(
s φl

))
=

exp
{
N2

[
F 0
(
t− s

N
el

)
− F 0(t) +

s

N

∂

∂tl
F 0(t)

]
+ F 1

(
t− s

N
el

)
− F 1(t) +

s

N

∂

∂tl
F 1(t) + o(1)

}
.

In the non-centered case, we find

E
(
exp
(
s φl

))
= exp

{
N2
[
F 0
(
t− s

N
el

)
− F 0(t)

]
+ F 1

(
t− s

N
el

)
− F 1(t) + o(1)

}
.

Proof. Consider for any s ∈ R and l ∈ {1, . . . , n} the potential Vt− s
N
el

. We easily see that

Vt− s
N
el

=
n∑

i=1
i6=l

ti qi(H1, . . . ,Hm) +
(
tl −

s

N

)
ql(H1, . . . ,Hm) = Vt −

s

N
ql(H1, . . . ,Hm).

We abbreviate Ṽ := Ṽ (t, s, l) := Vt− s
N
el

and obtain

ZNeV =
∫
HN (C)m

exp
(
−N

(
tr(Ṽ (H))

))
µN (dH)

=
∫
HN (C)m

exp
(
−N(tr(Vt))

)
exp(s tr(ql(H)))µN (dH))

= E[exp(s tr(ql(H)))]ZNVt
.

Hence we get

E [exp(s tr(ql(H)))] =
ZNeV
ZNVt

. (2.4)

We want to apply Theorem 2.1 for both terms on the right hand side of the last equality. Fix c > 0.

Then by Theorem 2.1 there exists a η := η(c) > 0 such that the expansion (2.1) holds true for ZNVt
for

all t ∈ Bη,c.

Now for fixed s ∈ R we choose N sufficiently large such that |s/N | < ε for a ε > 0. We abbreviate

t̃ := t− s
N el. For any t ∈ Bη,c the polynomial Vt is c-convex, thus for N sufficiently large we can find

a c′ > 0 such that Vet is c′-convex. For this c′ > 0 we can find a η′ := η′(c′) > 0 such that (2.1) holds

true for any t ∈ Bη′,c′ , where Vt is c′-convex. Now we choose ε < η′ and η′′ := min(η′ − ε, η).

Since η′′ ≤ η, the condition |t| ≤ η′′ induces |t| ≤ η and therefore, the relevant set to consider is Bη′′,c.

Summarizing, for fixed s ∈ R and N sufficiently large, for any t ∈ Bη′′,c we can apply Theorem 2.1 for

both terms in (2.4).
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Remark that we apply Theorem 2.1 taking g = 1. Now we obtain the following asymptotic expansion

in the non-centered case:

ZNeV
ZNVt

= exp
{
N2F 0

(
t− s

N
el

)
+ F 1

(
t− s

N
el

)
+ o(1)

}
× exp

{
−N2F 0(t)− F 1(t) + o(1)

}
= exp

{
N2
[
F 0
(
t− s

N
el

)
− F 0(t)

]
+ F 1

(
t− s

N
el

)
− F 1(t) + o(1)

}
.

In the centered case, we also have to consider the contribution of E [exp(−sE[φl(H)])] to the asymptotic

expansion. As it is well known in statistical mechanics and as we have seen in (2.3), differentiating

the free energy yields the expectation of the observables and hence we find

sE [tr(ql)] = − s

N

∂

∂tl
logZNVt

⇐⇒ exp (−sE [tr(ql)]) = exp
(
s

N

∂

∂tl
logZNVt

)
. (2.5)

Finally, (2.4), (2.5) and Theorem 2.2 yield

E(exp(s φ̄l)) =
ZNeV
ZNVt

× exp
(
s

N

∂

∂tl
logZNVt

)
= exp

{
N2
[
F 0
(
t− s

N
el

)
− F 0(t)

]
+ F 1

(
t− s

N
el

)
− F 1(t) + o(1)

}
× exp

{
s

N

(
N2 ∂

∂tl
F 0(t) +

∂

∂tl
F 1(t) + o(1)

)}
,

and therefore we obtain

E(exp(s φ̄l)) = exp
{
N2

[
F 0
(
t− s

N
el

)
− F 0(t) +

s

N

∂

∂tl
F 0(t)

]
+ F 1

(
t− s

N
el

)
− F 1(t) +

s

N

∂

∂tl
F 1(t) + o(1)

}
.

�

This lemma is now the crucial ingredient for the proofs of our main results.

Proof. (Proof of the central limit theorem, Theorem 1.4) By Taylors theorem, we have

F i
(
t− s

N
el

)
− F i(t) +

s

N

∂

∂tl
F i(t) =

s2

2N2

∂2

∂t2l
F i(ξiN ), i = 0, 1, (2.6)

where ξiN ∈
(
t ∧
(
t− s

N el
)
, t ∨

(
t− s

N el
))
.

Combining this with Lemma 2.3, we find the limit of the moment generating function of φl

to be that of a centered random variable having a normal distribution with variance ∂2

∂t2l
F 0(t):
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limN→∞ E
[
exp(s φl)

]
= limN→∞ exp

(
s2

2
∂2

∂t2l
F 0(ξ0N ) + s2

2N2
∂2

∂t2l
F 1(ξ1N ) + o(1)

)
= exp

(
s2

2
∂2

∂t2l
F 0(t)

)
,

since ξ0N → t, for N → ∞, and F 0, F 1 being differentiable functions of any order around the ori-

gin by Theorem 2.2 (they are even analytic functions, see [16, Lemma 4.4]). By Levy’s continuity

theorem the CLT is established. �

Proof. (Proof of the moderate deviation principle, Theorem 1.3) In order to apply the Gärtner-Ellis

theorem (cf. Theorem 2.3.6 in [5]), we calculate the limit of the properly scaled cumulant generating

function of the random variable 1
Nγ φl, where 0 < γ < 1: let s ∈ R, we obtain

lim
N→∞

1
N2γ

log E
[
exp

(
sN2γ 1

Nγ
φl

)]
= lim

N→∞

1
N2γ

log E
[
exp

(
sNγφl

)]
= lim

N→∞

1
N2γ

log
(

exp
{
N2

[
F 0

(
t− sNγ

N
el

)
− F 0(t) +

sNγ

N

∂

∂tl
F 0(t)

]
+ F 1

(
t− sNγ

N
el

)
− F 1(t) +

sNγ

N

∂

∂tl
F 1(t) + o(1)

})
= lim

N→∞

1
N2γ

[
N2

2

(
sNγ

N

)2 ∂2

∂tl
2F

0(ξ0N ) +
1
2

(
sNγ

N

)2 ∂2

∂tl
2F

1(ξ1N ) + o(1)

]

=
s2

2
∂2

∂tl
2F

0(t). (2.7)

The second equality is due to Lemma 2.3. Although we cannot simply replace s by sNγ and assume

the lemma to hold, we can carefully go through the proof of Lemma 2.3 when the new scaling is

applied. It turns out, that the lemma still holds, which basically relies on Nγ/N going to 0. The third

equality is due to Taylor’s theorem (2.6) and the last one follows by F 0 being differentiable of any

order around the origin and the fact that ξ0N ∈
(
t ∧ (t− sNγ

N el), t ∨ (t− sNγ

N el)
)
, which yields ξ0N → t,

for N → ∞, since γ ∈ (0, 1). In particular the right hand side of (2.7) is finite for all s ∈ R, is

everywhere differentiable in s and steep, since∣∣∣∣ ∂∂s s22 ∂2

∂tl
2F

0(t)
∣∣∣∣ = ∣∣∣∣s ∂2

∂tl
2F

0(t)
∣∣∣∣ −→∞ for s→∞.

Thus, we can apply the Gärtner-Ellis theorem, and finish the proof by calculating the Legendre-Fenchel

transform of s
2
∂2

∂t2l
F 0(t), which is

I(x) = sup
s∈R

{
sx− s2

2
∂2

∂t2l
F 0(t)

}
=
x2

2

(
∂2

∂t2l
F 0(t)

)−1

.

�

Remarks:

(1) For all the calculations carried out above, the second order expansion (g=1) in [11] could have been

sufficient, while we needed Theorem 2.2 to establish our Lemma 2.3, which was crucial for proving
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our result.

(2) Instead of using the asymptotic expansion of logZNVt
up to order g = 1 in Lemma 2.3 and applying

Taylor’s theorem, we could have only used that expansion up to order g = 2 for proving the MDP and

the CLT.

(3) In case of m = 1, we would find e.g. the limiting variance of φl to be ∂2

∂t2l
F 0(t) =

∑
k∈Nn

(−t)k

k ! κk+2el
0 ,

where κk+2el
0 is the number of maps on a surface of genus 0 with ki vertices of valence i, i = {1, . . . , n},

and two vertices of valence l. That corresponds to a non-colored graph, respectively a graph in which

all edges are colored with one color. Notice moreover that F 0(t) corresponds to e0(t1, . . . , tn) in the

notation of [6].

(4) What about a LDP for
(
µNVt

◦
(

1
N φl

)−1
)
N

? Along the proof of (2.7) we obtain that

lim
N→∞

1
N2

log E[exp{sNφl}] = F 0(t− sel)− F 0(t),

for s ∈ R, such that t− sel ∈ Bη,c. Hence we are only able to apply the Gärtner-Ellis theorem locally,

for sufficient small s, obtaining a LDP only locally for sufficiently small intervals (−ε, ε) with a implicit

rate function

Ĩ(x) = sup
s∈R,

t−sel∈Bη,c

{
sx− F 0(t− sel) + F 0(t)

}
.

In other words, the expansions in [16] are not strong enough to obtain a full LDP. For a similar

discussion in case of m = 1, see [17].

Generalization:

All the results above can be generalized from monomials to polynomials,
∑n

i=1 αi tr(qi), provided that

each qi has a non-vanishing coefficient ti in the potential Vt. We will briefly state the crucial steps of

the calculations and only look at ψ = α1 tr(ql1)+α2 tr(ql2), where l1, l2 ∈ {1, . . . , n}, l1 6= l2, α1, α2 ∈ R

fix, and ψ = α1 tr(ql1) + α2 tr(ql2)−E[α1 tr(ql1) + α2 tr(ql2)] respectively. In order to be able to apply

Theorem 2.1 and a Taylor expansion in two variables, we argue as in the proof of Lemma 2.3 that for

c > 0 we can find a η = η(c) > 0 such that t − κ s
N (α1el1 + α2el2) ∈ Bη,c for every κ ∈ [0, 1] and N

sufficiently large. With the new potential Vt− s
N

(α1el1
+α2el2

) = Vt − s
N (α1ql1 + α2ql2), we find that

E
[
es(α1trql1+α2trql2 )

]
= ZNVt− s

N
(α1el1

+α2el2
)

(
ZNVt

)−1
. (2.8)

Centering ψ, we need to calculate E[α1trql1 + α2trql2 ]. As above, the following holds,

E[α1trql1 + α2trql2 ] = − 1
N

(
α1

∂

∂tl1
logZNVt

+ α2
∂

∂tl2
logZNVt

)
. (2.9)
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The moment generating function now turns out to be (via Theorem 2.1)

E
[
esψ
]

(2.8)
=

ZNVt− s
N

(α1el1
+α2el2

)

ZNVt

exp

{
s

N

2∑
i=1

αi
∂

∂tli
logZNVt

}

(2.9)
= exp

{
N2

(
F 0
(
t− s

N
(α1el1 + α2el2)

)
− F 0(t) +

s

N

2∑
i=1

αi
∂

∂tli
F 0(t)

)

+ F 1
(
t− s

N
(α1el1 + α2el2)

)
− F 1(t) +

s

N

2∑
i=1

αi
∂

∂tli
F 1(t) + o(1)

}
.

Hence we obtain

E
[
esψ
]

= exp

s22
2∑

i,j=1

αiαj
∂2

∂tli∂tlj
F 0(ξN ) +O

(
1
N2

) , (2.10)

and therefore

lim
N→∞

E
[
esψ
]

= exp

s22
2∑

i,j=1

αiαj
∂2

∂tli∂tlj
F 0(t)

 .

Here, we used the Taylor expansion in two variables and ξN = t − κ s
N (α1el1 + α2el2), for a

κ ∈ (0, 1). Having thus obtained the CLT for ψ under µNVt
, we can use the expansion (2.10)

to obtain the MDP for 1
Nγψ under µNVt

, where γ ∈ (0, 1), with speed N2γ and rate function

I(x) = x2

2

(∑2
i,j=1 αiαj

∂2

∂tli∂tlj
F 0(t)

)−1

via the Gärtner-Ellis approach:

lim
N→∞

1
N2γ

log E
[
exp

{
sNγψ

}]
= lim

N→∞

1
N2γ

N2

2

(
sNγ

N

)2
 2∑
i,j=1

αiαj
∂2

∂tli∂tlj
F 0(ξN ) + o(1)


=

s2

2

2∑
i,j=1

αiαj
∂2

∂tli∂tlj
F 0(t),

since ξN = t − κ sN
γ

N (α1el1 + α2el2), with κ ∈ (0, 1) and F 0 being differentiable of any order for t

sufficiently small. Since s2

2

∑2
i,j=1 αiαj

∂2

∂tli∂tlj
F 0(t) is finite for s ∈ R, everywhere differentiable in s

and steep, we have established the MDP.

3. Discussion and Applications

Let us consider the one-matrix model m = 1 first. In this case, the results of [16] are comparable

to the expansions given in [6, Theorem 1.1]. The former results can be applied to Vt being a c-convex

polynomial with t ∈ Bη,c∩Rn. The latter results hold true for polynomials Vt such that t = (t1, . . . , tn)

lies in the region

T(T, γ) :=

t ∈ Rn | |t| ≤ T, tn > γ

n−1∑
j=1

|tj |

 . (3.1)
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To be more specific, there is a T > 0 and a γ > 0 such that for t ∈ T(T, γ) the asymptotic expansion

of logZNVt
given in [6, Theorem 1.1] is available. An analytic comparison between these two admissible

regions of parameters prompts us to claim the following :

Claim 1: If n is even and T > 0 and γ > 1 are such that T < 1
n(n−1)2(1+γ)

, it holds that

T(T, γ) ⊂ BT,c(T,γ) for some c(T, γ) > 0.

Claim 2: If n is uneven, for Vt we can find T > 0 and γ > 0, such that t ∈ T(T, γ), whereas ∀ η > 0

and ∀ c > 0 we find t 6∈ Bη,c.

In the situation of claim 1, the expansion of logZNVt
does not hold a priori as we did not choose T and

γ with respect to that condition but rather arbitrary. But we can deduce that for our choice of T and

γ as above, the expansion of logZNVt
holds for any t ∈ T(T, γ), because the potential can be shown to

be c-convex. Because of this observation, it is sometimes mentioned that the c-convexity encompasses

the condition of Ercolani and McLaughlin for T sufficiently small and γ sufficiently large, see e.g. [9].

While the first claim only holds for even n, the second claim states that for uneven n, only the

expansion of Ercolani and McLaughlin is applicable, since Vt cannot be c-convex in this situation.

Proof. (Proof of Claim 1) Let T > 0 and γ > 1 be as in claim 1. As m = 1, the potential Vt is of form

Vt(H) =
∑n

i=1 tiH
i, where H is a hermitian matrix. Therefore, tr(Vt + 1−c

2 H2) is always real.

We will deduce the existence of a c(T, γ) such that Vt is c-convex by an application of Klein’s lemma

and therefore we show that f(x) :=
∑n

i=1 tix
i+ 1−c

2 x2 is a convex function. Thus, we need to establish

the positivity of the second derivative, g(x) := f ′′(x) =
∑n

i=2 ti(i− 1)i xi−2 + 1− c ≥ 0 for any x ∈ R.

Observe, that we can find a c1(T, γ) such that g(0) = 2t2 + 1− c > 0, because of γ > 1 and T < 1
2 for

n ≥ 2.

The next case to consider is that of |x| ≥ 1. As t ∈ T(T, γ), it is obvious from (3.1) that

g(x) =
n∑
i=1

ti(i− 1)i xi−2 + 1− c >

n−1∑
i=1

(
ti(i− 1)i xi−2 + γ|ti|(n− 1)n xn−2

)
+ 1− c.

Because n is even and γ > 1, it holds for every i ≤ n that

γ|ti|(n− 1)n xn−2 =
∣∣γ|ti|(n− 1)n xn−2

∣∣ > ∣∣ti(i− 1)i xi−2
∣∣ ,

which gives g(x) > 0 for x with |x| ≥ 1.

When |x| < 1, we start with the observation that

0 ≤

∣∣∣∣∣
n−1∑
i=1

(
ti(i− 1)i xi−2 + γ|ti|(n− 1)n xn−2

)∣∣∣∣∣ < T (n− 1)2n+ γTn(n− 1)2 < 1.
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Thus, we can find a c2(T, γ) > 0 such that

g(x) >
n−1∑
i=1

(
ti(i− 1)i xi−2 + γ|ti|(n− 1)n xn−2

)
+ 1− c2(T, γ) > 0.

Hence, we choose c(T, γ) = min{c1(T, γ), c2(T, γ)} and applying Klein’s lemma yields

T(T, γ) ⊂ BT,c(T,γ).

�

Proof. (Proof of Claim 2) In case of uneven n, take e.g. the potential Vt = 2t2H2 + t3H
3. Obviously,

this potential is not c-convex (take e.g. the case N = 1, in which the matrix H reduces to one real-

valued unknown h and we immediately see that tr
(
Vt(h) + 1−c

2 h2
)

= 4t2+1−c
2 h2 + t3h

3 is not a convex

function in h for any c > 0, regardless of our choice of η > 0). Along the same lines, we see that any

potential Vt with tn 6= 0 for n uneven cannot be c-convex. �

Remark:

When using the expansion (2.1), a CLT and a MDP for the centered and properly scaled random

variable tr(ql) = tr(X l) could only be obtained if tl 6= 0. Considering the case of Vt = tnH
n, n ≥ 2,

either even or uneven, we see that the expansion can be applied to the numerator and denominator

in (2.4) even for tl with l < n: Provided that t ∈ To(T, γ), where To(T, γ) denotes the interior of

the set T(T, γ), it still holds for large N that max{tn, | sN |} < T and tn > |γ s
N |, for s ∈ N. And

once this expansion was established, the proofs can be left unchanged to yield the CLT and MDP for

the distribution of the centered and properly scaled random variable tr(X l) =
∑N

i=1 λ
l
i with l < n,

although tl = 0.

Next, we consider an example for m = 2, the random Ising model on random graphs. The Gibbs

measure of that model is given by

µNIs(dH1, dH2) =
1
ZNIs

exp
{
−N

(
tr(V 1

t1(H1)) + tr(V 2
t2(H2))− t3 tr(H1H2)

)}
µN (dH1)µN (dH2).

Here, V i
t (Hi) are convex self-adjoint polynomials depending on the parameter ti, i = 1, 2, and t3 ∈ R.

This model has been studied with regard to the first order asymptotic of the logarithmic partition

function in [7] by using large deviations techniques and the first order could be given by a variational

formula.

Choosing the parameters ti, i = 1, 2, 3, small enough guarantees that the function V 1
t1(H1)+V 2

t2(H2)−

t3H1H2 is c-convex, see also [10], and provides that the free energy can also be expanded into a
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generation function for maps. which was done in [8].

Now, we take potential functions V j
tj

of type

V j
tj

=
nj∑
i=1

tj,iH
i
j , j = 1, 2, (3.2)

and denote theN real eigenvalues of the twoN×N hermitian matricesH i
j by λj,i, j = 1, 2, i = 1, . . . , N .

Thus, we can apply Theorem 1.3 and 1.4 for small enough t for l ≤ n with tj,l 6= 0 in V j
tj

to yield a CLT

or a MDP for the sequence of distributions (µNVt
◦ ( 1

Nγ

∑n
i=1(λ

l
j,i − E[λlj,i]))

−1)N under µNIs. The CLT

and MDP can in case of small enough tj,i and t3 also be extended to hold for traces of polynomials P

of type

P (H1,H2) =
∑
k

αkH
k
1 +

∑
i

βiH
i
2 + δH1H2,

for αk, βi, δ ∈ R, where we only have to take care, that any monomial appearing in P also has a

non-vanishing parameter in its original potential function, i.e. t1,k, t2,i, t3 6= 0.

Finally, let us mention two models for general m, which are the chain model (see [14]) and the q-Potts

model (see e.g. [18]), for which the MDP and CLT can be applied. The potentials V are given by

V (H1, . . . ,Hm) =
m∑
i=1

V i
t1,i

(Hi)−
m∑
i=2

t2,i(Hi−1Hi),

and

V (H1, . . . ,Hm) =
m∑
i=1

V i
t1,i

(Hi)−
m∑
i=2

t2,i(H1Hi),

where the V i
t are convex self-adjoint polynomials with parameters t1,i, i = 1, . . . ,m small enough. As

in the Ising model on random graphs, a MDP and a CLT can be established for polynomials, which

consist of monomials appearing in the corresponding potentials.
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