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Mean Field Models

Main example, the Ising model in mean field

Definition 1. Take as probability space ΩN = {−1,1}N . The Gibbs distribution
of the Curie-Weiss model at inverse temperature β is given by

µβ,N(σ1, . . . , σN) =
1

Zβ,N
exp

 β

2N

∑
1≤i,j≤N

σiσj


=

1

Zβ,N
exp

Nβ
2

 1

N

∑
1≤i≤N

σi

2


Exercise 2. Is µβ,N a compatible family of measures?

As usual we want to understand a large system. Let us put on a short-sighted
view, and consider only the marginal distribution on a fixed finite number k of
components, when N gets large. So a prototypical question is:

Question 3. What is µβ,N(σ1, . . . , σk) for large N?
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Mean Field Models

This has an answer:

THEOREM 4. limN↑∞ µβ,N(σ1, . . . , σk) =
(

1
2

)k
iff β ≤ 1.

For β > 1 one has limN↑∞ µβ,N(σ1, . . . , σk) = 1
2

[∏k
i=1

eβm
∗σi

2 cosh(βm∗)+
∏k
i=1

e−βm
∗σi

2 cosh(βm∗)

]
where m∗ is the biggest solution to the equation m∗ = tanhβm∗.

This signifies so-called ferromagnetic order, or symmetry breaking.

Exercise 5. Which symmetries does the measure µβ,N possess?
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Mean Field Models

We can extend this definition of a mean-field model to the following set-up.

Definition 6. Suppose that F : [−1,1] 7→ R is a continuous function, bounded
below. Then the Curie-Weiss model with Hamiltonian NF (m) is given by

µF,N(σ1, . . . , σN) =
1

ZF,N
exp

−NF
 1

N

∑
1≤i≤N

σi


Same question. Note again that the measure is exchangeable, that is permuta-
tion invariant, in the following sense.

Definition 7. A probability measure µ(σ1, . . . , σN) is called exchangeable if

µ(σ1, . . . , σN) = µ(σπ(1), . . . , σπ(N))

for all permutations π.
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Relative entropy and convergence to equilibrium of finite state Markov chains

Definition 8. Let π, α be two probability measures on the finite state space E.
Then

S(π|α) =
∑
x∈E

π(x) log
π(x)

α(x)

is called the relative entropy.

Note that we can rewrite in the form

S(π|α) =
∑
x∈E

α(x)
[
π(x)

α(x)
log

π(x)

α(x)
−
π(x)

α(x)
+ 1

]

=:
∑
x∈E

α(x)ψ
(
π(x)

α(x)

)
Looking at the graph of the function ψ(x) = x logx − x + 1 we see that S is
non-negative and zero if and only if π(x) = α(x) for all x.
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Relative entropy and convergence to equilibrium of finite state Markov chains

THEOREM 9. (Georgii Theorem 3.A3). For a strictly postive stochastic matrix
M and the unique probability vector α such that αM = α we have

lim
n↑∞

Mn(x, y) = α(y)

Proof: The idea of the proof is to show that, for all π 6= α the relative entropy
strictly decreases under application of M , and use this to deduce that πMn

actually converges to α.
In order to show S(πM |α) < S(α) we use Jensen’s inequality.
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Relative entropy and convergence to equilibrium of finite state Markov chains

A convex function and a probability measure can be made to appear in the
representation of the relative entropy in the following way:

S(πM |α) =
∑
x

α(x)ψ
(
πM(x)

α(x)

)
=
∑
x

α(x)ψ
(∑

y

π(y)M(y, x)
1

α(x)

)

=
∑
x

α(x)ψ
(∑

y

α(y)M(y, x)
1

α(x)

π(y)

α(y)

)
Note that

∑
y α(y)M(y, x) 1

α(x)
= 1 because of invariance of α.

In fact, we note in passing that M ′(x, y) := α(y)M(y, x) 1
α(x)

is the transition
matrix for the time-reversed chain, i.e. M ′(x, y) = µM(σ(0)=y,σ(1)=x)

µM(σ(1)=x)
.

Oggebbio 30 August 2010 8(119)



Relative entropy and convergence to equilibrium of finite state Markov chains

So, with Jensen we have from here∑
x

α(x)ψ
(∑

y

α(y)M(y, x)
1

α(x)

π(y)

α(y)

)

<
∑
x

α(x)
∑
y

α(y)M(y, x)
1

α(x)
ψ

(
π(y)

α(y)

)

=
∑
y

α(y)ψ
(
π(y)

α(y)

)
= S(π|α)

αMn can not stay at a finite distance to α, by compactness:
Consider the set of probability vectors Kε = {π,

∑
y |π(y) − α(y)| ≥ ε} which

keep a finite distance ε to α. In order to show convergence, we must show that
αMn exits Kε after a finite time. But suppose it spends an infinite time in Kε.
Put δ = infπ∈Kε(S(π|α) − S(πM |α)). Then S(π|α) ≥ δ∞ = ∞ to begin with
which is a contradiction, because every probability vector π has a finite relative
entropy w.r.t. α, if α(x) > 0 for all x ∈ E. �
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Relative entropy and convergence to equilibrium of finite state Markov chains

relative entropy= Lyapunov function

A sophisticated extension of the argument can be used to prove a relation be-
tween the invariant measures of a Markov dynamics in infinite volume and the
notion of Gibbs measures in the infinite volume (Stroock, Fritz, . . . )
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Relative entropy and convergence to equilibrium of finite state Markov chains

Exercise 10. Prove that S(µ|ν) is a convex function jointly in the pair (µ, ν).

Exercise 11. Take a product space E × E′ with two joint measures K,K ′.
Denote by K1,K ′1 the marginals on the first coordinate. Prove or disprove
S(K1,K ′1) ≤ S(K,K ′).

Exercise 12. Is the symmetrized entropyDs(µ, ν) := S(µ|ν)+S(ν|µ) a metric?
Hint: Check the Bernoulli-case, write D̄s(p, q) := Ds(µp, µq) where µp is the
measure with µp(+1) = p, µp(−1) = 1− p.

Oggebbio 30 August 2010 11(119)



Remarks about entropy

Definition 13. Let α be a probability measures on the finite state space E. Then

H(α) = −
∑
x∈E

α(x) logα(x) ≥ 0

is called the entropy of α, where it is assumed that 0 log 0 := 0.

Entropy can be seen as a measure of uncertainty of α.
Indeed, if α(x) is a Dirac measure (i.e. α(x) = 1x=x0 for a particular value
x0 ∈ E, it vanishes. If α(x) = α0(x) := 1

|E| is the equidistribution, then we have

H(α0) = log |E|

S(π|α0) = −H(π) + log |E|.
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More about entropy-Sanov’s Theorem

Let us take ν a probability measure on the finite state space E, EntropyH(ν)

Boltzmann: Entropy is, asympototically for large n, equal to 1
n

log of the number
of microstates associated to a given macrostate.

The role of the macrostate is ν. The microstates are the elements in the set

Ω(ν) := {ω ∈ En|Ln(ω) = ν} = L−1
n (ν)

where Ln(ω) = 1
n

∑n
i=1 δωi is the empirical distribution associated to ω.

For nν(x) =: k(x) to be integer-valued, have multinomial coefficient

|Ω(ν)| =
n!∏

x∈E k(x)!

This is the number of microstates ω compatible with ν.

Lemma 14. For a product measure µ, the µ-probability to draw a particular word
ω ∈ Ω(ν) that is compatible with ν is

µ(ω) = exp
(
−n(H(ν) + S(ν|µ))

)
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More about entropy-Sanov’s Theorem

Proof:
µ(ω) = µ(ω1) . . . µ(ωn)

=
∏
x∈E

µ(x)k(x) = exp
∑
x

k(x) logµ(x)

= expn
∑
x

ν(x) logµ(x)

= exp
(
n(
∑
x

ν(x) log
µ(x)

ν(x)
+
∑
x

ν(x) log ν(x))
)

�
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More about entropy-Sanov’s Theorem

Connection to Boltzmann: entropy is one over n times log of the number of
microstates corresponding to one macrostate, up to a correction factor which is
polynomial in the size of the system:

Lemma 15. If nν(x) is integer-valued,

(n+ 1)−|E|enH(ν) ≤ |Ω(ν)| ≤ enH(ν)
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More about entropy-Sanov’s Theorem

Proof: A possible proof follows from Stirling’s formula. In our proof we follow
Dembo Zeitouni book, which uses no computation.

The upper bound: Take an ω ∈ Ω(ν)

1 ≥ ν(Ω(ν)) = |Ω(ν)|ν(ω) = |Ω(ν)|e−n(H(ν))+H(ν|ν) = |Ω(ν)|e−nH(ν)

The lower bound: This will follow by the intuitive statement that

ν(Ω(ν ′)) ≤ ν(Ω(ν))

Indeed, it should be less probable to see a ν ′-like state under ν than to see a
ν-like state. If we assume this we conclude that

1 =
∑
ν′
ν(Ω(ν ′)) ≤ (n+ 1)|E|ν(Ω(ν)) = (n+ 1)|E||Ω(ν)|e−nH(ν)

since the number of empirical measures with alphabet E of size n is bounded
by (n+ 1)|E|.
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More about entropy-Sanov’s Theorem

Assume for simplicity that all ν ′(x) are strictly positive and put k′(x) = nν(x).
Then,

ν(Ω(ν))

ν(Ω(ν ′))
=
|Ω(ν)|

∏
x ν(x)k(x)

|Ω(ν ′)|
∏
x ν(x)k′(x)

=
∏
x

1

k(x)!

k′(x)!

1
ν(x)k(x)−k′(x)

Use the fact that k!′

k!
≥ kk′−k. This gives the lower bound∏

x

(nν(x))k(x)−k′(x)ν(x)k(x)−k′(x)

= n
∑

x(k(x)−k′(x)) = 1

�
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More about entropy-Sanov’s Theorem

We can now combine the results to see the meaning of the relative entropy.

THEOREM 16. Discrete version of Sanov’s theorem. If nν(x) is integer valued
we have the upper and lower large deviation bounds

(n+ 1)−|E|e−nS(µ|ν) ≤ µ(Ω(ν)) = µ(ω : Ln(ω) = ν) ≤ e−nS(µ|ν)

Proof: Pick an ων ∈ Ω(ν) and write

µ(Ω(ν)) = µ(ων)|Ω(ν)| = e−n(H(ν)+S(µ|ν))|Ω(ν)|

and use the expression on the size of Ω(ν) in terms of entropy. �

Oggebbio 30 August 2010 18(119)



More about entropy-Sanov’s Theorem

As a consequence of the last finite volume statement we get Sanov’s Theorem
in the following form. It is an example of the formulation of a large deviation
principle.

THEOREM 17. Write P = {p = (p(x))x∈E, p(x) ≥ 0,
∑
x∈E p(x) = 1} for the

simplex of probability vectors, viewed a subset in R|E|+1.
Suppose that A ⊂ P , and denote by Ao its interior in P(E). Then

− inf
ν∈Ao

S(ν|µ) ≤ lim inf
n↑∞

1

n
logµ(Ln ∈ A)

≤ lim sup
n↑∞

1

n
logµ(Ln ∈ A) ≤ − inf

ν∈A
S(ν|µ)

Proof. See notes.

The interior on the l.h.s. is necessary, as examples of A = {ν0} show.
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Application of Sanov’s theorem to mean-field models

Suppose that F : P(E) 7→ R is a continuous function, bounded below, E finite.

Definition 18. The mean field model with Hamiltonian NF (ν) and a priori mea-
sure α ∈ P(E) is given by

µF,N(σ1, . . . , σN) =
1

ZF,N
exp (−NF (LN(σ)))

n∏
i=1

α(σi)

We compute

µF,N(LN(σ) = ν) =
αn(Ω(ν))e−nF (ν)∑

ν̃∈Mn
αn(Ω(ν̃))e−nF (ν̃)

Using the finite volume discrete Sanov theorem we get the bounds

µF,N(LN(σ) = ν) ≤ (N + 1)|E|
e−N(S(ν|α)+F (ν))∑

ν̃∈Mn
e−N(S(ν̃|α)+F (ν̃))

and

µF,N(LN(σ) = ν) ≥ (N + 1)−|E|
e−N(S(ν|α)+F (ν))∑

ν̃∈Mn
e−N(S(ν̃|α)+F (ν̃))
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Application of Sanov’s theorem to mean-field models

So, µF,N(LN(σ) = ·) concentrates exponentially fast around the minimizers of
ν 7→ S(ν|α) + F (ν), given α.
As a consequence we get immediately the behavior on the level of the law of
large numbers.
We write ‖π − π′‖ = 1

2

∑
a∈E |π(a)− π′(a)| = supA⊂E |π(A)− π′(A)|.

THEOREM 19. (Law of large numbers.) If ν 7→ S(ν|α) + F (ν) has a unique
minimizer ν∗ in P(E) then

lim
N↑∞

µF,N(‖LN − ν∗‖ ≥ ε) = 0.
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Application of Sanov’s theorem to mean-field models

Proof:

µF,N(‖LN − ν∗‖ ≥ ε) ≤ (N + 1)2|E|e
−N infν∈Mn:‖ν−ν∗‖≥ε(S(ν|α)+F (ν))

e−N infν∈Mn(S(ν|α)+F (ν))

Now, because of the continuity of ν 7→ S(ν|α) + F (ν) we have

lim
n↑∞

inf
ν∈Mn

(S(ν|α) + F (ν)) = S(ν∗|α) + F (ν∗)

We also have
inf

ν∈Mn:‖ν−ν∗‖≥ε
(S(ν|α) + F (ν))− (S(ν∗|α) + F (ν∗))

≥ inf
ν∈M :‖ν−ν∗‖≥ε

(S(ν|α) + F (ν))− (S(ν∗|α) + F (ν∗))

≥ δ = δ(ε) > 0

since {ν ∈M : ‖ν − ν∗‖ ≥ ε} is compact �
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The behavior of the empirical distribution when there is more than one minimizer

An analogy of the previous LLN is as follows.

THEOREM 20. (”Law of large numbers”.) Denote by M∗ ⊂ P(E) the set of
minimizers of the map ν 7→ S(ν|α) + F (ν). Suppose that M∗ is a finite set.

1. Then
lim
N↑∞

µF,N( inf
ν∗∈M∗

‖LN − ν∗‖ ≥ ε) = 0.

2. If there is moreover a group T acting as transformations τ : P(E) 7→ P(E)
for τ ∈ T which preserves the rate function, S(ν|α) + F (ν) = S(τν|α) +
F (τν), and M∗ = {τν∗, τ ∈ T} then we have the symmetric expression

lim
N↑∞

µF,N(G(LN)) =
1

|M∗|
∑

ν∗∈M∗
G(δν∗)

for all bounded continuous G on P(E).
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Standard Curie Weiss Ising model

THEOREM 21. For the standard Curie Weiss Ising model we have

1.
lim
N↑∞

µβ,N(‖LN − ν0‖ ≥ ε) = 0

iff β ≤ 1.

2. For β > 1 one has

lim
N↑∞

µβ,N(‖LN − νsm∗‖ ≤ ε) =
1

2
for s = ±1 where m∗ is the biggest solution to the equation m∗ = tanhβm∗,

νm =
1 +m

2
δ+ +

1−m
2

δ−

.

Proof: We have

Hβ(νm) + S(νm|m0) = −
βm2

2
+

1 +m

2
log(1 +m) +

1−m
2

log(1−m)

Solving the minimization problem over m ∈ (−1,1) leads to the answer. �
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An Example: The mean-field Potts model

For a positive integer q, the Gibbs measure µNq,β for the q-state Potts model on
the complete graph with N vertices at inverse temperature β ≥ 0, is the proba-
bility measure on {1, . . . , q}N which to each σ ∈ {1, . . . , q}N assigns probability

µNq,β(σ1, . . . , σn) =
1

ZN
q,β

exp

(
β

2

q∑
x=1

LN(x)2

)

Here ZN
q,β is the normalizing constant.
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An Example: The mean-field Potts model

THEOREM 22. (Ellis, Wang 1990) Assume that q ≥ 3, and define

βc(q) :=
2(q − 1)

q − 2
log(q − 1).

Then we have the weak limit

lim
N↑∞

µq,β

(
LN ∈ ·

)

=


δ1
q (1,1,...,1), if β < βc(q)

1
q

∑q
ν=1 δu(β,q) eν+1−u(β,q)

q (1,1,...,1)
, if β > βc(q)

λ0(q)δ1
q (1,1,...,1) + 1−λ0(q)

q

∑q
ν=1 δu(βc(q),q) eν+1−u(βc(q),q)

q (1,1,...,1)
if β = βc(q) ,

where ei is the unit vector in the i’th coordinate direction of Rq.
The quantity u(β, q) is well defined for β ≥ βc(q). It is the largest solution of the
mean field equation

u =
1− e−βu

1 + (q − 1)e−βu
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An Example: The mean-field Potts model

u(β, q) is strictly increasing in β, and we have u(q, βc(q)) = q−2
q−1

. The constant
appearing at the critical point obeys the strict inequality 0 < λ0(q) < 1.

u(β, q) plays the role of an order parameter

The Ising model q = 2 can be recovered from the theorem by taking the formal
limit q ↓ 2.
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An Example: The mean-field Potts model

Suppose that α(i) = α(2) for i = 2, . . . , q. Suppose that π(i) = π(2) for
i = 2, . . . , q. Put u = π(1)− π(2).
Then π(1) = π̄u(1) := 1+u(q−1)

q
, π(i) := π̄u(i) = 1−u

q
for i = 2, . . . , q and we

are left with
1− u

1 + u(q − 1)
=
α(2)

α(1)
exp(−βu)

or equivalently

u =
1− α(2)

α(1)
e−βu

1 + (q − 1)α(2)
α(1)

e−βu
=: ψβ,q(u)

This allows to treat the Potts model in the case where the particular value 1
is singled out, under the assumption that the minimizer satisfies π(i) = π(2).
This is not clear, even in the case of α being the equidistribution; it is proved in
Ellis-Wang, and we will use it.
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An Example: The mean-field Potts model

It is instructive to plot the function

Fβ,q(u) := Hβ(π̄u) + S(π̄u|α0)

for q fixed (e.g. q = 5) and different values of β increasing from 0.
The pictures below show Fβ,q(u) as a function of u for q = 5 when β is in-
creased. We see first a fold bifurcation happening where a second minimum is
produced, then we see the first order transition when the two minima are equal-
depth. Increasing further β the positive minimum will become even deeper and
stay the absolute minimizer.
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An Example: The mean-field Potts model
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Large system limits of finite-dimensional marginals of mean-field models

Let us rewrite
µF,n(σ(1) = ω(1), . . . , σ(k) = ω(k))

µF,n(σ(1) = ω′(1), . . . , σ(k) = ω′(k))

=

∏k
i=1α(ωi)

∑
νn−k α

n−k(Ω(νn−k))e−nF (knLk(ω)+n−k
n νn−k)∏k

i=1α(ω′i)
∑
νn−k α

n−k(Ω(νn−k))e−nF (knLk(ω′)+n−k
n νn−k)

This can be rewritten as

∏k
i=1α(ωi)

∑
νn−k α

n−k(Ω(νn−k))

[
e
−n
[
F (knLk(ω)+n−k

n νn−k)−F (νn−k)

]]
e−nF (νn−k)∑

νn−k α
n−k(Ω(νn−k))e−nF (νn−k)

the same expression with ω′ replacing ω
Let us introduce the measure

ρF,n,k(ν
n−k) :=

αn−k(Ω(νn−k))e−nF (νn−k)∑
ν̃n−k α

n−k(Ω(ν̃n−k))e−nF (ν̃n−k)
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Large system limits of finite-dimensional marginals of mean-field models

Definition 23. F : P(E) 7→ R is called differentiable if, for all α ∈ P(E) there is
a linear map dFα : T (P(E)) 7→ R on the tangent space
T (P(E)) = R{α′ − α|α, α′ ∈ P(E)} such that

F (α′) = F (α) + dFα(α′ − α) + ‖α′ − α‖r(α′, α)

where α′ 7→ r(α′, α) is continuous at α′ = α with r(α, α) = 0.

The tangent space

T (P(E)) = {(π(x)x∈E|
∑
x

π(x) = 0}

is the space of signed measures with total mass 0.
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Large system limits of finite-dimensional marginals of mean-field models

Suppose that the Hamiltonian F is continuously differentiable.
Then, uniformly in α, α′ we have

sup
α,α′
|F (α+ p(α′ − α))− F (α)− p dFα(α′ − α)| ≤ Cpr(p)

where r(p) ↓ 0 with p ↓ 0. The uniformity in α, α′ follows by the compactness of
P(E).
Then

|F (
k

n
Lk(ω) +

n− k
n

νn−k)− F (νn−k)− dFνn−k
k

n

(
Lk(ω)− νn−k

)
| ≤ C

k

n
r

(
k

n

)
Hence

|nF (
k

n
Lk(ω) +

n− k
n

νn−k)− nF (νn−k)−
k∑
i=1

dFνn−k(δωi − ν
n−k)| ≤ Ckr

(
k

n

)
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Large system limits of finite-dimensional marginals of mean-field models

This gives
µF,n(σ(1) = ω(1), . . . , σ(k) = ω(k))

µF,n(σ(1) = ω′(1), . . . , σ(k) = ω′(k))

≤ e
2Ckr

(
k
n

)∏k
i=1α(ωi)

∑
νn−k ρF,n,k(ν

n−k)
∏k
i=1 e

−dF
νn−k(δωi−ν

n−k)

the same with ω′ replacing ω
If µ 7→ S(µ|α) + F (µ) has a unique minimizer µ∗ we have that, on continuous
test-functions,

ρF,n,k → δµ∗
F

(To take care of the difference between n−k and n use a suitable normalization
trick and put in what we know already!) This implies under the hypothesis that
µ 7→ S(µ|α) + F (µ) has a unique minimizer µ∗ we have

µF,n(σ(1) = ω(1), . . . , σ(k) = ω(k))

µF,n(σ(1) = ω′(1), . . . , σ(k) = ω′(k))

→
∏k
i=1α(ωi)e

−dFµ∗
F

(δωi−µ
∗
F

)

the same with ω′ replacing ω
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Large system limits of finite-dimensional marginals of mean-field models

The measures appearing on the right hand side are formed with the following
kernels.
Definition 24. Assume that F : P(E) 7→ R is a real-valued function which is
differentiable. Call the kernels

γF(a|µ) :=
e−dFµ(δa−µ)α(a)∑
b∈E e

−dFµ(δb−µ)α(b)

=
1

1 +
∑
b∈E,b 6=a e

−dFµ(δb−δa)α(b)
α(a)

the associated mean-field kernel.
We have just proved the following Theorem.
THEOREM 25. If µ 7→ S(µ|α) + F (µ) has a unique minimizer µ∗ then, for fixed
k, the marginals converge to the product measures given by the associated
kernels, that is

lim
n↑∞

µF,n

(
σ(1) = ω(1), . . . , σ(k) = ω(k)

)
=

k∏
i=1

γF(ω(i)|µ∗)
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Local convergence

metric in the space of sequences in Ω = EN ≡ E∞:

d(σ, σ′) =
∞∑
i=1

2−i1σ(i) 6=σ′(i)

metric on the space of probability measures µ, µ′ ∈ P(E∞) by

d(µ, µ′) =
∞∑
i=1

2−i‖µ− µ′‖i

where
‖µ− µ′‖n

:=
1

2

∑
(ω(1),...,ω(n))∈En

|µ(ω(1), . . . , ω(n))− µ′(ω(1), . . . , ω(n))|

Oggebbio 30 August 2010 36(119)



Local convergence

With the metric d for measures on Ω we can reformulate the above statement
as

lim
n↑∞

d

(
µF,n,

∞∏
i=1

γ(·|µ∗)
)

= 0

As we did for the distribution of the empirical distribution we want to formulate
the analogue to the situation of non-unique minimizers.
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Local convergence

THEOREM 26. Denote by M∗ ⊂ P(E) the set of minimizers of the map ν 7→
S(ν|α) + F (ν). Suppose that M∗ is a finite set.
Denote by

G(F ) := {
∑
ν∈M∗

pν
∞∏
i=1

γ(·|ν), p ∈ P(M∗)}

Then we have
lim
N↑∞

d(µF,N ,G(F )) = 0

If there is a group T acting as transformations τ : P(E) 7→ P(E) for τ ∈ T

which preserves the rate function, S(ν|α) + F (ν) = S(τν|α) + F (τν), and
M∗ = {τν∗, τ ∈ T} then we have the symmetric expression

lim
n↑∞

µF,n =
1

|M∗|
∑
ν∈M∗

∞∏
i=1

γ(·|ν)
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Outline 2

On metastates, visibility and invisibility

(1) Metastates as empirical averages

(2) Metastates obtained by conditioning

(3) Examples

(4) Visibility vs. Invisibility in mean field models

with: Giulio Iacobelli
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Metastates in random spin models

Lattice spin models with a quenched random Hamiltonian, examples
Edwards-Anderson spinglass

H = −
∑
〈i,j〉

Ji,jσiσj

Spins: σi ∈ {1,−1}
Random couplings: Ji,j ∼ N (0,1), i.i.d.
Random field Ising model:

H = −
∑
〈i,j〉

σiσj − ε
∑
i

ηiσi

Random fields: ηi = ±1 with equal probability, i.i.d.
The metastate is a concept to capture the asymptotic volume-dependence of
the Gibbs states

”µ(σ) =
e−βH(σ)

Z
”
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Disordered systems

Quenched (fixed) randomness η = (ηi)i∈Zd.
Probability distribution P(dη)

Infinite volume spin configuration σ = (σi)i∈Zd

Infinite volume Hamiltonian Hη(σ) (given in terms of an interaction Φη)

Fixing a boundary condition σ̄, define the finite-volume Gibbs states

µσ̄Λ[η](dσ)

in the finite volume Λ ⊂ Zd

restricting the terms of the Hamiltonian to Λ = Λn = [−n, n]d
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Disordered systems

Common for translation-invariant systems:
to have convergence of the finite-volume states

µσ̄Λn[η = 0](dσ)→ µσ̄(dσ)

as n gets large

Common for disordered systems:
not to have convergence of the finite-volume states:

µσ̄Λn[η](dσ)

might have many cluster points when several Gibbs measures are available
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The Newman-Stein metastate

Fix disorder η. Look at volume sequence

n 7→ µn[η]

Look at the empirical average (”histogramm”)

κN[η] :=
1

N

N∑
n=1

δµn[η]

Def. Suppose the following limit exists in the sense of local topologies

κ[η] := lim
N↑∞

κN[η]

for a.e. realization η. Then it is is called an
Newman-Stein metastate or empirical metastate.

Problem: It might depend on subsequence.
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The Aizenman-Wehr (or conditional) metastate (1990)

Look at the probability distribution of

(µn[η], η)

under the governing measure P of the disorder variable

Def. Suppose that a limit exists for this random pair in the sense of weak
convergence.
Call the resulting limiting distribution K(dµ, dη)

Then the conditional measure

κAW[η](dµ) := K(dµ|η)

is called Aizenman-Wehr or conditional metastate.

Existence of the limit K is guaranteed (only) for subsequences of n’s
independence of the limit of subsequence is not proved in general
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The connection between both notions

Theorem. (Newman Stein 97)
Take sufficiently sparse sequences nk, k = 1,2, . . . of the subsequence of n’s
in the construction of the Aizenman-Wehr metastate κAW[η].
Then, for sufficiently sparse subsequences Nl, the corresponding Newman-
Stein metastate converges to the Aizenman-Wehr metastate:

lim
l↑∞

1

Nl

Nl∑
k=1

δµnk[η] = κAW[η]
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Lattice and Mean-field examples

Bovier book: Statistical mechanics of disordered systems

Bovier, Gayrard: Hopfield with many patterns and infinitely many Gibbs mea-
sures

van Enter, Bovier, Niederhauser: Hopfield model with Gaussian fields
(continuous symmetry)

van Enter, Netocny, Schaap: Ising ferromagnet on lattice with random boundary
conditions

Arguin, Damron, Newman, Stein (2009): ”Metastate-version” of uniqueness of
groundstate for lattice-spinglass in 2 dimensions
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Lattice and Mean-field examples

Theorem. Arguin, Damron, Newman, Stein (2009)

H = −
∑
〈i,j〉

Ji,jσiσj

σi ± 1

Ji,j ∼ N (0, σ2)

Denote α(L)
J = ±σ(L)

J the ground state pair in a box of height L, width 2L with
base on the x-axis, with free boundary conditions in vertical directions, periodic
in horizontal directions.
Take any two distributional subsequence limits of the random pair (J, α(L)

J ),

denoted by κ∗(dJ, dα), κ̄∗(dJ, dα).

Then for, P- a.e. J with κ∗(dα|J)× κ̄∗(dα′|J)-probability one has α = α′.

(Strengthening of Newman, Stein CMP 2001)
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Subsequences of n’s are really necessary

Mean-Field Random Field Ising Model

µn[η] ((σi)i=1,...,n) =
1

Zn[η]
exp

 β

2n

∑
1≤i,j≤n

σiσj + βε
∑

1≤i≤n
ηiσi


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Subsequences of n’s are really necessary

Theorem. (Külske 97)

lim
N↑∞

1

N

N∑
n=1

F (µn[η]) =law n∞F
(
µ+
∞[η]

)
+ (1− n∞)F

(
µ−∞[η]

)
where n∞ is a ‘fresh’ random variable, independent of η on the r.h.s., with
arcsine-distribution (that is P [n∞ < x] = 2

π
arcsin

√
x).

If nk are chosen sufficiently sparse, the Newman-Stein metastate is given by
1
2
F
(
µ+
∞[η]

)
+ 1

2
F (µ−∞[η]), for almost every realization of η.
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Subsequences of n’s are really necessary

Floris Takens:
Dynamical systems examples of low dimensional systems with
”historic behavior”, i.e.

1
T

∫ T
0 δγ(t)dt does not converge for a flow γ(t) ∈ R2

oscillating between two attractors, slower and slower
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Disordered mean-field models: Ingredients

Spin variables: σ(i) taking values in a finite set E
Disorder variable: η(i) taking values in a finite set E′

Sites: i ∈ {1,2, . . . , n}

P(E) = {set of probability measures on E}

= {(p(a))a∈E : p(a) ≥ 0,
∑
a∈E

p(a) = 1}

Ln = empirical distribution =
1

n

n∑
i=1

δσ(i) ∈ P(E)

F : P(E)→ R,
twice continuously differentiable.

Local a priori measures α[b] ∈ P(E)

for any possible type of the disorder b ∈ E′.
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Disordered mean-field models: Ingredients

Mean-field interaction F
A priori measures α = (α[b])b∈E′

Disorder distribution π ∈ P(E′)

Definition 27. The disorder-dependent finite-volume Gibbs measures are

µF,n[η(1), . . . , η(n)](σ(1) = ω(1), . . . , σ(n) = ω(n))

=
1

ZF,n[η(1), . . . , η(n)]
exp (−nF (Lωn))

n∏
i=1

α[ηi](ωi)

Frozen disorder: η(i) ∼ π i.i.d. over sites i
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Disordered mean-field models: The Aizenman-Wehr metastate

Definition 28. Assume that, for every bounded continuousG : P(E∞)×(E′)∞ →
R the limit

lim
n↑∞

∫
P(dη)G(µn[η], η) =

∫
J(dµ, dη)G(µ, η)

exists. Then the conditional distribution κ[η](dµ) := J(dµ|η) is called the AW-
metastate on the level of the states.
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Notations for empirical distributions

Volume of b-like sites, given η:

Λn(b) = {i ∈ {1,2, . . . , n}; η(i) = b}
Frequency of the b-like sites:

π̂n(b) =
|Λn(b)|
n

empirical spin-distribution on the b-like sites:

L̂n(b) =
1

|Λn(b)|
∑

i∈Λn(b)

δσ(i)

vector of empirical distributions:

L̂n = (L̂n(b))b∈E′

total empirical spin-distribution

Ln =
∑
b∈E′

π̂n(b)L̂n(b)
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Non-Degeneracy Assumptions 1 and 2

Definition 29. Consider the free energy minimization problem

ν̂ 7→ Φ[π](ν̂)

on P(E)E
′, with the free energy functional

Φ : P(E′)× P(E)|E
′| → R

Φ[π̂](ν̂) = F

∑
b∈E′

π̂(b)ν̂(b)

+
∑
b

π̂(b)S(ν̂(b)|α[b])

where S(p1|p2) =
∑
a∈E p1(a) log p1(a)

p2(a)
is the relative entropy.

Non-degeneracy condition 1:
ν̂ 7→ Φ[π](ν̂) has a finite set of minimizers M∗ = M∗(F, α, π) with positive
curvature.
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Non-Degeneracy Assumptions 1 and 2

Let ν̂j be a fixed element in M∗. Let us consider the linearization of the free
energy functional at the fixed minimizers as a function of π̃ around π, which
reads

Φ[π̃](ν̂j)−Φ[π](ν̂j) = −Bj[π̃ − π] + o(‖π̃ − π‖)

where

Bj[π̃ − π] = −
(
dFπ·ν̂j

(∑
b

(π̃(b)− π(b))ν̂j(b)

)
+
∑
b

[π̃(b)− π(b)]S(ν̂j(b)|α[b])

)

This defines an affine function on the tangent space of field type measures
TP(E′) (i.e. vectors which sum up to zero, isomorphic to R|E′|−1), for any j.
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Non-Degeneracy Assumptions 1 and 2

Non-degeneracy condition 2:
No different minimizers j, j′ have the same Bj = Bj′

Definition 30. Call Bj the stability vector of ν̂j and call

Rj := {x ∈ TP(E′), 〈x,Bj〉 > max
k 6=j
〈x,Bk〉}

stability region of ν̂j.

Lemma 1. Condition 2 implies that Lebesgue
((⋃

j=1,...,kRj

)c)
= 0

Lemma 2. Rj 6= ∅ ⇔ Bj ∈ ex(Hconv{B1, . . . , Bk}).

Oggebbio 30 August 2010 57(119)



Non-Degeneracy Assumptions 1 and 2

Proof of Lemma 1. If j 7→ 〈x,Bj〉 has no unique maximizer for fixed x, then
∃j 6= k such that 〈x,Bj −Bk〉 = 0.

For fixed j, k this set of x’s is a hyperplane (hence a measure zero set)
since Bj 6= Bk.
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Non-Degeneracy Assumptions 1 and 2

Proof of Lemma 2.

”⇒ ” by contradiction.

If Bj is not extremal, then

Bj =
∑
i:i 6=j

αiBi,
k∑
i=1

αi = 1

x ∈ Rj ⇒ 〈x,Bj〉 =
∑
i

αi〈x,Bj〉 >
k∑
i=1

αi〈x,Bi〉 = 〈x,Bj〉
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Non-Degeneracy Assumptions 1 and 2

Proof of Lemma 2.

”⇐ ”

Given Bj 6∈ Hconv{B1, . . . , Bj−1, Bj+1, . . . , Bk} chose coordinates

Bj = (0, . . . ,0, Bj,d)

Bi = (B′i, Bi,d)

with Bj,d > 0 and Bi,d ≤ 0 for i 6= j.

With x = (x′, xd) ∈ Rd−1 × R

Rj = {x ∈ Rd : ∀i 6= j holds 〈x,Bj −Bi〉︸ ︷︷ ︸
〈x′,B′j−B

′
i〉+xd(Bj,d−Bi,d)

> 0}

= {x ∈ Rd : xd > max
i:i 6=j

〈x′, B′i −B′j〉
Bj,d −Bi,d

} 6= ∅

�
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Main Theorem: Visibility vs. Invisibility

THEOREM 31. (Iacobelli, Külske, JSP 2010) Assume that the model satisfies
the non-degeneracy assumptions 1 and 2. Define the weights

wj := Pπ(G ∈ Rj)

where G taking values in TP(E′) is a centered Gaussian variable with covari-
ance

Cπ(b, b′) = π(b)1b=b′ − π(b)π(b′)

Then the Aizenman-Wehr metastate on the level of the states equals

κ[η](dµ) =
k∑

j=1

wjδµj[η](dµ)

where µj[η] :=
∏∞
i=1 γ[η(i)]( · |πν̂j) with

γ[b](a|ν) =
e−dFν(a)α[b](a)∑
ā∈E e

−dFν(ā)α[b](ā)
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Main Theorem: Visibility vs. Invisibility

Def. Call
M∗∗ = {ν̂ ∈M∗ : wν̂ > 0}

the visible pure phases in the pure phases M∗.

Comment. With the bijection

B· : M
∗ → TP(E′)

ν̂ 7→ Bν̂

we have

M∗∗ = (B·)
−1
(

ex(Hconv(B·(M
∗))
)
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Main Theorem: Visibility vs. Invisibility

Corollary 32. Suppose that the system admits precisely two pure phases, i.e.
|M∗| = 2, and |E|, |E′| are finite but arbitrary.
Then the metastate is the symmetric mixture between the two, i.e.

κ[η](dµ) =
1

2
δµ1[η](dµ) +

1

2
δµ2[η](dµ)

Proof: R1 = −R2
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Main Theorem: Visibility vs. Invisibility

Corollary 33. Suppose that the random field is two-valued, i.e. |E′| = 2, and
the number of pure phases |M∗| ≥ 2 arbitrary. Then the set of visible states has
two elements and w(ν̂) = 1

2
for both elements ν̂ ∈M∗∗.

Proof: a convex set in one dimension has two extremal points.
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The metastate on the empirical spin distribution

Definition 34. Assume that, for every bounded continuous F : P(P(E)) ×
(E′)∞ the limit

lim
n↑∞

∫
P(dη)F (Ln(µn[η]), η) =

∫
K(dρ, dη)F (ρ, η)

exists. Then the conditional distribution κ̄[η](dρ) := K(dρ|η) is called the
metastate on the level of the empirical spin-distribution.

THEOREM 35. Under the two non-degeneracy conditions, we have

κ̄[η](dρ) =
k∑

j=1

wjδδπν̂j
(dρ)

for Pπ-a.e. η.
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Exploiting the mean-field equation

The minimizers of the variational problem above must satisfy the consistency
(mean-field) equations

ν̂[b](a) = γ[b](a|π · ν̂)

which are coupled over b ∈ E′. Summing over these indices one gets the mean-
field equation for the total empirical mean ν = π · ν̂ of the form

ν(a) =
∑
b∈E′

π(b)γ[b](a|ν)
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Exploiting the mean-field equation

Lemma 36. Define the function Γ̂ : P(E) → P(E)E
′ by the r.h.s. of the mean

field equation, namely

Γ̂(ν) =
(
γ[b](·|ν)

)
b∈E′

Define the function B̂ : P(E)→ TP(E′) by

B̂ν[b] = log
∑
a∈E

e−dFν(a)α[b](a)− C

C =
1

|E′|
∑
b∈E′

log
∑
a∈E

e−dFν(a)α[b](a)

Then, for all ν̂ ∈M∗ we have that

ν̂ = Γ̂(πν̂)

Bν̂ = B̂πν̂

π does not enter (but through the question which minimizer ν̂ appears.)
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Ising random-field examples

Quadratic Curie Weiss Random Field Ising model with

F (ν) = −β(ν(+)2 + ν(−)2)

Any possible local single-site measure α can be described as

α[h](σi) =
ehσi

2 coshh

Any ν = νm can be described in terms of its mean value νm(+)− νm(−) = m.
Fix E′ = supp(π) = {αh : h ∈ {h1, h2, . . . , hL}}

B̂νm =


log cosh(βm+h1)

coshh1

. . .

log cosh(βm+hL)
coshhL

− 1

L

L∑
j=1

log
cosh(βm+ hj)

coshhj

 1
. . .

1


Lemma 37. Let E′⊂R, 2 ≤ |E′| <∞. Then the map m 7→ B̂νm is injective.
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Ising random-field examples

Random-field Ising model to a non-quadratic Hamiltonian

F (ν) = G(ν(+)− ν(−))

and general local measures α = (α[h])h∈E′

mean field equation:

m =
L∑
i=1

π(hi) tanh(−G′(m) + hi)

The stability vector becomes

B̂νm[hi] := log
cosh(−G′(m) + hi)

coshhi
−

1

L

L∑
j=1

log
cosh(−G′(m) + hj)

coshhj

m 7→ B̂νm is injective if m 7→ G′(m) is injective
One can create interactions G with two minima without symmetry, by looking at
the equal-depth condition for the free energy.
There both minima would get the same weight in the metastate necessarily.
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Ising random-field examples

precisely two minimizers not related by symmetry were proved to occur (even)
for the (symmetric) model

G(m) = −
βm2

2
E = E′ = {1,−1}, asymmetric random field distribution
π(1) = 1+α

2
= 1− π(−1)

for the region R34 in phase space (Külske-LeNy CMP 2007) for a suitable choice
of α = α(β, ε) > 0.

Oggebbio 30 August 2010 70(119)



Potts random field examples

Let us take the Potts model with quadratic interaction

F (ν) = −
β

2
(ν(1)2 + · · ·+ ν(q)2)

in the presence of the local single-site measures α[b](σi) (specified below)
where we write

E′ = supp(π) = {α[b] : b ∈ {b1, b2, . . . , bL}}

Then we have for the stability vector

B̂ν =

log
∑q
a=1 e

βν(a)α[b1](a)
. . .

log
∑q
a=1 e

βν(a)α[bL](a)

− 1

L

L∑
j=1

log
q∑

a=1

eβν(a)α[bj](a)

 1
. . .

1


Let us take E ≡ E′ and π to be the equidistribution and switch to the specific
case α[b](a) = eB1b=a

eB+q−1
(random field with homogenous intensity). The kernels

become

γ[b](a|ν) =
eβν(a)+B1a=b∑
ā∈E e

βν(ā)+B1ā=b
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Potts random field examples

We will be looking at measures in νj,u ∈ P(E) of the form νj,u(j) = 1+u(q−1)
q

,
νj,u(i) = 1−u

q
for i 6= j. The stability vector for ν1,u is given by

B̂ν1,u =


q−1
q

log eβu+B+q−1
eβu+eB+q−2

−1
q

log eβu+B+q−1
eβu+eB+q−2

. . .

−1
q

log eβu+B+q−1
eβu+eB+q−2


the other ones are related by symmetry. We note that the first entry is strictly
positive while the other entries are negative (for B > 0 and u > 0).
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Potts random field examples

mean-field equation for u:

u =
eβu

eβu + eB + (q − 2)
−

1

eβu+B + (q − 1)

u = 0 is always a solution
for B = 0: mean-field equation for Potts without disorder

the non-trivial solution u is to be chosen iff Φ[π](Γ̂(νj,u)) < Φ[π](Γ̂(νj,u=0))

Φ[π](Γ̂(νj,u))−Φ[π](Γ̂(νj,u=0)

= log
eB + q − 1

eβu + eB + q − 2
+
β(q − 1)

2q
u2 +

β

q
u−

1

q
log

eβu+B + q − 1

eβu + eB + q − 2
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Potts random field examples

B = 0: first order transition at the critical inverse temperature β = 4 log 2

B takes small enough positive values: line in the space of temperature and cou-
pling strength B of an equal-depth minimum at u = 0 and a positive value of
u = u∗(β, q)

Along this line the set of Gibbs measures is strictly bigger then the set of states
which are seen under the metastate.

The Plot shows the graph of u 7→ Φ[π](Γ̂(νj,u)) for B = 0.3, q = 3, β =
4 log 2 + 0.03203 at which there is the first order transition.
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Potts random field examples

0.0 0.2 0.4 0.6 0.8 1.0
u0.000

0.002

0.004

0.006

0.008

0.010
F

κ[η](dµ) =
1

3

3∑
j=1

δµj[η]

with
µj[η] =

∞∏
i=1

γ[η(i)]( · |νj,u=u∗(β,q))

since B̂ν1,u=0 = 0 lies in the convex hull of the three others
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Sketch of Proof

Concentration of the total empirical spin vector follows from finite-volume Sanov:

µF,n[η(1), . . . , η(n)](d(Ln, πM
∗) ≥ ε)

≤
∏
b∈E′

(nπ̂n(b) + 1)2|E| exp

−n inf
ν̂∈M̂n:

d(π̂nν̂,πM∗)≥ε

Φ[π̂n](ν̂) + n inf
ν̂′∈M̂n

Φ[π̂n](ν̂ ′)


π̂n : empirical field-type distribution

This explains the importance of the spin-rate-function Φ[η](ν̂)

for not too atypical π̂n.
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Sketch of Proof

How to get weights wj?

Fluctuations of type-empirical distribution on CLT-scale:

X[1,n][η] =
1
√
n

n∑
i=1

(δηi − π)→ G

Define n-dependent good-sets Hδn
n of the realization of the randomness

Hδn
i,n :=

{
η ∈ (E′)n : X[1,n][η] ∈ Ri,δn

}
Hδn
n :=

k⋃
i=1

Hδn
i,n

where Ri,δn := {x ∈ TP(E′) : 〈x,Bi〉 −maxk 6=i〈x,Bk〉 > δn}, and
(a) δn ↓ 0, but
(b)
√
n δn ↑ ∞

(a) Get full proba of Hδn
n in the limit of n ↑ ∞.

(b) Have concentration of L̂n around a given minimizer ν̂j on Hδn
j,n.
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Sketch of Proof

Suppose F is a local function, depending onm coordinates of spins and random
fields.
Then:

lim
n↑∞

∫
Hδnj,n

Pπ(dη)F (µn[η], η) = wj

∫
(E′)m

π⊗m(dη)F
( m∏
i=1

γ[η(i)]( · |πν̂j), η
)

Productification with only local influence of randomness conditional on stability
region Rj.
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Gibbs measures

Spin variables: σ = (σx)x∈Zd ∈ EZd

E = {−1,1}, finite set, sphere, R
Interaction potential: Φ = (ΦA(σA))A⊂Zd

Hamiltonian ≡ Formal energy function: H(σ) =
∑
A:A⊂Zd ΦA(σ)

Example: H(σ) = −β
∑
<x,y> σxσy − h

∑
x σx

Finite volume Gibbs measures in volumes Λ ⊂ Zd ≡ specification:

γΛ(σΛ|σΛc) :=
exp

(
−
∑
A:A∩Λ 6=∅ΦA(σΛσΛc)

)∏
i∈Λα(σi)∑

σ̃Λ
exp

(
−
∑
A:A∩Λ 6=∅ΦA(σ̃ΛσΛc)

)∏
i∈Λα(σ̃i)

Tasks of Equilibrium Statistical Mechanics :
• Usually: Given Φ, characterize Infinite volume Gibbs measures µ:
(DLR-equation) µ(σΛ|σΛc) = γΛ(σΛ|σΛc)

• Sometimes: Given µ find Φ !
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Phase transitions

The set of Gibbs measures G(Φ) can consist of more than one point.

This we call phase transition

The extremal points of G(Φ) are called pure phases

Recall Formentin talk and note without proof:

Non-reconstructability of free boundary condition Potts measure
is equivalent to extremality of this measure in the Gibbs measures
(no information transport from infinity on the tree)
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Dobrushin’s criterion of absence of phase transitions

Definition 38. 1. Dobrushin’s interdependence matrix for the specification
γΦ is the matrix whose entries are given by

Cij(γ
Φ) = sup

ζ,η∈Ω; ζjc=ηjc
‖γi(·|ζ)− γi(·|η)‖.

2. The specification γΦ satisfies Dobrushin’s condition if it is quasilocal and
the Dobrushin constant satisfies

c(γΦ) = sup
i∈G

∑
j∈G

Cij(γ
Φ) < 1.

Dobrushin’s condition implies uniqueness of the Gibbs measure corresponding
to γΦ, see Georgii

Proposition 39. Let

sup
i∈G

∑
A∈i

(|A| − 1)δ(ΦA) < 2,

where δ(ΦA) := supσ ΦA(σ) − infw ΦA(w). Then γΦ satisfies Dobrushin’s
condition.
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Gibbsian vs non-Gibbsian measures : Hamiltonian point of view

Classic notion: A lattice measure µ is Gibbs iff exists a potential Φ s.t.

(i) Φ reproduces correct conditional probabilities (DLR)
(ii) Φ is absolutely summable, i.e.∑

A3x supσA |ΦA(σA)| <∞
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Gibbsian vs non-Gibbsian measures : Conditional Probability point of view

Notion of Gibbs measure is related to continuity of conditional probabilities
(w.r.t. product topology):

ξ a good configuration for µ

:⇔ sup
σ+,σ−
Λ:Λ⊃V

∣∣∣∣µ(σ̃x
∣∣∣ξV\xσ

+
Λ\V )− µ(σ̃x

∣∣∣ξV\xσ
−
Λ\V )

∣∣∣∣→ 0

with V ↑ Zd, for any site x ∈ Zd, for any σ̃x

Known: µ Gibbs iff every configuration is good (Kozlov)

Georgii-book: Gibbs measures and phase-transitions (1988)
van Enter, Fernandez, Sokal: Regularity properties and Pathologies
of position-space renormalization group transformations (JSP 1993)
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Decimation transformation destroys Gibbsianness

Decimation transformation on the lattice

Take µ+
β a low-temperature state on the lattice for Ising

β large, h = 0

µ′β = restriction of µβ to a sublattice

Known: µ′β is not a Gibbs measure (renormalization group pathology)
a potential with weaker summability properties (only µ′β-a.s.) exists

Proof: hard work: multiscale cluster expansions (renormalization group)

Bricmont, Kupiainen, Lefevere (98)
Maes, Redig, Shlosman, van Moffaert (2000)
Bertini, Cirillo, Olivieri (2006)
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Ising under stochastic dynamics

Initial system: Nearest neighbor Ising model µt=0 := µ+
β,h

The dynamics:
symmetric independent spin-flips:

µt(ηΛ) =
∫
µt=0(dσΛ)

∏
x∈Λ

pt(σx, ηx)

transition kernel for rate-1 flips: pt(+,+) = 1
2
(1 + e−2t)(

pt(+,+) = pt(−,−) = 1− pt(+,−) = 1− pt(−,+)
)

⇒ trivial infinite-time limiting measure (locally):

lim
t↑∞

µt =
⊗
x∈Zd

1

2

(
δ+ + δ−

)
µβ,h=0,t fails to be Gibbs for β large, t large due to ”hidden phase transitions”
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Loss and Recovery of Gibbsianness (vE-F-dH-R)

THEOREM 40.
Assume β << βd (high-temperature regime). Then:

(0) µβ,h;t is a Gibbs measure for all t > 0

Assume β >> βd (low-temperature regime). Then:

(i) µβ,h;t is a Gibbs measure for all 0 ≤ t ≤ t0(β, h)

(ii) If h > 0, then µβ,h;t is a Gibbs measure for all t ≥ t1(h)

(iii) If h = 0, then µβ,h;t is not a Gibbs measure for all t ≥ t2(β)

(iv) For d ≥ 3, if 0 < h ≤ h(β), then
µβ,h;t is not a Gibbs measure for all t3(β, h) ≤ t ≤ t4(β, h)

vE-F-dH-R prove moreover:
Results hold more generally for non-independent high-temperature dynamics
(uses expansions)
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Time-evolution of Gibbs measures

• van Enter, Fernandez, den Hollander, Redig (CMP 2002): Ising-spinflip

• Külske, Redig (PTRF 2006):
Unbounded Continuous variables under Diffusions

• Külske, LeNy (CMP 2007):
Mean-Field Ising - symmetry breaking in bad configurations

• Külske, Opoku (EJP, JMP 2008) Goodness of Gibbsianness,
Lattice vs. Meanfield

• van Enter, Ruszel (JMP 2008, SPA 2009):
Bounded Continuous variables (circle) under Diffusions

• Enter, Külske, Opoku, Ruszel (BJPS 2010):
Gibbs-non-Gibbs properties for n-vector lattice and mean-field models

• van Enter, Fernandez, den Hollander, Redig (arXiv 2010):
A large-deviation view on dynamical Gibbs-non Gibbs transitions

• Ermolaev, Külske (arXiv 2010):
Low temp. dynamics of Mean-Field Ising - periodic orbits, multiple histories
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Relation with a quenched model

pt(σx, ηx) =
ehtηxσx

2 coshht
, ht =

1

2
log

1 + e−2t

1− e−2t

Time-evolved measure

µ+
t (ηV) =

∫
µ+(dσ)

eht
∑

x∈V ηxσx

(2 coshht)
|V |

Finite-volume single-site conditional probabilities

µ+
t (η0|ηV\0) =

∫
µ+(dσ)e

ht
∑

x∈V \0 ηxσxpt(σ0, η0)∫
µ+(dσ)e

ht
∑

x∈V \0 ηxσx

‘Quenched Hamiltonian’ for fixed magnetic field configuration ηV \0
H[ηV\0](σ) = −β

∑
<x,y>

σxσy − h
∑
x

σx − ht
∑

x∈V \0
ηxσx

µ+
t (η0|ηV\0) =

∫
µ+[ηV\0](dσ0)pt(σ0, η0)

discontinuity of cond. proba. ↔ phase transition driven by η
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Sketch of (vE-F-dH-R) proof

Gibbs Regimes:

(0) β << βd (high-temperature regime):
Couplings weak⇒ µ+[ηV\0] depends only ‘locally’ (continuously) on η

(show this using Dobrushin-uniqueness)
⇒ µβ,h;t is a Gibbs measure for all t > 0

(i) 0 ≤ t ≤ t0(β, h) (small-time regime):
ht very large⇒ σx follow essentially ηx in the measure µ+[ηV\0]

(show this using Dobrushin-uniqueness)
µ+[ηV\0] depends only ‘locally’ (continuously) on η

(ii) h > 0, large times t:
ht << h⇒ µ+[ηV\0] depends only ‘locally’ (continuously) on η
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Sketch of (vE-F-dH-R) proof

Non-Gibbs Regimes:

(iii) low-temperature, large-time regime, h = 0:
Claim: ηspec = checkerboard is a bad configuration for µt

Indeed: ht small⇒ µ+[ηspec] > µ−[ηspec]

µ+[ηspec] = small perturbation around σx ≡ +µ+[ηspec
V\0 , η

±
Λ\V = ±] ≈ µ±[ηspec] around 0


(iv) low-temperature, large-time regime, h > 0 not too big:
Find ηspec such that h+ htη

spec
x = neutral on average
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Mean-Field under Dynamics

Ising spins: σi ∈ {−1,1}, sites i = 1, . . . , N

Finite volume Gibbs measures

µβ,N(σ[1,N ]) :=
exp

(
β

2N

(∑N
i=1 σi

)2
)

ZN(β)

The dynamics: Case 1: Infinite temperature, i.e. pt independent spin-flip
(same as on lattice):

µt,N(η[1,N ]) :=
∑
σ[1,N ]

µN(σ[1,N ])
N∏
i=1

pt(σi, ηi)

⇒ trivial infinite-time limiting measure:

lim
t↑∞

µt,N =
N⊗
i=1

1

2

(
δ+ + δ−

)
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Mean Field Models of Statistical Mechanics

Spin variables: σ = (σi)i=1,...,N ∈ ΩN
0

LN(σ) = 1
N

∑N
i=1 δσi = empirical distribution

Hamiltonian ≡ energy function = H(LN(σ))

ρ = probability measure on Ω0

Finite volume Gibbs measures:

µN(dσ1, . . . , dσN) =
1

ZN(H, ρ)
exp

(
−NH

(
LN(σ)

)) N∏
i=1

ρ(dσi)

µN exchangeable⇒ possible limits are mixtures of product measures (de Finetti)
non-trivial mixtures occur means there is a phase-transition
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MF-Gibbs

Definition: Call a sequence of exchangeable measures (µN)N∈N MF-Gibbs if

(i) The limiting conditional probabilities
limN↑∞ µN(dσ1|σ2, . . . , σN) = γ(dσ1|ν) with 1

N

∑N
i=2 δσi → ν

exist for all ν

(ii) ν 7→ γ(dσ1|ν) is continuous (in weak topology)

Standard-Curie-Weiss: γ(σ1|m) = eβmσ1

2 cosh(βm)
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MF-Gibbs
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MF-Gibbs

THEOREM 41.

1. If 2
3
≤ β−1 < 1 the threshold time is given by t0(β) = −1

4
log(1− β−1)

2. If 0 < β−1 < 2
3

the boundary-line has the parametrization in terms of M of
the form{(

t0(β−1)
β−1

)
,0 < β−1 <

2

3

}
=
{(

t4(M)
β−1

4 (M)

)
,0 < M <∞

}
with

t4(M) =−
1

4
log

2y3 +M(1− y2)2

2y +M(1− y2)

β−1
4 (M) =

y(2 +My)(1 + y2)

2M2y3 + 2(y + y3) +M(1 + 3y2 + y4)

where y = y(M) = tanh(M).
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MF-Gibbs

effective field depending on time :

E :=
1

2
log

1 + e−2t

1− e−2t

M = βm magnetization,
H = βh external magnetic field,
α empirical magnetization of conditioning

Potential:
Ψβ−1,E,H,α(M)

=
M2

2β
−

1 + α

2
log cosh

(
M + E +H

)
−

1− α
2

log cosh
(
M − E +H

)
Bifurcation set

B =
{

(β−1, E,H, α)|∃M ∈ R,

∂MΨβ,E,H,α(M) = 0, ∂2
MΨβ,E,H,α(M) = 0

}
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MF-Gibbs

New phenomenon: Non-Gibbs with symmetry breaking

Proof: Bifurcation analysis: Butterfly unfolding: 1,2,3 minima appearing
(related to existence of tricritical point)
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Mean-Field under Glauber-Dynamics with inverse temperature β′ 6= β

Case 2: The dynamics has temperature (β′)−1,
flip each spin σi with rate c(σi|m) where c(−|m)/c(+|m) = e2β′m

m = 1
N−1

∑N
j=2 σj is the magnetization of the conditioning

The corresponding time-evolved measure will be called µt,β,β′,N

⇒ infinite-time limiting measure has inverse temperature β′ i.e.

lim
t↑∞

µt,β,β′,N = µβ′,N

Jump process for the magnetization:
Increase (lower) the magnetization in a system of size N by 2/N with rate

e±β
′m(1∓m)

2(coshβ′m−m sinhβ′m)
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Mean-Field under Glauber-Dynamics with inverse temperature β′ 6= β

Consider the single-site conditional probabilities of the time-evolved
measure in the volume N , given by

γβ,β′,t,N(σ1|m̂N) := µβ,β′,t,N(σ1|σ[2,N ])

for any point m̂N = 1
N−1

∑N
j=2 σj.

Take N ↑ ∞ at fixed m̂ = limN↑∞ m̂N !

Definition. The time-evolved mean-field model is called Gibbs iff

γβ,β′,t(σ1|m̂) = lim
N
γβ,β′,t,N(σ1|m̂N)

exists for all m̂ and is continuous as a function of m̂.
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Mean-Field under Glauber-Dynamics with inverse temperature β′ 6= β

Picture for low-temperature dynamics
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Figure 1: Gibbs and non-Gibbs areas
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Mean-Field under Glauber-Dynamics with inverse temperature β′ 6= β

THEOREM 42. (Ermolaev, Külske arXiv:1005.0954)

1. Initial high temperature, any temperature of the dynamics.
If β−1 ≥ 1 then the time-evolved model is Gibbs for all t ≥ 0.
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Mean-Field under Glauber-Dynamics with inverse temperature β′ 6= β

2. Heating from an initial low temperature, high-temp or a low-temp dynamics.
If 0 < β−1 < min{β′−1,1} there exists a value β−1

SB(β′) (which is explicitly
computable, see below) such that

(a) If β−1
SB(β′) ≤ β−1 then

• for all 0 ≤ t ≤ tnGS(β, β′) :=
ln β′−β

1−β
4(1−β′) the time-evolved model is Gibbs.

• for all t > tnGS(β, β′) the model is not Gibbs and the time-evolved con-
ditional probabilities are discontinuous at m̂ = 0 and continuous at any
m̂ 6= 0.

(b) If 0 < β−1 < β−1
SB(β′) there exist sharp values 0 < t0(β, β′) < t1(β, β′) <

∞ such that
• for all 0 ≤ t ≤ t0(β, β′) the time-evolved model is Gibbs,
• for all t0(β, β′) < t < t1(β, β′) there exists m̂c = m̂c(β, β′; t) ∈ (0,1)

such that the limiting conditional probabilities are discontinuous at the
points ±m̂c, and continuous otherwise,

• for all t > t1(β, β′) the limiting conditional probabilities are discontinu-
ous at m̂ = 0 and continuous at any m̂ 6= 0.
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Mean-Field under Glauber-Dynamics with inverse temperature β′ 6= β

3. Cooling from initial low temperature. For β′−1 < β−1 < 1 there exists a time
threshold tper(β, β′) such that,

• for all 0 ≤ t ≤ tper(β, β′) the time-evolved model is Gibbs.
• for all t > tper(β, β′) the model is not Gibbs and the time-evolved condi-

tional probabilities are discontinuous at non-zero configurations m̂c (and
continuous at m̂ = 0).

Moreover:

4β3
SB + 12βSBβ

′ − 6β2
SB(1 + β′)− β′(3 + 3β′ − β′2) = 0

In the independent spin-flip case β′ = 0 get back β−1 = 2
3
.
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Mean-Field under Glauber-Dynamics with inverse temperature β′ 6= β

Sketch of Proof:
Use path-large deviation principle for paths of magnetization ϕ(s)

Cost ∼ e−N(−β2m
2+I(m))e−N

∫ t
0
jβ′(ϕ(s),ϕ̇(s))ds

with a β-dependent Punishment-Term coming from initial measure

Ingredient 1 Denote by Pβ′,N the law of the paths (zN(s))s∈[0,t] of the magneti-
zation for the continuous-time Markov-chain at system size N .
Then the measures Pβ′,N satisfy a large deviation principle with rate N and rate
function given by the Lagrange functional

ϕ 7→ Jβ′(ϕ) =
∫ t

0
jβ′(ϕ(s), ϕ̇(s))ds

with Lagrange density jβ′(m, v) given by
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Mean-Field under Glauber-Dynamics with inverse temperature β′ 6= β

jβ′(m, v) =
1

2

2

−

√√√√e4β′m(−1 +m)2v2 + (1 +m)2v2 − 2e2β′m (−1 +m2) (8 + v2)(
1− e2β′m(−1 +m) +m

)2
+ v log

e−2β′m
(
−1 + e2β′m(−1 +m)−m

)
4(−1 +m)


+ v log

v +

√√√√e4β′m(−1 +m)2v2 + (1 +m)2v2 − 2e2β′m (−1 +m2) (8 + v2)(
1− e2β′m(−1 +m) +m

)2


For the special important case of non-interacting dynamics β′ = 0 we have

j0(m, v) =
1

2

(
2−

√
4− 4m2 + v2 + v log

[
v +
√

4− 4m2 + v2

2− 2m

])
Proof: Approximation by Compound Poisson process
or see Feng-Kurtz-Book: LD for stochastic processes
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Mean-Field under Glauber-Dynamics with inverse temperature β′ 6= β

Consequence: Suppose the total cost function

−
β

2
m2 + I(m) + inf

ϕ(0)=m,ϕ(t)=m′

∫ t

0
jβ′(ϕ(s), ϕ̇(s))ds− Const

has a unique minimizer s 7→ m∗(s;m′, t) then

γβ,β′,t(η1|m′) =

∑
σ1=±1 e

−σ1βm
∗(0;m′,t)pt(σ1, η1;m′, t)∑

σ1,η̃1=±1 e
−σ1βm

∗(0;m′,t)pt(σ1, η̃1;m′, t)

ps(σ1, η1;m′, t) = transition probability for Markov jump process on {−1,1}
with the time-dependent generator

L(s;m′, t)f(σ1) = c(σ1,m
∗(s;m′, t))(f(−σ1)− f(σ1))
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Euler-Lagrange equations and curve of allowed initial configurations

Constrained variational problem over paths ϕ with ϕ(t) = m′

Necessary condition for an extremum:
Euler-Lagrange equation and free left-end condition of the form

d
ds
jϕ̇(ϕ(s), ϕ̇(s))− jϕ(ϕ(s), ϕ̇(s)) = 0 for all s ∈ [0, t]

jϕ̇(ϕ(s), ϕ̇(s)) +Hϕ(ϕ(s)) + Iϕ(ϕ(s))|s=0 = 0

ϕ(t) = m′
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Euler-Lagrange equations and curve of allowed initial configurations

First integral:

j(ϕ(s), ϕ̇(s))− ϕ̇(s)jϕ̇(ϕ(s), ϕ̇(s)) = C

equivalent to

ṁ = ±

√√√√C +
16e2β′m(m2 − 1)(

1− e2β′m(m− 1) +m
)2
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Euler-Lagrange equations and curve of allowed initial configurations

Β = 0.9 Β = 1.6Β = 1.2

-1.0 -0.5 0.5 1.0
m

-1.0
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0.5

1.0

dm

dt

Figure 2: Phase portrait with level curves and ACC, β′ = 3
2
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Euler-Lagrange equations and curve of allowed initial configurations

Denote the allowed initial configurations curve by m 7→ ṁ = g(m)

Call (β, β′, t,mpb) pre-bad iff there exists m0,1 6= m0,2 such that

m(t;m0,1, g(m0,1)) = m(t;m0,2, g(m0,2)) = mpb

Call (β, β′, t,mbad) bad iff the paths started at m0,1 6= m0,2

are both minimizers for the total cost

Absence of pre-bad points implies the model is Gibbs

Existence of bad points (multiple histories) implies (generically)
that the model in non-Gibbs
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Time-evolved allowed initial configurations β′ = 0

Region 2a) of non-symmetry-breaking non-Gibbsianness
2

3
= β−1

SB(β′ = 0) ≤ β−1 < 1
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Figure 3: Non-symmetry-breaking mechanism, β′ = 0, β−1 = 0.8
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Time-evolved allowed initial configurations β′ = 0

Region 2b) of symmetry-breaking non-Gibbsianness i.e. β−1 < β−1
SB(β′ = 0)

-1.0 -0.5 0.5 1.0
m

-10

-5

5

10

dm

ds

-1.0 -0.5 0.5 1.0
m

-10

-5

5

10

dm

ds

Figure 4: Symmetry-breaking mechanism, β′ = 0, β−1 = 0.4
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Time-evolved allowed initial configurations β′ = 0

Region 3 cooling from initial low-temperature. 2
3

= β′−1 < β−1 = 0.85 < 1
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Figure 5: Non-Gibbsianness by periodicity, β′−1 = 2
3
, β−1 = 0.85
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History curves
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Figure 6: Symmetric forbidden regions
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History curves
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Figure 7: Non-symmetric forbidden region
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History curves
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Figure 8: Forbidden region for β′ = 3
2
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History curves

Multiple histories lead to discontinuous conditional probabilities

Can there be infinitely many branches of bad configurations?

What can we learn from that for the lattice?
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History curves
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Figure 9: Bad configurations as function of time (right) and initial points of trajectories (left) β′ = 0
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History curves
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Figure 10: Bad configurations as function of time (right) and initial points of trajectories (left) - low-temperature dynamics β′ = 1.5
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