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NINA DÖRNEMANN AND JOHANNES HEINY

Abstract. In this paper, we consider the empirical spectral distribution of the sample correlation

matrix and investigate its asymptotic behavior under mild assumptions on the data’s distribution,

when dimension and sample size increase at the same rate. First, we give a characterization for the

limiting spectral distribution to follow a Marčenko–Pastur law assuming that the underlying data

matrix consists of i.i.d. entries. Subsequently, we provide the limiting spectral distribution of the

sample correlation matrix when allowing for a dependence structure within the columns of the data

matrix. In contrast to previous works, the fourth moment of the data may be infinite, resulting in

a fundamental structural difference. More precisely, the standard argument of approximating the

sample correlation matrix by its sample covariance companion breaks down and novel techniques

for tackling the challenging dependency structure of the sample correlation matrix are introduced.

1. Introduction

Due to a wide variety of applications, measuring and estimating the dependence between two

random variables are fundamental problems in statistics. Starting with the early works of Pearson

[36], Kendall [28], Hoeffding [24] and Blum [10], several measures of dependence or association have

been introduced and analyzed by numerous authors. An outstanding role is played by Pearson’s

correlation coefficient, a measure of the linear dependency of two random variables, about which

most students learn early on in their studies. Motivated by its importance for statistical inference

and estimation, many works are devoted to its stochastic properties in different frameworks. For

example, in time series analysis, the notion of correlation plays a vital role in multivariate statistical

analysis for parameter estimation, goodness-of-fit tests, change-point detection, etc.; see for example

the classical monographs [11, 38].

Consider a p-dimensional population x ∈ Rp of the form x = T
1
2 x̃, where the components of

x̃ = (X̃1, . . . , X̃p)
> are independent random variables that are identically distributed as a centered

non-degenerate random variable ξ, and T
1
2 is the Hermitian square root of a positive semidefinite

and non-random matrix T ∈ Rp×p. For a sample x1, . . . ,xn from the population, we construct the

matrix X = Xn = (x1, . . . ,xn). This paper is concerned with the spectral properties of the sample

correlation matrix R, which is the empirical version of Pearson correlation for multivariate data.
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It is given by

R = Rn = {diag(Sn)}−1/2 Sn{diag(Sn)}−1/2 , (1.1)

where S = Sn = n−1XX> denotes the sample covariance matrix.

With the rapid advancements of data collection devices, many modern fields such as biological

engineering, telecommunications and finance require the analysis of high-dimensional data sets

where the dimension and the sample size are of comparable magnitude. Be aware that traditional

multivariate analysis, as outlined in the textbooks of [1, 33], relies on the assumption that the

dimension remains fixed and thus is negligible compared to the sample size. For this reason, results

from traditional multivariate analysis are typically not applicable in other regimes. Spurred by

these problems, new analysis tools for high-dimensional data were developed in recent years. We

add to this line of literature and concentrate on the regime where the dimension-to-sample-size

ratio p/n tends to a positive constant as n, p→∞. For a detailed discussion of typical applications

where such an assumption is natural, we refer to [13, 15, 26, 27].

1.1. Related literature. When considering such high-dimensional data sets and associated ran-

dom matrices X, the main focus of interest has been on the asymptotic properties of the eigenvalues

of the sample covariance matrix S. These have been well analyzed in random matrix theory since

the pioneering work [31] where it is shown that for independent and identically distributed (i.i.d.)

components of x with finite variance and as p/n→ γ ∈ (0,∞) the empirical spectral distribution of

S converges weakly to the celebrated Marčenko–Pastur law σMP,γ with parameter γ. If γ ∈ (0, 1],

σMP,γ has density,

fγ(x) =

√
(bγ − x)(x− aγ)

2πγx
1[aγ ,bγ ](x) , x ∈ R,

with aγ = (1−√γ)2 and bγ = (1+
√
γ)2. If γ > 1, the Marčenko–Pastur law has an additional point

mass 1−1/γ at 0. For non-i.i.d. components of x, that is T 6= Ip (the p-dimensional identity matrix),

the limiting spectral distribution (LSD) can be characterized in terms of an integral equation for its

Stieltjes transform. Subsequently, several ground-breaking results such as the convergence of the

largest eigenvalue λ1(S) and the smallest eigenvalue λp(S) to the edges of the Marčenko–Pastur law

[6, 40], asymptotic normality of linear spectral statistics of S [5], or its edge universality towards

the Tracy-Widom law [26, 35, 37] were established. Apart from the convergence of λp(S) all those

results require a finite fourth moment of ξ.

In case of infinite fourth moments, the theory for the eigenvalues and eigenvectors of S is quite

different from the aforementioned Marčenko–Pastur theory. For example, if the distribution of ξ is

regularly varying with index α ∈ (0, 4), the properly normalized largest eigenvalue of S converges

to a Fréchet distribution with parameter α/2. A detailed account on the developments in the

heavy-tailed case can be found in [2, 8, 12, 20].

For the sample correlation matrix R = {diag(S)}−1/2S{diag(S)}−1/2, the situation gets more

complicated because of the specific nonlinear dependence structure caused by the normalization

{diag(S)}−1/2, which makes the analysis of this random matrix quite challenging. As a consequence,

the study of the high-dimensional sample correlation matrix is more recent and somewhat limited.

In case T = I and ξ has zero mean, variance equal to one and finite fourth moment, Jiang [25] (see

also [14, 21]) showed that the Marčenko–Pastur law σMP,γ is still valid for the sample correlation
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matrix R. Moreover, the first result for the linear spectral statistics of R was proved in [17]. Under

T 6= Ip and E[ξ4] <∞, spectral properties of R were derived in [14, 19]. A central step in the proofs

of all these results is to approximate the sample correlation R with {diag(T)}−1/2S{diag(T)}−1/2.
Indeed, assuming p/n→ γ ∈ (0,∞) and uniform boundedness of ‖T‖ (the spectral norm of T), it

is known that E[ξ4] <∞ implies

‖ diag(S)− diag(T)‖ a.s.→ 0 , n→∞ , (1.2)

with equivalence in the case T = Ip (see [19, Theorem 1.2] and [7, Lemma 2]). Therefore, under

finite fourth moment the normalization {diag(S)}−1/2 in (1.1) can be replaced with {diag(T)}−1/2

and consequently ‖R− {diag(T)}−1/2S{diag(T)}−1/2‖ converges to zero almost surely as n→∞.

Due to the self-normalization property of the sample correlation matrix, one may without loss of

generality assume that diag(T) = Ip. This means that the first order spectral properties of R and

S are the same if E[ξ4] < ∞. In particular, the smallest and largest eigenvalues of R and S have

the same limits and the LSDs of R and S coincide.

To the best of our knowledge, high-dimensional sample correlation matrices under infinite fourth

moment E[ξ4] = ∞ have only been considered in the i.i.d. case T = Ip. On the one hand, if the

distribution of ξ is in the domain of attraction of the normal distribution, [4] proved that the LSD of

R is σMP,γ . On the other hand, if the distribution of ξ is in the domain of attraction of an (infinite

variance) α-stable distribution with α ∈ (0, 2), then the LSD is the α-heavy Marčenko–Pastur law

[23].

Our contributions. The contributions of this paper are twofold.

• In the i.i.d. case T = Ip, we provide a characterization for the limiting spectral distribution

of R to follow the Marčenko–Pastur law σMP,γ . More precisely, we show that the latter is

equivalent to the convergence of certain quadratic forms, which are analyzed in detail.

• For a larger class of population correlation matrices T and assuming E[|ξ|2+δ] <∞ for some

δ > 0, we prove that the empirical spectral distributions of R converge weakly almost surely

to a generalized Marčenko–Pastur law. In contrast to previous works, the 4th moment of

the data may be infinite, resulting in a fundamental structural difference. More precisely,

the standard argument of approximating the sample correlation matrix R by its sample

covariance companion S breaks down and novel techniques for tackling the challenging

dependency structure of R are introduced.

Structure of this paper. This work is organized as follows. In the remainder of this section, we

introduce some necessary notation and our model. In Section 2, we present our results when

assuming that the underlying data matrix consists of i.i.d. entries, while Section 3 is devoted to

the dependent case. Section 4 consists of two further Subsections 4.1 and 4.2, where the first one

contains the main proofs for the results provided in Section 2 and in the latter, one can find some

auxiliary results. The proof of Theorem 3.1, which is the main result of Section 3, consists of

several steps as outlined in Section 3.1 and is therefore deferred to Section 5. Finally, the Appendix

provides some rather technical details that are needed for the proof of Theorem 3.1.
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Notation. For any matrix C, the spectral (or operator) norm ‖C‖ is the square root of the largest

eigenvalue of CC?, where C? is the complex conjugate of C. Moreover, if C is a square matrix,

diag(C) denotes the diagonal matrix which has the same diagonal as C. Ip is the p-dimensional

identity matrix and if the dimension is clear from the context, we will sometimes just write I.

For any p×p matrix C with real eigenvalues, we denote its ordered eigenvalues by λ1(C) ≥ · · · ≥
λp(C). Hence, we have ‖C‖ =

√
λ1(CC?). Writing 1 for the indicator function, the empirical

spectral distribution of C is defined by

FC(x) =
1

p

p∑
i=1

1{λi(C) ≤ x}, x ∈ R .

Let µ be a finite measure on the real line. Its Stieltjes transform sµ is given by

sµ(z) =

∫
1

x− z
µ(dx), z ∈ C+ ,

where C+ are the complex numbers with positive imaginary part. If µ = FC denotes an empirical

spectral distribution of some matrix C, we abbreviate sFC = sC. Moreover, we write sn for the

Stieltjes transform of FR.

We also make use of the notation a . b for real numbers a, b ∈ R if there exists some constant

c > 0 independent of n ∈ N with the property a ≤ cb. Note that while the constant c is not allowed

to vary with n ∈ N, it may depend on z ∈ C+.

1.2. The model. Consider a p-dimensional population x̃ = (X̃1, . . . , X̃p)
> ∈ Rp, where the co-

ordinates X̃i are independent random variables and identically distributed as a centered random

variable ξ satisfying E[|ξ|1+δ] <∞ for some δ > 0 and E[ξ2] = 1 whenever E[ξ2] <∞. For a sample

x̃1, . . . , x̃n from the population we construct the matrix X̃ = X̃n = (x̃1, . . . , x̃n) = (X̃ij)1≤i≤p;1≤j≤n

and set

X = T
1
2 X̃ = (Xij)1≤i≤p;1≤j≤n ,

where the so–called population correlation matrix T = Tn ∈ Rp×p denotes a symmetric positive

semidefinite non-random matrix satisfying diag(T) = Ip and T
1
2 = (Ukl)1≤k,l≤p its Hermitian

square root. The sample covariance matrix S and the sample correlation matrix R are then given

as follows:

S = Sn =
1

n

n∑
i=1

T
1
2 x̃ix̃

>
i T

1
2 =

1

n
XX> ,

R = Rn = {diag(Sn)}−1/2 Sn{diag(Sn)}−1/2 = YY> .

Here the self-normalized matrix Y = Yn = (Yij)1≤i≤p;1≤j≤n for the correlation matrix has entries

Ykj = Y
(n)
kj =

Xkj√
X2
k1 + . . .+X2

kn

=

p∑
l=1

UklX̃lj√
X2
k1 + . . .+X2

kn

. (1.3)

By construction, the rows of Y, which we denote by ỹ1, . . . , ỹp ∈ R1×n, possess Euclidean norm

equal to one. They are independent if and only T = Ip. At first sight, the structure of S and R

looks similar as they can both be written as some matrix (n−1/2X resp. Y) times its transpose.
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Note, however, that the columns of X are i.i.d. whereas the columns of Y, which we denote by

y1, . . . ,yn ∈ Rp, are not independent due to the joint normalization term {diag(Sn)}−1/2.
Throughout this paper, we assume the asymptotic regime where the sample size n and the

dimension p tend to infinity simultaneously, i.e.,

p = pn →∞ and
p

n
→ γ ∈ (0,∞) , as n→∞ .

We usually suppress the dependence on n in our notation and write R,S,X,Y,T for the matrices

Rn,Sn,Xn,Yn,Tn, respectively.

2. The i.i.d. case

Throughout this section, we consider the model introduced in subsection 1.2 with T being the

p× p identity matrix Ip. In our analysis of the LSD of the sample correlation matrices R = YY>,

an important role will be played by the resolvent

B(z) := (Y>Y − ỹ>1 ỹ1 − zIn)−1 , z ∈ C+,

where ỹ1 = (Y11, . . . , Y1n) is the first row of Y. We are ready to state our main result for the sample

correlation matrix in the i.i.d. case; compare [42, Theorem 2.1] for a corresponding statement about

the sample covariance matrix.

Theorem 2.1. Assume p/n→ γ, as n→∞. Then the following two statements are equivalent:

(i) The empirical spectral distributions FR converge weakly almost surely to the Marčenko–

Pastur law with parameter γ.

(ii) For all z ∈ C+ one has

Wn(z) := ỹ1B(z)ỹ>1 −
1

n
tr
(
B(z)

) P−→ 0 , n→∞ .

Theorem 2.1 shows that the LSD of the sample correlation matrix depends on the behavior of

the random variables Wn(z), which are a quadratic forms in the self-normalized random vector ỹ1

and the matrix B(z). Since ỹ1, . . . , ỹp are i.i.d., B(z) and ỹ1 are independent. The next lemma

collects some basic properties of the sequence (Wn(z)).

Lemma 2.2. Assume p/n→ γ, as n→∞, and let z ∈ C+. Then the random variables Wn(z), n ≥
1, satisfy |Wn(z)| ≤ 2/ Im(z) and limn→∞ E[Wn(z)] = 0. Moreover, for the decomposition Wn(z) =

Wn,1(z) +Wn,2(z) with

Wn,1(z) := ỹ1 diag(B(z))ỹ>1 −
1

n
tr
(
B(z)

)
and Wn,2(z) := Wn(z)−Wn,1(z)

it holds, as n→∞,

E[|Wn,1(z)|2] = nE[Y 4
11]

(
1

n
E
[ n∑
i=1

|
(
B(z)

)
ii
|2
]
− 1

n2
E
[∣∣ tr (B(z)

)∣∣2])+ o(1), (2.1)

and E[|Wn,2(z)|2] = o(1).

Remark 2.3. Some comments about the decomposition Wn(z) = Wn,1(z) +Wn,2(z) are in place.
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(1) Since Y 2
11 + . . . + Y 2

1n = 1 by definition of R, we have E[Y 2
11] = 1/n and as a consequence

E[Wn,1(z)] = 0. From equation (4.14) later on we see that |E[Wn,2(z)]| . nE[Y11Y12]. It is

interesting to note that E[Y11Y12] ≥ 0 with equality if and only if the distribution of ξ is

symmetric, that is ξ
D
= −ξ (see (4.15) for details). Therefore, Wn(z) is centered if and only

if the distribution of ξ is symmetric.

(2) An application of Markov’s inequality and the last part of Lemma 2.2 yield for ε > 0,

P(|Wn,2(z)| > ε) ≤ ε−2E[|Wn,2(z)|2]→ 0 , n→∞ .

Hence, statement (ii) in Theorem 2.1 is equivalent to:

(ii’) For all z ∈ C+ one has Wn,1(z)
P−→ 0, as n→∞.

Now we provide two equivalent sufficient conditions for the convergence of the empirical spectral

distributions of the sample correlation matrix to the Marčenko–Pastur law.

Theorem 2.4. Assume p/n→ γ, as n→∞. Then the empirical spectral distributions FR converge

weakly almost surely to the Marčenko–Pastur law with parameter γ if

lim
n→∞

nE[Y 4
11] = 0 . (2.2)

Furthermore, condition (2.2) is equivalent to ξ being in the domain of attraction of the normal

distribution.

Proof. Let z ∈ C+. Our strategy is to show Wn(z)
P−→ 0, which by Theorem 2.1 establishes

the convergence of the empirical spectral distributions. By Markov’s inequality, the condition

Wn(z)
P−→ 0 is implied by E[|Wn,1(z)|2] = o(1) and E[|Wn,2(z)|2] = o(1), where the latter follows

from Lemma 2.2. We note that

max
i=1,...,n

∣∣(B(z)
)
ii

∣∣ ≤ ‖B(z)‖ ≤ 1

Im(z)
, (2.3)

where (A.1) was used for the last inequality. A combination of (2.1) and (2.3) yields that E[|Wn,1(z)|2] =

O(nE[Y 4
11]) + o(1) which tends to zero as n→∞ if (2.2) holds.

Next, we turn to the second part of the theorem. By [16, Theorem 5.4] (with X = ξ2) the

convergence (2.2) is equivalent to the relative stability of ξ2, that is∫ x

0
P(ξ2 > y)dy

is a slowly varying function. We say that a function L is slowly varying (at infinity) if L(tx)/L(x)→
1, as x→∞, for all t > 0. Now we have∫ x

0
P(ξ2 > y)dy = 2

∫ √x
0

P(|ξ| > u)udu =: h2(
√
x).

If h2(
√
x) is slowly varying then h2(x) is slowly varying, which by Theorem 1.1 in [29] is equivalent

to the slow variation of

V2(x) =

∫
[0,x]

y2dP(|Y | ≤ y).

The latter is the characterization of the domain of attraction of the normal law (Theorem 8.3.1 in

[9]). �
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2.1. The role ofWn(z). In this subsection, we will investigate the influence of the random variables

Wn(z), n ≥ 1, on the LSD in a more general situation. We have the following result.

Theorem 2.5. Assume p/n→ γ, as n→∞. Then the Stieltjes transform sn of FR satisfies

−zE[sn(z)] = E
[

1

1 +Wn(z) + γE[sn(z)]− z−1(1− γ)

]
+ o(1), z ∈ C+, n→∞ .

From Theorem 2.5 we immediately get the next corollary.

Corollary 2.6. Assume p/n → γ and E[sn(z)] → s(z), as n → ∞, where s(z) is the Stieltjes

transform of some probability measure. Then s(z) satisfies the equation

−z s(z) = lim
n→∞

E
[

1

1 +Wn(z) + γs(z)− z−1(1− γ)

]
, z ∈ C+ . (2.4)

and the limit on the right-hand side exists.

If we replace Wn(z) with 0, then (2.4) is the usual equation for the Stieltjes transform of the

Marčenko–Pastur law; see, e.g., [3]. In general, it is not possible to replace Wn(z) with its expecta-

tion, unless of course Wn(z)
P−→ 0. As seen in Theorem 2.4, the latter is implied by nE[Y 4

11]→ 0. In

this case, Theorem 2.1 confirms that the LSD of the sample correlation matrices is the Marčenko–

Pastur law.

We proceed by investigating nE[Y 4
11] more closely. For all y, β > 0, we have

1

yβ
=

1

Γ(β)

∞∫
0

exp(−ty)tβ−1 dt , (2.5)

where Γ denotes the Gamma function. Combining this representation with Fubini’s theorem, we

deduce

E[Y 4
11] = E

[
X4

11(
X2

11 + · · ·+X2
1n

)2
]

=

∫ ∞
0

t(E[e−tξ
2
])n−1E[ξ4 e−tξ

2
] dt .

The integrand involves the Laplace transform t 7→ E[e−tξ
2
] of ξ2 and its second derivative; see [16]

for further details. By definition of Y11, the value of nE[Y 4
11] lies in the interval (0, 1). In this

context, the limiting case (2.2) can be seen as an extreme scenario. It turns out that all limiting

values in the above range (0, 1) are possible. Proposition 1 in [32] asserts that the distribution of

ξ2 is in the domain of attraction of an α/2-stable distribution with parameter 0 < α < 2 if and

only if

lim
n→∞

nE[Y 4
11] = 1− α

2
.

Examples of such distributions include the Pareto distribution with parameter α and Student’s t-

distribution with α degrees of freedom. In this case we may obtain a limiting spectral distribution

which additionally depends on the value α.

Example 2.7. Let the distribution of ξ2 be in the domain of attraction of an α/2-stable distribution

with parameter 0 < α < 2 and assume ξ
D
= −ξ. In this setting, the authors of [23] proved that the

empirical spectral distributions FRn converge weakly in probability to some probability law Hα,γ ,

which they termed α-heavy MP law with parameter γ. Hα,γ is entirely determined by its moment

sequence µk(α, γ) =
∫
xk dHα,γ(x), k ≥ 1. The exact expression for µk(α, γ) is rather involved (see
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[23]). Since Hα,γ uniquely characterizes its Stieltjes transform sα,γ , we obtain by Corollary 2.6 that

sα,γ(z) satisfies equation (2.4).

3. Adding dependency

In this section, we study the limiting spectral distribution of the sample correlation matrix R

when allowing for a more sophisticated population correlation matrix T. For this purpose, let

I(i) = I(n)(i) = {1 ≤ k ≤ p : Uik = Uki 6= 0} denote the set of indices of non-vanishing entries in

the ith row or column of the Hermitian square root U = T
1
2 = (Ukl)1≤k,l≤p (1 ≤ i ≤ p). Among

other assumptions stated below, we will impose a sparsity condition on U in terms of controlling the

cardinality of the set I(i). We propose the following conditions for deriving the limiting distribution

of FR, which are discussed in Remark 3.2.

(A1) infn∈N λmin(Tn) > 0 .

(A2) FTn → H almost surely, as n→∞, where H is a non-random c.d.f..

(A3) sup
n∈N

max
1≤i≤p

|I(i)| <∞.

(A4) The random variables X̃ij are i.i.d. according to ξ, which satisfies E[ξ] = 0,E[ξ2] = 1 and

E|ξ|2+δ <∞ for some δ > 0.

(A5) p = pn →∞ and p/n→ γ ∈ (0,∞) , as n→∞ .

The following is our main result in the dependent case.

Theorem 3.1. Under assumptions (A1)-(A5), the empirical spectral distributions FR converge, as

n→∞, weakly almost surely to the generalized Marčenko–Pastur law F γ,H with parameter (γ,H),

whose Stieltjes transform s = s(z) is the unique solution to the equation

s(z) =

∫
1

λ(1− γ − γzs(z))− z
dH(λ) , z ∈ C+. (3.1)

A strategy of the proof of Theorem 3.1 outlining our novel technical tools is discussed in Sec-

tion 3.1. The complete proof of Theorem 3.1 can be found in Section 5.

Remark 3.2. (1) We have the following implications for moments of entries of Y. To begin

with, note that E[Y 2
kj ] = 1

n , since Y 2
k1 + · · · + Y 2

kn = 1 and Yk1, . . . , Ykn are identically

distributed for each k ∈ {1, . . . , p}. Additionally, the first moment satisfies

lim
n→∞

max
1≤k≤p

n|E[Yk1]| = 0 (3.2)

and for the fourth moment, we have

lim
n→∞

max
1≤k≤p

nE[Y 4
k1] = 0 (3.3)

(see Proposition 5.6 and Proposition 5.7 given later). For further details about the moments

of the self-normalized random variables Ykj , we refer the reader to Section 5.4.

(2) Instead of imposing the existence of the (2 + δ)th moment of the generic element ξ, it is

seen from the proof of Theorem 3.1 (more precisely, from the proof of Lemma 5.3) that

(3.2) and (3.3) are sufficient conditions. Hence, we could replace assumption (A4) by the

following assumption:
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(A4’) The random variables X̃ij are i.i.d. according to ξ, which satisfies E[ξ] = 0,E[ξ2] = 1,

and (3.2) and (3.3) hold true.

Consequently, the assertion of Theorem 3.1 holds true under assumptions (A1)-(A3), (A4’),

(A5). This observation draws a noteworthy connection to the results in the i.i.d. framework

presented in Section 2, where we observed that the asymptotic behavior of nE[Y 4
11] plays

a crucial role for the limiting spectral distribution of R to follow a Marčenko–Pastur law.

More precisely, we recover the first part of Theorem 2.4 (under the additional assumption

E[ξ2] = 1) by applying Theorem 3.1 with T = I.

(3) The sparsity condition imposed on the square root U in (A3) implies an analogue condition

for the population correlation matrix T, since it is seen that

Tik =

p∑
l=1

UlkUli 6= 0 , 1 ≤ i 6= k ≤ p,

implies I(i)∩I(k) 6= ∅. As a consequence, we obtain that the spectral norm of T is bounded

uniformly in n ∈ N, that is,

sup
n∈N
‖Tn‖ <∞.

Example 3.3. We continue this section with a small simulation study illustrating the finite-sample

behavior of the empirical spectral distribution FRn using different distributions for the generic

element ξ. In Figure 1, we display the empirical quantiles of FRn for standard normal distributed

data and for standardized t-distributed data with 3 degrees of freedom, that is, the fourth moment

of the latter distribution does not exist. By Theorem 3.1, we know that, in both cases, FRn admits

the same limiting spectral distribution. Since for general T, the limiting spectral distribution of

Rn given in Theorem 3.1 has no closed form, we decided to choose the normal case as a reference.

In particular, we study the case of two non-vanishing subdiagonals for the population correlation

matrix T = (Tij)1≤i,j≤p, which has entries

Tij =


1 , if i = j,

0.5 , if i = j − 1 or i− 1 = j,

0.25 , if i = j − 2 or i− 2 = j,

1 ≤ i, j ≤ p,

for various values of n and p and simulated the q-quantiles for each of the two empirical spectral

distributions based on 300 simulation runs, where q ∈ {0.1, 0.2, . . . , 0.9, 0.95}.
One can observe that in the case of the t-distribution, the distribution FRn admits heavier tails

in comparison to the normal case indicated by the outlying point corresponding to the 95% -

quantile, not surprisingly due to much less regularity. However, especially for large sample size

and dimension, the empirical quantiles behave very similar, which reflects the asymptotic result

provided in Theorem 3.1.

3.1. Strategy of the proof. In the following, we point out the main ideas for proving the conver-

gence of the Stieltjes transform sn(z) of R to s(z) for all z ∈ C+. Note that when only assuming

a finite moment of order (2 + δ) for ξ, the standard argument (1.2) of approximating R = YY>

via S = n−1XX> may break down. Additionally, the matrix Y admits a challenging dependence
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Figure 1. Simulated q-quantiles of FRn for normally distributed data (x-

axis) and standardized t-distributed data with degree of freedom 3 (y-axis) for

q ∈ {0.1, 0.2, . . . , 0.9, 0.95}, n = 200, p = 100 (top left), n = 400, p = 200 (top

right), n = 800, p = 400 (bottom left), n = 400, p = 500 (bottom right).

structure both among the rows and the columns. The latter highlights a fundamental difference to

the covariance case (see, e.g., [4]), where the columns of X are independent, or to the correlation

matrix R for T = I studied in Section 2, where the rows of Y are independent. Consequently, our

setting demands for a more sophisticated analysis.

At first sight, the proof of the convergence of the random part sn(z)−E[sn(z)] (Lemma 5.1) makes

use of standard tools such as martingale decomposition, Burkholder’s and Azuma’s inequality.

However, note that additional subtle difficulties arise, since Dj(z) = R − yjy
>
j − zI does depend
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on the jth column yj (1 ≤ j ≤ n) and consequently, (Ej −Ej−1)D−1j (z) does not vanish in general.

(Here, Ej denotes the conditional expectation with respect to x1, . . . ,xj for 1 ≤ j ≤ n and E0

denotes the usual mean.) Thus, instead of D−1j (z), a more suitable approximation of the resolvent

D−1(z) = (R− zI)−1 independent of yj is needed whose properties are analyzed in this part of the

proof.

Moreover, when considering the non-random part E[sn(z)]−s(z) (Lemma 5.2), the crucial part lies

in considering quadratic forms of the type

y>1 AD−11 (z)y1 − n−1 trTAD−11 (z) (3.4)

for some matrix A ∈ Cp×p independent of y1, which turns out to be a delicate task since, due to the

self-normalization, the components of y1 are not independent and the matrix D−11 (z) depends also

on y1. Via an approximation argument (Lemma 5.4), we achieve that D−11 (z) can be replaced by a

further matrix independent of y1. In order to control (3.4), the sparsity assumption (A3) turns out

to be essential for the proof of Lemma 5.3. Then, the asymptotic behavior of (3.4) is determined by

the (mixed) moments of the self-normalized random variables Yk1, 1 ≤ k ≤ p, which are analyzed

using an integral representation trick for Y m
k1 , m ∈ N. This approach connects the fourth moment

of Yk1 with its square’s Laplace transform which enables us to determine its asymptotic order. For

the first moment, a similar technique is applied. We emphasize that this analysis calls for particular

attention since the random variables Yk1 = Y
(n)
k1 form a triangular array (1 ≤ k ≤ p = pn, n ∈ N)

and we need uniform bounds over k, n ∈ N. For details on the moments of Yk1, we refer the reader

to Section 5.4 and Appendix C.

3.2. Outlook. We conclude this section with some comments on potential applications. To the

best of our knowledge, this paper is the first one that establishes some limiting properties of a large

sample correlation matrix from a population with infinite fourth moment in the dependent case. As

explained in Section 3.1, the study of such a correlation matrix is involved and most tools available

in the literature on sample covariance matrices are not anymore applicable here. Theoretical tools

on this topic are not numerous indeed. Much needs to be done for the development of such

techniques to facilitate the proof of results which have high impact on statistical applications.

For example, much of statistical inference based on sample correlation matrices requires a central

limiting theorem for linear statistics of eigenvalues, which seems beyond reach in the infinite fourth

moment case at the moment. We remark that in this case, a central limit theorem for linear spectral

statistics is also not available for the sample covariance matrix. In fact, the properly normalized

trace of S, for example, converges to an infinite variance stable distribution whenever ξ2 is in the

domain of attraction of an α-stable law with α ∈ (0, 2).

Furthermore, it should be expected that linear spectral statistics for R (if at all valid in the

infinite fourth moment framework) will depend on more characteristics than just the self-normalized

fourth moment E[Y 4
11]. For example, in the i.i.d. case the results in [22] indicate that for symmetric

ξ satisfying P(|ξ| > x) = x−αL(x) for some slowly varying function L a phase transition appears in

the asymptotic behavior of the logarithm of the determinant of R at α = 3 which is the border of

finite and infinite third moment E[|ξ|3]. On the other hand, if E[ξ4] <∞, the central limit theorem
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for the logarithm of the determinant of R depends on the distribution of ξ only through E[ξ4] even

in the dependent case [34].

In view of the evolution of the literature on sample covariance matrices, it is clear that any

further development on asymptotic properties of the sample correlation matrix from a population

with infinite fourth moments will require the knowledge of the LSD as developed in this paper.

In this sense, this work can be viewed as a meaningful first step toward thoughtful statistical

applications that might be developed subsequently.

4. Proofs of results in the i.i.d. case

Throughout this section, we work under the assumptions of Section 2. In particular, recall that

T = I ∈ Rp×p, E[|ξ|1+δ] < ∞ for some δ > 0, and ỹ1 ∈ R1×n denotes the first row of Y. For

convenience of notation, let Y−1 ∈ R(p−1)×n be the matrix Y with the first row removed.

4.1. Proofs of Theorem 2.1, Lemma 2.2 and Theorem 2.5.

Proof of Theorem 2.1. Let z ∈ C+ and recall that sn denotes the Stieltjes transform of FR. We

will show that both (i) and (ii) are equivalent to

E
[

1

1 + ỹ1B(z)ỹ>1

]
= E

[
1

1 + γsn(z)− z−1(1− γ)

]
+ o(1) , n→∞ . (4.1)

First, we prove the equivalence of (4.1) and (i). Assuming (4.1) we have by Lemma 4.4 that

E
[

1

1 + ỹ1B(z)ỹ>1

]
=

1

1 + γE[sn(z)]− z−1(1− γ)
+ o(1) .

Considering Lemma 4.5, we obtain

−zE[sn(z)] =
1

1 + γE[sn(z)]− z−1(1− γ)
+ o(1) . (4.2)

Therefore, E[sn(z)] converges to the unique positive solution of the equation

−zS =
1

1 + γS − z−1(1− γ)
, (4.3)

which is well known to be the Stieltjes transform of the Marčenko–Pastur law. See for instance

[41, p. 13, eq. (2.9)] or [3, p. 55] where the equivalent formulation γzS2 + (z + γ − 1)S + 1 = 0 is

preferred. By Lemma A.1, statement (i) follows.

Now, let us assume (i). Lemmas A.1 and 4.4 and the fact that the Stieltjes transform of the

Marčenko–Pastur law satisfies (4.3) imply (4.2). Thanks to Lemmas 4.5 and A.1 we get (4.1).

Next, we prove the equivalence of (4.1) and (ii). Using the fact that R = YY> and Y>Y have

the same non-zero eigenvalues we obtain

sn(z) =
n

p
sY>Y(z) +

1

z

(n
p
− 1
)
. (4.4)

By Lemma 6.9 in [3], we have∣∣∣trB(z)− tr
(
Y>Y − zIn)−1

)∣∣∣ ≤ 1

Im(z)
.
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Since p/n→ γ, this implies

γsn(z)− 1− γ
z
− 1

n
trB(z)

a.s.→ 0 , n→∞ (4.5)

in view of (4.4). Therefore, equation (4.1) is equivalent to

E
[

1

1 + ỹ1B(z)ỹ>1

]
= E

[
1

1 + n−1 tr
(
B(z)

)]+ o(1) , n→∞ . (4.6)

Assume (ii). Using (A.2) and (A.3), we have∣∣∣∣∣ 1

1 + n−1 tr
(
B(z)

) − 1

1 + ỹ1B(z)ỹ>1

∣∣∣∣∣ =

∣∣∣∣∣ Wn(z)

[1 + n−1 tr
(
B(z)

)
][1 + ỹ1B(z)ỹ>1 ]

∣∣∣∣∣
≤
(
|z|

Im(z)

)2

|Wn(z)| .

Hence, boundedness of |Wn(z)| and Wn(z)
P−→ 0 yield (4.6).

Finally, assume (4.6) holds. From Lemma 4.6 we have

E
[
ỹ1B(z)ỹ>1 |Y−1

]
− 1

n
tr
(
B(z)

) a.s.→ 0 , n→∞ . (4.7)

Combined with (4.6) this means that

lim
n→∞

E
[

1

1 + ỹ1B(z)ỹ>1

]
− E

[
1

1 + E
[
ỹ1B(z)ỹ>1 |Y−1

]] = 0 .

Then Lemma A.2 yields

ỹ1B(z)ỹ>1 − E
[
ỹ1B(z)ỹ>1 |Y−1

] P−→ 0 , n→∞ ,

where we used that the random variable ỹ1B(z)ỹ>1 is bounded (for details, see (4.8)). In conjunction

with (4.7), we obtain (ii). �

Proof of Lemma 2.2. Let z ∈ C+. First, we note that E[Y11Y12] = o(n−1) holds due to Lemma 4.2.

Consequently, an application of Lemma 4.6 yields E[Wn(z)] → 0. Let us check that Wn(z) is a

bounded random variable. We have

|Wn(z)| ≤ |ỹ1B(z)ỹ>1 |+
1

n
| tr
(
B(z)

)
| ≤ 2‖B(z)‖ ≤ 2

Im(z)
, (4.8)

where we used ỹ1ỹ
>
1 = 1, (A.1) and the estimate

|x>Ax| ≤ x>x‖A‖, x ∈ Rn, A ∈ Cn×n. (4.9)

For simplicity of notation, we write B = (dij) = B(z) and Yi instead of Y1i. We decompose

Wn(z) = Wn,1(z) +Wn,2(z), where

Wn,1(z) =
n∑
i=1

dii
(
Y 2
i − n−1

)
and Wn,2(z) =

n∑
i,j=1,
i 6=j

dijYiYj .
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We first investigate the second absolute moment of Wn,1(z). This gives

E[|Wn,1(z)|2|B] = E

[∣∣∣ n∑
i=1

dii
(
Y 2
i − n−1

)∣∣∣2|B]

=

n∑
i=1

|dii|2(E[Y 4
i ]− 1

n2 ) +

n∑
i,j=1,
i 6=j

diidjj(E[Y 2
i Y

2
j ]− 1

n2 ).

Observe that (by an application of (A.1))

max
i,j=1,...,n

|dij | ≤ ‖B‖ ≤
1

Im(z)
, (4.10)

and additionally, by using (4.9), ∣∣∣ n∑
i,j=1

dij

∣∣∣ =
∣∣∣1>nB1n

∣∣∣ ≤ n

Im(z)
. (4.11)

Taking expectation of the identity (Y 2
1 + · · ·+ Y 2

n )2 = 1, we obtain

E[Y 2
1 Y

2
2 ]− n−2 =

1

n2(n− 1)
− E[Y 4

1 ]

n− 1
. (4.12)

By (4.10)-(4.12), it follows that

E[|Wn,1(z)|2|B] = E[Y 4
1 ]

n∑
i=1

|dii|2 −
E[Y 4

1 ]

n− 1

n∑
i,j=1,
i 6=j

diidjj + o(1) .

Taking expectation, we get (2.1).

For the second absolute moment of Wn,2(z) we obtain

E[|Wn,2(z)|2|B] =
n∑

i,j,k,`=1,
i 6=j,k 6=`

dijdk` E[YiYjYkY`]

. n2E[Y1Y2Y3Y4] + n2|E[Y 2
1 Y2Y3]|+ nE[Y 2

1 Y
2
2 ] , (4.13)

where we used (4.11) as well as

n∑
i,j=1

|dij |2 = tr
(
BB?

)
≤ n‖B‖2 ≤ n

Im(z)2
and

n∑
i,j=1

|dij | ≤ n max
i=1,...,n

n∑
j=1

|dij | ≤
n3/2

Im(z)
.

For the last inequality the equivalence of the row-sum and operator matrix norms and (4.10)

were utilized. It remains to show that each term on the right-hand side of (4.13) tends to zero.

From (Y 2
1 + · · · + Y 2

n )2 = 1 we immediately deduce that n2E[Y 2
1 Y

2
2 ] . 1. Next, we observe that

E[Y1Y2] = E[Y1Y2(Y
2
1 + · · · + Y 2

n )] = (n − 2)E[Y 2
1 Y2Y3] + 2E[Y 3

1 Y2] which in combination with

Hölder’s inequality and Lemma 4.2 yields

n2|E[Y 2
1 Y2Y3]| . nE[Y1Y2] + n|E[Y 3

1 Y2]| ≤ nE[Y1Y2] + n
√
E[Y 4

1 ]E[Y 2
1 Y

2
2 ] = o(1) .
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Finally, we apply [18, Lemma 3.1] to bound E[Y1Y2Y3Y4] and get

0 ≤ n2E[Y1Y2Y3Y4] . n
2
√
E[Y1Y2]

√
E[Y1Y2Y3Y4Y5Y6]

≤ n2
√
E[Y1Y2]

√
E[Y 2

1 Y
2
2 Y

2
3 ] ≤

√
nE[Y1Y2] .

Since nE[Y1Y2] tends to zero by Lemma 4.2, the proof is complete. �

Remark 4.1. For the off-diagonal part Wn,2(z), we can additionally show that

E
[
Wn,2(z)

∣∣B(z)
]

= E[Y1Y2]

n∑
i,j=1,
i 6=j

dij ,

where we note that E[Y1Y2] ≥ 0 by (4.15). Hence, using (4.11) it follows∣∣E[Wn,2(z)
]∣∣ ≤ E[Y1Y2]

n

Im(z)
. (4.14)

Proof of Theorem 2.5. From Lemma 4.5 we have

−zE[sn(z)] = E

[
1

1 +Wn(z) + 1
n tr(B(z))

]
, z ∈ C+.

In view of (4.5), this is equivalent to

−zE[sn(z)] = E
[

1

1 +Wn(z) + γsn(z)− z−1(1− γ)

]
+ o(1), z ∈ C+.

An application of Lemma 4.4 concludes the proof. �

4.2. Auxiliary results. Recall the definition of Yij in (1.3) and that E[|ξ|1+δ] <∞ for some δ > 0.

The following result states that the mixed moment of Y11 and Y12 decreases at a sufficiently fast

rate under the assumptions proposed for the i.i.d. case.

Lemma 4.2. For any δ′ < δ it holds

lim
n→∞

n1+δ
′
E[Y11Y12] = 0.

In particular, we have lim
n→∞

nE[Y11Y12] = 0.

Remark 4.3. If ξ is in the domain of attraction of the normal law, then E[Y11Y12] = o(n−2) (see

[18]). It is interesting to remark that E[Y11Y12] = 0 if and only if the distribution of ξ is symmetric.

Also note that, in general, an application of Hölder’s inequality is not quite enough for the weaker

statement in the last line of Lemma 4.2 since E[Y11Y12] ≤ E[Y 2
11] = n−1. For the proof of Lemma 4.2,

we use an integral representation involving the Laplace transform of ξ2.

Proof of Lemma 4.2. Using (2.5) and Fubini’s theorem, we obtain the representation

n1+δ
′
E[Y11Y12] = n1+δ

′
∞∫
0

(
E
[
ξ exp(−sξ2)

])2
ϕn−2(s)ds, (4.15)
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where ϕ(s) = E[exp(−sξ2)], s > 0, denotes the Laplace transform of ξ2. Let ε > 0. We observe that

∞∫
ε

(
E
[
ξ exp(−sξ2)

])2
ϕn−2(s)ds .

∞∫
ε

s−
1
2E
[
|ξ| exp(−sξ2)

]
ϕn−2(s)ds,

where we used that E|ξ| exp(−sξ2) . s−1/2 by maximizing over ξ. Thus, we recover a simplified

version of the integrand in (5.10) in the proof of Proposition 5.6 in this case. As a consequence of

Lemma 3.1 in [16], we have

n1+δ
′
ϕn−2(s) ≤ n1+δ

′
ϕn(ε)

ϕ2(ε)
= o(1), ε < s <∞.

We are allowed to apply the dominated convergence theorem (similarly as in the proof of Proposi-

tion 5.6) and get

lim
n→∞

n1+δ
′
∞∫
ε

(
E[ξ exp(−sξ2)]

)2
ϕn−2(s)ds = 0.

It remains to show that for δ′ < δ the integral

En(ε) =

ε∫
0

n1+δ
′ (
E
[
ξ exp(−sξ2)

])2
ϕn−2(s)ds

converges to zero, as n tends to infinity. Let s ∈ (0, ε). We use the following identity given on page

1525 of [18],

E
[
ξ exp(−sξ2)

]
= −sE

[
ξ3 exp(−sθξ2)

]
for some θ uniformly distributed on the interval [0, 1] and independent of ξ. This implies(

E
[
ξ exp(−sξ2)

])2
= s2

(
E
[
ξ3 exp(−sθξ2)

])2 ≤ s2 (E [|ξ|1+δ|ξ|2−δ exp(−sθξ2)
])2

. s2
(
s−1/2(2−δ)

)2 (
E|ξ|1+δE[θ−1/2(2−δ)]

)2
. sδ,

where we optimized over ξ for the second to last inequality. Using also that (similarly to (C.4))

(ns)1+δ
′
ϕn−2(s) . 1, s ∈ (0, ε),

we get

n1+δ
′ (
E
[
ξ exp(−sξ2)

])2
ϕn−2(s) = (ns)1+δ

′
ϕn−2(s)

(
E
[
ξ exp(−sξ2)

])2
s−1−δ

′
. s−1−δ

′+δ,

which is integrable on (0, ε) since δ′ < δ. As a result, we are allowed to apply the dominated

convergence theorem and the assertion En(ε) = o(1) follows from n1+δ
′
ϕn−2(s) = o(1), which is a

consequence of Lemma 3.1 in [16]. �

By Corollary 2 in [14], we have the following lemma.

Lemma 4.4. It holds

sn(z)− E[sn(z)]
a.s.→ 0 , n→∞ , z ∈ C+.

For convenience, the following lemma is formulated for the matrix Y defined in (1.3). However,

its proof reveals that it holds more generally for any p× n random matrix with i.i.d. rows.
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Lemma 4.5. For the p× n random matrix Y, it holds

−zE[sYY>(z)] = E

[
1

1 + ỹ1(Y>−1Y−1 − zIn)−1ỹ>1

]
, z ∈ C+.

Proof. By Theorem A.4 in [3], we have

sYY>(z) =
1

p

p∑
k=1

1

ỹkỹ
>
k − z − ỹkY

>
−k(Y−kY

>
−k − zIp−1)−1Y−kỹ>k

,

where ỹk ∈ R1×n are the rows of Y and Y−k ∈ R(p−1)×n is the matrix Y with the kth row removed.

Since the rows of Y are i.i.d., we obtain

E[sYY>(z)] = E

[
1

ỹ1ỹ>1 − z − ỹ1Y>−1(Y−1Y
>
−1 − zIp−1)−1Y−1ỹ>1

]
.

An application of the identity Y>−1(Y−1Y
>
−1 − zIp−1)−1Y−1 = In + z(Y>−1Y−1 − zIn)−1 finishes

the proof of the lemma. �

The following result is needed for the analysis of Wn(z).

Lemma 4.6. Assume p/n→ γ, p, n→∞ and E[Y11Y12] = o(n−1). Then we have for z ∈ C+

E
[
ỹ1B(z)ỹ>1 |Y−1

]
− 1

n
tr
(
B(z)

) a.s.→ 0 , n→∞ .

Proof. Note that E
[
ỹ1B(z)ỹ>1 |Y−1

]
= tr

(
B(z)E[ỹ>1 ỹ1]) and E[ỹ>1 ỹ1] = (n−1 − E[Y11Y12])In +

E[Y11Y12]1n1>n with 1n = (1, . . . , 1)> ∈ Rn. Hence, we have

E
[
ỹ1B(z)ỹ>1 |Y−1

]
− 1

n
tr
(
B(z)

)
= −E[Y11Y12] tr

(
B(z)

)
+ E[Y11Y12] 1>nB(z)1n .

Because of | tr
(
B(z)

)
| ≤ n/ Im(z) (see (A.1)) and E[Y11Y12] = o(n−1), it remains to prove that

E[Y11Y12] 1>nB(z)1n
a.s.→ 0 , n→∞. (4.16)

To this end, we have in view of (4.9) and (A.1) that 1>nB(z)1n ≤ n‖B(z)‖ ≤ n/ Im(z), which

implies (4.16).

�

5. Proof of Theorem 3.1

Our main result for the dependent case immediately follows from the two subsequent lemmas,

which are proven in Section 5.1 and 5.2, respectively. The strategy for these proofs was discussed in

Section 3.1. Throughout this section, we work in the setting of Section 3 and, in particular, under

the assumptions of Theorem 3.1 if not explicitly stated otherwise.

Lemma 5.1. For all z ∈ C+, we have almost surely

lim
n→∞

(sn(z)− E[sn(z)]) = 0.

Lemma 5.2. For z ∈ C+, we have

lim
n→∞

E[sn(z)] = s(z),

where s(z) is the unique solution to (3.1).



18 N. DÖRNEMANN AND J. HEINY

In order to prove Lemma 5.1 and Lemma 5.2, we need some preparation. For 0 ≤ j ≤ n, let Ej
denote the conditional expectation with respect to x̃1, . . . , x̃j . Then, E0[Z] = E[Z] and En[Z] = Z

for some random variable Z which is measurable with respect to the σ-field generated by x̃1, . . . , x̃n.

For j ∈ {1, . . . , n} and z ∈ C+ recall that yj = (Y1j , . . . , Ypj)
>, xj = (X1j , . . . , Xpj)

> and define

D(z) = R− zI, Dj(z) = D(z)− yjy
>
j , S(j) = S− n−1xjx>j ,

βj(z) =
1

1 + y>j D
−1
j (z)yj

, βj(z) =
1

1 + n−1 trTD−1j (z)
,

b(z) =
1

1 + n−1 trE[TD−1(z)]
, K(z) = b(z)T.

Let j ∈ {1, . . . , n}. Note that Dj(z) is not independent of yj . For later considerations, we aim to

define an appropriate approximate D̂j(z) which is independent of yj . For this purpose, define the

diagonal matrices M(j) and M with entries

M
(j)
ii =

(
1

n

n∑
k=1;k 6=j

X2
ik

)−1/2
and Mii =

(
1

n

n∑
k=1

X2
ik

)−1/2
, 1 ≤ i ≤ p,

respectively, and set Y(j) = (y
(j)
1 , . . . ,y

(j)
n ) = n−1/2M(j)X. Note that we also have Y = (y1, . . . ,yn) =

n−1/2MX. Then, the matrix

D̂j(z) = Y(j)
(
Y(j)

)>
− y

(j)
j

(
y
(j)
j

)>
− zI

is independent of yj . We also set D̃j(z) = Y(j)
(
Y(j)

)> − zI.
5.1. Proof of Lemma 5.1. Noting that (Ej − Ej−1) tr D̂−1j = 0, 1 ≤ j ≤ n, we decompose

sn(z)− E[sn(z)] =
1

p

(
trD−1(z)− E[trD−1(z)]

)
=

1

p

n∑
j=1

(Ej − Ej−1) trD−1(z) = T1,n + T2,n,

where

T1,n =
1

p

n∑
j=1

(Ej − Ej−1) tr
(
D̃−1j (z)− D̂−1j (z)

)
,

T2,n =
1

p

n∑
j=1

(Ej − Ej−1) tr
(
D−1(z)− D̃−1j (z)

)
.

First, consider the random variable T1,n and use Lemma 2.6 in [39] to obtain

1

p

∣∣∣(Ej − Ej−1) tr
(
D̃−1j (z)− D̂−1j (z)

)∣∣∣ ≤ 2

pv
,

where v = Im(z) > 0. Similarly as in the proof of Lemma 6 in [14], we conclude for ε > 0 by

invoking Azuma’s inequality for real and imaginary parts that

P (|T1,n| > ε) ≤ 4 exp

(
−ε

2p2v2

16n

)
.

By the Borel-Cantelli lemma, this implies the almost sure convergence T1,n
a.s.→ 0 for n→∞.
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Investigating the random variable T2,n further, we write

D−1(z)− D̃−1j (z) = (MSM− zI)−1 −
(
M(j)

)−1
M

(
MSM− zM2

(
M(j)

)−2)−1
M
(
M(j)

)−1
.

and decompose tr
(
D−1(z)− D̃−1j (z)

)
= Qj,1 +Qj,2, where

Qj,1 = tr

(
(MSM− zI)−1 −

(
MSM− zM2

(
M(j)

)−2)−1)

=z tr

((
MSM− zM2

(
M(j)

)−2)−1(
I−M2

(
M(j)

)−2)
(MSM− zI)−1

)
,

Qj,2 = tr

((
MSM− zM2

(
M(j)

)−2)−1(
I−M2

(
M(j)

)−2))
.

Using that the diagonal matrix I−M2
(
M(j)

)−2
is nonnegative definite, since(

M2
(
M(j)

)−2)
ii

= 1−
X2
ij∑n

k=1X
2
ik

= 1− Y 2
ij , 1 ≤ i ≤ p,

we estimate

|Qj,1| . tr

(
I−M2

(
M(j)

)−2)
=

p∑
i=1

Y 2
ij

and a similar bound can be shown for the term Qj,2. Therefore, we deduce that

E
∣∣∣tr(D−1(z)− D̃−1j (z)

)∣∣∣2 . E
∣∣∣ p∑
i=1

Y 2
ij

∣∣∣2 =

p∑
i,k=1

E[Y 2
kjY

2
ij ] . 1 ,

where the last estimate holds due to Lemma 5.5. By an application of Burkholder’s inequality for

some q > 2, this implies

E |T2,n|q . p−qE

 n∑
j=1

∣∣∣(Ej − Ej−1) tr
(
D−1(z)− D̃−1j (z)

)∣∣∣2


q
2

. n
q
2 p−q = o(1).

Again by Borel-Cantelli, we get T2,n
a.s.→ 0 as n → ∞. Eventually, the assertion of Lemma 5.1

follows.

5.2. Proof of Lemma 5.2. The fact that the solution of the equation (3.1) is uniquely determined

follows from [4].

We see that

D(z)− (K(z)− zI) =
n∑
j=1

yjy
>
j −K(z). (5.1)

Note that, by using formula (6.1.11) in [3], we have for 1 ≤ j ≤ n

y>j D
−1(z) = βj(z)y

>
j D
−1
j (z). (5.2)
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We multiply equation (5.1) with (K(z) − zI)−1 from the left and D−1(z) from the right and use

(5.2) to obtain

(K(z)− zI)−1 −D−1(z)

=

n∑
j=1

(K(z)− zI)−1 yjy>j D−1(z)− (K(z)− zI)−1K(z)D−1(z)

=
n∑
j=1

βj(z) (K(z)− zI)−1 yjy>j D−1j (z)− (K(z)− zI)−1K(z)D−1(z).

This implies for l ∈ {0, 1}

Tl
n (K(z)− zI)−1 −Tl

nD
−1(z)

=

n∑
j=1

βj(z)T
l
n (K(z)− zI)−1 yjy>j D−1j (z)−Tl

n (K(z)− zI)−1K(z)D−1(z).

Taking traces and dividing by p, we conclude

1

p
trTl

n (K(z)− zI)−1 − 1

p
trTl

nD
−1(z)

=
1

p

n∑
j=1

βj(z)y
>
j D
−1
j (z)Tl

n (K(z)− zI)−1 yj −
1

p
trTl

n (K(z)− zI)−1K(z)D−1(z)

=
1

p

n∑
j=1

βj(z)εj ,

where

εj =y>j D
−1
j (z)Tl

n (K(z)− zI)−1 yj − n−1β−1j (z) trTl
n (K(z)− zI)−1K(z)D−1(z)

=y>j D
−1
j (z)Tl

n (K(z)− zI)−1 yj − n−1 trTl
n (K(z)− zI)−1K(z)D−1(z)

(
1 + y>j D

−1
j (z)yj

)
.

We decompose εj = εj1 + εj2 + εj3, where

εj1 =n−1 trTl+1
n (K(z)− zI)−1D−1j (z)− n−1 trTl+1

n (K(z)− zI)−1D−1(z)

εj2 =y>j D
−1
j (z)Tl

n (K(z)− zI)−1 yj − n−1 trTl+1
n (K(z)− zI)−1D−1j (z)

εj3 =− n−1 trTl
n (K(z)− zI)−1K(z)D−1(z)

(
1 + y>j D

−1
j (z)yj

)
+ n−1 trTl+1

n (K(z)− zI)−1D−1(z)

=− n−1 trTl+1
n (K(z)− zI)−1D−1(z)

{
b(z)

(
y>j D

−1
j (z)yj + 1

)
− 1
}
,

using that Tn and (K(z)− zI)−1 commute.

In the following, we will show that for n→∞

E

1

p

n∑
j=1

βj(z)εj,r

→ 0, r ∈ {1, 2, 3}. (5.3)

Similar arguments as given by [3] for their estimate (9.9.13) yield

‖(K− zI)−1‖ . 1.
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For the term εj2, we substitute the matrix D−1j (z) by D̂−1j (z) resulting in an asymptotically negli-

gible error by Lemma 5.4. To be precise, we have for any p × p matrix A independent of yj with

bounded spectral norm

E|y>j D−1j (z)Ayj − y>j D̂
−1
j (z)Ayj | .

(
E‖D−1j (z)− D̂−1j (z)‖2E(y>j yj)

2
) 1

2
= o(1),

and

n−1E
∣∣∣tr(D−1j (z)− D̂−1j (z)

)
A
∣∣∣ . ‖D−1j (z)− D̂−1j (z)‖ = o(1),

where we used Lemma 5.5 and Lemma 5.4. Note that the matrix D̂−1j (z) is independent of yj .

Consequently, we obtain the desired result for εj2 from Lemma 5.3. Regarding εj1, we proceed

similarly as in [4] and apply Lemma 2.6 of [39]. For εj3, we note that

|εj3| =
∣∣∣n−1 trTl+1

n (K− zI)−1D−1(z)
{
b(z)

(
y>j D

−1
j (z)yj − E

[
n−1 trTnD

−1(z)
])}∣∣∣

. |εj31|+ |εj32|+ |εj33|,

where

εj31 = y>j D
−1
j (z)yj − n−1 trTnD

−1
j (z),

εj32 = n−1 trTnD
−1
j (z)− n−1 trTnD

−1(z) = n−1βj(z)y
>
j D
−1
j (z)TnD

−1
j (z)yj ,

εj33 = n−1 trTnD
−1(z)− E

[
n−1 trTnD

−1(z)
]
.

The term εj31 can be treated similarly to εj2 and εj33 similarly to Lemma 5.1. For the remaining

term εj32, we obtain

E|εj32| . n−1E[y>j yj ] = n−1
p∑
i=1

E[Y 2
ij ] =

p

n2
= o(1).

Thus, the convergence in (5.3) holds true, which implies for l ∈ {0, 1}
1

p

(
E trTl

n (K(z)− zI)−1 − E trTl
nD
−1(z)

)
→ 0, n→∞. (5.4)

Using (5.4) with l = 0 and l = 1, we have for n→∞,

1

p
E tr

(
Tn

1 + γnan(z)
− zI

)−1
− E[sn(z)]→ 0, (5.5)

1

p
E trTn

(
Tn

1 + γnan(z)
− zI

)−1
− an(z)→ 0, (5.6)

where an(z) = p−1E[trTnD
−1
j (z)] and γn = p/n. Using |1/(1 + γnan(z))| . 1, we conclude from

(5.6) that

1 +
z

p
E tr

(
Tn

1 + γnan(z)
− zI

)−1
− an(z)

1 + γnan(z)
→ 0.

Combining this with (5.5) yields

1 + zE[sn(z)]− an(z)

1 + γnan(z)
→ 0
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and, by rearranging terms and multiplying with γn,

1

1 + γnan(z)
= 1− γn(1 + zE[sn(z)]) + o(1).

Substituting this in (5.5), we get

1

p
E tr (Tn (1− γn(1 + zE[sn(z)]))− zI)−1 − E[sn(z)]→ 0. (5.7)

Note that (E[sn(z)])n∈N is a bounded sequence for any fixed z ∈ C+, so that, by the Bolzano-

Weierstraß theorem, each subsequence of (E[sn(z)])n∈N contains a converging subsequence. It is left

to show the uniqueness of the limit. Let (E[sk(n)(z)])n∈N and (E[sj(n)(z)])n∈N be two subsequences

of (E[sn(z)])n∈N which converge to m1(z) and m2(z), respectively. Using (5.7), we see that both

m1(z) and m2(z) satisfy (3.1). Since the solution to (3.1) is unique as discussed at the beginning

of this proof, we have m1(z) = m2(z) and finally conclude that

lim
n→∞

E[sn(z)] = s(z),

where s(z) satisfies (3.1). This finishes the proof of Lemma 5.2.

5.3. Quadratic forms. The crucial step in the proof of Lemma 5.2 relies on the concentration

of quadratic forms in yj , which is the content of the following lemma. A proof can be found in

Appendix B.

Lemma 5.3. For j ∈ {1, . . . , n} and n ∈ N, let B(j,n) = B(j) = (B
(j)
ik )1≤i,k≤p ∈ Cp×p be matrices

independent of yj, which satisfiy

sup
n∈N

sup
1≤j≤n

‖B(j)‖ <∞.

Then,

Vn = E
∣∣∣y>j B(j)yj − n−1 trTB(j)

∣∣∣2 → 0,

as n→∞ uniformly in j ∈ {1, . . . , n}.

The assumption that the matrix B(j) is independent of yj is crucial for the proof of Lemma 5.3.

However, when considering the proof of Lemma 5.1, the B(j) involves the resolvent D−1j (z) which

violated the independence assumption due to the complex dependence structure of Y in both rows

and columns. The following lemma shows us how to overcome this obstacle and allows us to

approximate the resolvent by a matrix independent of yj .

Lemma 5.4. It holds for all q ≥ 1, j ∈ {1, . . . , n}

E‖D−11 (z)− D̂−11 (z)‖q = E‖D−1j (z)− D̂−1j (z)‖q → 0,

as n→∞.

Proof of Lemma 5.4. We first note that it is sufficient to show convergence in probability, since the

random variable ‖D−1j (z) − D̂−1j (z)‖ is bounded uniformly in n ∈ N. As a preparation, we derive

that

‖M
(
M(j)

)−1
− I‖ P→ 0. (5.8)
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For this purpose, we note that

‖M
(
M(j)

)−1
− I‖ = max

1≤i≤p

∣∣∣∣∣∣
√

1−
X2
ij∑n

t=1X
2
it

− 1

∣∣∣∣∣∣ ≤ max
1≤i≤p

X2
ij

n∑
t=1

X2
it

≤ max
1≤i≤p

X2
ij

n

(
min
1≤i≤p

1

n

n∑
t=1

X2
it

)−1
.

By assumptions (A1) and (A4), we have that max1≤i≤p n
−1X2

ij
P→ 0 and it follows from Theorem

1 in [40],

λmin

(
1

n
X̃X̃>

)
→ (1−√γ)2 almost surely.

Hence, we conclude using assumption (A1)

min
1≤i≤p

1

n

n∑
t=1

X2
it ≥λmin(T)λmin

(
1

n
X̃X̃>

)
> η almost surely,

for some η > 0 and hence, (5.8) holds true. In order to show that ‖D−1j (z)− D̂−1j (z)‖ = oP(1), we

will approximate the resolvent D−1j (z) by an appropriate matrix. Using

D−1j (z) = M−1
(
S(j) − zM−2

)−1
M−1,

we write

D−1j (z)−
(
I−

(
M(j)

)−1
M

)
D−1j (z) =

(
M(j)

)−1 (
S(j) − zM−2

)−1
M−1

and (
M(j)

)−1 (
S(j) − zM−2

)−1
M−1 −

(
M(j)

)−1 (
S(j) − zM−2

)−1
M−1

(
I−M

(
M(j)

)−1)
=

(
M(j)S(j)M(j) − zM−2

(
M(j)

)2)−1
.

By (5.8), we conclude that ∥∥∥∥(I− (M(j)
)−1

M

)
D−1j (z)

∥∥∥∥ P→ 0,∥∥∥∥(M(j)
)−1 (

S(j) − zM−2
)−1

M−1
(
I−M

(
M(j)

)−1)∥∥∥∥ P→ 0.

Thus, since A−1 −B−1 = B−1(B−A)A−1 for nonsingular matrices A,B, we obtain

‖D−1j (z)− D̂−1j (z)‖ ≤

∥∥∥∥∥
(
M(j)S(j)M(j) − zM−2

(
M(j)

)2)−1
− D̂−1j (z)

∥∥∥∥∥+ oP(1)

≤
∥∥∥D̂−1j (z)

∥∥∥∥∥∥∥∥
(
M(j)S(j)M(j) − zM−2

(
M(j)

)2)−1∥∥∥∥∥
∥∥∥∥z(I−M−2

(
M(j)

)2)∥∥∥∥+ oP(1)

.|z|
∥∥∥∥I−M−2

(
M(j)

)2∥∥∥∥+ oP(1) = oP(1) , n→∞ .

Here, it can be shown similarly to (5.8) that the term in the last line is asymptotically negligible. �
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5.4. Moments of Y. To begin with, we formulate a consequence of the proof of Lemma 5.3 about

mixed second moments of entries of Y belonging to the same column.

Lemma 5.5. It holds for all j ∈ {1, . . . , n}
p∑

i,k=1

E[Y 2
k1Y

2
i1] =

p∑
i,k=1

E[Y 2
kjY

2
ij ] . 1.

Proof. Note that, as n→∞,
p∑

i,k=1

E[Y 2
kjY

2
ij ] =

p∑
k=1

E[Y 4
kj ] + Ṽn,2 +

p(p− 1)

n2
. 1,

where the fact that

Ṽn,2 :=

p∑
i,k=1,
i 6=k

(
E[Y 2

kjY
2
ij ]− n−2

)
= o(1)

follows from (B.3) in the proof of Lemma 5.3. �

Proposition 5.6. For all 1 ≤ j ≤ n, we have

max
1≤k≤p

|E[Yk1]| = max
1≤k≤p

|E[Ykj ]| = o(n−1) , n→∞ .

Proof. To begin with, we truncate the random variable Xk1 using Lemma C.1. Note that

n
∣∣E[Yk1]− E[Yk11{|Xk1| ≤

√
nδn}]

∣∣ = n
∣∣E[Yk11{|Xk1| >

√
nδn}]

∣∣ ≤ nP (|Xk1| >
√
nδn
)

= o(1)

uniformly over 1 ≤ k ≤ p. Combining (2.5) with Fubini’s theorem, we deduce

E[Yk11{|Xk1| ≤
√
nδn}] = E

 1

Γ
(
1
2

) ∞∫
0

Xk1 exp

−s n∑
j=1

X2
kj

 s−
1
2ds1{|Xk1| ≤

√
nδn}


=

1

Γ
(
1
2

) ∞∫
0

E
[
Xk1 exp

(
−sX2

k1

)
1{|Xk1| ≤

√
nδn}

]
E

exp

−s n∑
j=2

X2
kj

 s− 1
2ds

=
1

Γ
(
1
2

) ∞∫
0

E
[
Xk1 exp

(
−sX2

k1

)
1{|Xk1| ≤

√
nδn}

]
(ϕk(s))

n−1 s−
1
2ds,

where

ϕk(s) = E
[
exp

(
−sX2

k1

)]
, s > 0, (5.9)

denotes the Laplace transform of X2
k1, 1 ≤ k ≤ p. Let ε > 0. Lemma C.5 implies that

n|E[Yk11{|Xk1| ≤
√
nδn}]|

≤ n

Γ
(
1
2

) ∞∫
ε

E
[
|Xk1| exp

(
−sX2

k1

)
1{|Xk1| ≤

√
nδn}

]
(ϕk(s))

n−1 s−
1
2ds+ o(1)

≤ n

Γ
(
1
2

) ∞∫
ε

E
[
|Xk1| exp

(
−sX2

k1

)]
(ϕk(s))

n−1 s−
1
2ds+ o(1), (5.10)



LSD FOR LARGE SAMPLE CORRELATION MATRICES 25

where the symbol o(1) holds uniformly in k ∈ N. Invoking Lemma C.2 and Lemma C.3, we conclude

that

lim
n→∞

max
1≤k≤p

nϕnk(ε)

ϕk(ε)
= 0.

Combining this observation with the estimate

n

∞∫
ε

E
[
|Xk1| exp

(
−sX2

k1

)]
(ϕk(s))

n−1 s−
1
2ds ≤

nϕnk(ε)

ϕk(ε)

∫ ∞
ε

E
[
|Xk1| exp

(
−sX2

k1

)]
s−

1
2ds,

the assertion finally follows, since

∞∫
ε

E
[
|Xk1| exp

(
−sX2

k1

)]
s−

1
2ds ≤

∞∫
0

E
[
|Xk1| exp

(
−sX2

k1

)]
s−

1
2ds

= E

 ∞∫
0

|Xk1| exp
(
−sX2

k1

)
s−

1
2ds

 = E

 ∞∫
0

exp (−s) s−
1
2ds

 = Γ

(
1

2

)
.

�

Proposition 5.7. It holds

lim
n→∞

max
1≤k≤p

nE[Y 4
k1] = 0.

Proof. Using (2.5) and Fubini’s theorem, we obtain

nE[Y 4
k1] = n

∞∫
0

sϕ′′k(s)ϕ
n−1
k (s)ds,

where ϕk denotes the Laplace transform of X2
k1 defined in (5.9). Let ε > 0. By Lemma C.4, it

suffices to show that

lim
n→∞

max
1≤k≤p

n

ε∫
0

sϕ′′k(s)ϕ
n−1
k (s)ds ≤ lim

n→∞
n

ε∫
0

s max
1≤k≤p

(
ϕ′′k(s)ϕ

n−1
k (s)

)
ds = 0. (5.11)

In order to apply the dominated convergence theorem, we will first argue that the integrand

max
1≤k≤p

nsϕ′′k(s)ϕ
n−1
k (s), 0 < s < ε, (5.12)

is dominated by an integrable function independent of n ∈ N. For this purpose, note that

ϕ′′k(s) = E
[
X2+δ
k1

(
X2−δ
k1 exp

(
−sX2

k1

))]
. E

[
|Xk1|2+δ

]
s−1+0.5δ . s−1+0.5δ, 1 ≤ k ≤ p,

where the latter is integrable on (0, ε). Here, we used that E[ξ2+δ] < ∞ and that the function

f(x) = x2−δ exp(−sx2) has extremal points at x = ±
√

(2− δ)/2s. Moreover, we obtain

max
1≤k≤p

nsϕn−1k (s) ≤ max
1≤k≤p

e−1

ϕk(ε)(−ϕ′′k(ε))
. 1, 0 < s < ε, (5.13)

where we proceeded similarly as in the proof of Theorem 3.2 in [16] for the first inequality and for

the second one, we used Lemma C.3.
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Finally, we observe that the integrand (5.12) converges to zero. More precisely, we obtain for

0 < s < ε,

(5.12) ≤ max
1≤k≤p

nεϕ′′k(s)ϕ
n−1
k (s) . max

1≤k≤p
nϕn−1k (s) = o(1),

where we used Lemma C.2. Summarizing, an application of the dominated convergence theorem

implies (5.11) and thus finishes the proof of Proposition 5.7. �

Appendix A. Useful results

By Theorem 2.7 in [41], we have the following lemma.

Lemma A.1. Let µ, µ1, µ2, . . . be (random) probability measures with support in R+. Then µn

converges weakly to µ almost surely if and only if sµn(z)→ sµ(z) almost surely for all z ∈ C+.

Lemma A.2. Let (Zn)n∈N be complex valued random variables such that supn∈N |Zn| is bounded

almost surely. If (Yn)n∈N are random variables satisfying

lim
n→∞

E
[ Zn

1 + Zn

]
− E

[ E[Zn|Yn]

1 + E[Zn|Yn]

]
= 0 ,

then Zn − E[Zn|Yn]
P−→ 0, as n→∞.

Proof. The proof is very similar to the proof of Lemma 3.4 in [42] and, thus, is omitted for the sake

of brevity. �

We conclude this section by collecting some useful inequalities for matrices; see, e.g., [3].

Lemma A.3. For a real, symmetric, positive semidefinite p × p matrix C, x ∈ Rp, z ∈ C+ with

Im(z) = v > 0 the following inequalities hold:

‖(C− zI)−1‖ ≤ 1
v , (A.1)

Im
(
z + z tr

(
(C− zI)−1

))
≥ v and Im

(
tr
(
(C− zI)−1

))
> 0 , (A.2)

Im
(
z + zx>(C− zI)−1x

)
≥ v . (A.3)

Appendix B. Proof of Lemma 5.3 in Section 5.3

In this section, we give a proof for Lemma 5.3 which is one of the main ingredients for proving

the main result for the dependent case. Consequently, throughout this section, we work under the

assumptions of Section 3.

Proof of Lemma 5.3. For convenience, we suppress the dependency on j ∈ {1, . . . , n} of the matrix

B(j) = B by our notation, that is, we denote its entries by Bik instead of B
(j)
ik , 1 ≤ i, k ≤ p. We

have (using that diag(T) = I and E[Y 2
kj ] = n−1)

Vn =

p∑
k,l,m,r=1

BklBmrE[YkjYljYmjYrj ]− n−1
p∑

l,k=1

E[YljYkj ]Bkl

p∑
i,m=1

TimBmi

− n−1
p∑

l,k=1

E[YljYkj ]Bkl

p∑
i,m=1

TimBmi + n−2
p∑

i,l,r,k=1

TilBliTkrBrk
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=
7∑
q=1

Vn,q + o(1), (B.1)

where

Vn,1 =

p∑
k=1

|Bkk|2
(
E[Y 4

kj ]− n−1TkkE[Y 2
kj ]
)

=

p∑
k=1

|Bkk|2
(
E[Y 4

kj ]− n−2
)
,

Vn,2 =

p∑
k,l=1,
k 6=l

BkkBll

(
E[Y 2

kjY
2
lj ]− n−1TllE[Y 2

kj ]
)

=

p∑
k,l=1,
k 6=l

BkkBll

(
E[Y 2

kjY
2
lj ]− n−2

)
,

Vn,3 =

p∑
k,l=1,
k 6=l

(
|Bkl|2 +BklBlk

)
E[Y 2

kjY
2
lj ],

Vn,4 =n−1 tr(BT)

p∑
l,k=1,
k 6=l

Bkl
(
n−1Tlk − E[YljYkj ]

)
,

Vn,5 =− n−1
p∑

l,k=1,
l 6=k

E[YkjYlj ]Bkl tr(BT),

Vn,6 =− n−2 tr(B)

p∑
m,i=1,
m6=i

TimBmi,

Vn,7 =

p∑
k,l,m,i=1,
|{k,l,m,i}|≥3

BklBmiE[YkjYljYmjYij ].

For the estimate in (B.1), we used that by (3.2), (3.3) and assumption (A3) we have uniformly in j

p∑
k,l=1,
|{k,l}|=2

∣∣E[Y 3
kjYlj ]

∣∣ =

p∑
k,l=1,
|{k,l}|=2,
k∈I(l)

∣∣E[Y 3
kjYlj ]

∣∣+

p∑
k,l=1,
|{k,l}|=2,
k /∈I(l)

∣∣E[Y 3
kj ]E[Ylj ]

∣∣ ≤ p∑
k,l=1,
|{k,l}|=2,
k∈I(l)

(
E[Y 4

kj ]E[Y 2
lj ]
) 1

2 + o(1) = o(1).

We aim to show that

7∑
q=1

Vn,q = o(1), n→∞. (B.2)

In order to prove (B.2), we first note that Vn,1 = o(1) due to (3.3). For the second summand Vn,2,

we estimate

|Vn,2| .
p∑

k,l=1,
k 6=l

∣∣E[Y 2
kjY

2
lj ]− n−2

∣∣ =

p∑
k,l=1,
k 6=l,

I(k)∩I(l)=∅

∣∣E[Y 2
kj ]E[Y 2

lj ]− n−2
∣∣+

p∑
k,l=1,
k 6=l,

I(k)∩I(l)6=∅

∣∣E[Y 2
kjY

2
lj ]− n−2

∣∣
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=

p∑
k,l=1,
k 6=l,

I(k)∩I(l)6=∅

∣∣E[Y 2
kjY

2
lj ]− n−2

∣∣ = o(1), (B.3)

where we used (3.3) and |I(k) ∩ I(l)| . 1. Regarding Vn,3, we obtain similarly

Vn,3 =
1

n2

p∑
k,l=1,
k 6=l,

I(k)∩I(l)=∅

(
|Bkl|2 +BklBlk

)
+

p∑
k,l=1,
k 6=l,

I(k)∩I(l)6=∅

(
|Bkl|2 +BklBlk

)
E[Y 2

kjY
2
lj ] =: Vn,3,1 + Vn,3,2,

where, with ? denoting the conjugate transpose of a matrix,

|Vn,3,1| ≤n−2
[
tr
(
B(j)

(
B(j)

)?)
+ tr

∣∣∣B(j)B(j)
∣∣∣] = o(1),

|Vn,3,2| ≤ max
1≤k≤p

E[Y 4
k1]

p∑
k,l=1,
k 6=l,

I(k)∩I(l)6=∅

(
|Bkl|2 + |BklBlk|

)
= o(1).

Next, we obtain for Vn,4

|Vn,4| .
p∑

k,l=1,
k 6=l

∣∣E[YkjYlj ]− n−1Tlk
∣∣ =

p∑
k,l=1,
k 6=l,

I(l)∩I(k)=∅

|E[Ykj ]E[Ylj ]|+
p∑

k,l=1,
k 6=l,

I(l)∩I(k)6=∅

∣∣E[YkjYlj ]− n−1Tlk
∣∣

=o(1) +

p∑
k,l=1,
k 6=l,

I(l)∩I(k)6=∅

∣∣E[YkjYlj ]− n−1Tlk
∣∣ = o(1),

where we used (3.2) and the fact that Tlk = 0 follows from I(l) ∩ I(k) = ∅. We also used (A3)

combined with
∣∣E[YkjYlj ]− n−1Tlk

∣∣ = o(n−1), which follows from formula (4) in [30].

Investigating Vn,5 further, we write Vn,5 = Vn,5,1 + Vn,5,2 + Vn,5,3, where

Vn,5,1 =− n−1
p∑

k,l,m,i=1,
|{k,l,m,i}|=4

BklBmiTimE[YkjYlj ],

Vn,5,2 =− n−1
∑

k,l,m=1,
|{k,l,m}|=3

BklBmmE[YkjYlj ],

Vn,5,3 =− n−1
p∑

k,l=1,
k 6=l

BklE[YkjYlj ]

p∑
m,i=1, m 6=i

m∈{l,k} or i∈{l,k}

TimBmi

 .
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Note that due to (3.2)

−Vn,5,3 = n−1
p∑

k,l=1,
k 6=l,
l /∈I(k)

BklE[Ykj ]E[Ylj ]

p∑
m,i=1, m 6=i

m∈{l,k} or i∈{l,k}

TimBmi



+ n−1
p∑

k,l=1,
k 6=l,
l∈I(k)

BklE[YkjYlj ]

p∑
m,i=1, m 6=i

m∈{l,k} or i∈{l,k}

TimBmi



= n−1
p∑

k,l=1,
k 6=l,
l∈I(k)

BklE[YkjYlj ]

p∑
m,i=1, m 6=i

m∈{l,k} or i∈{l,k},
i∈I(m)

TimBmi

+ o(1) = o(1),

where we used (A3) and |E[YkjYlj ]| ≤ n−1 by Hölder’s inequality. Combining Vn,5,1 with the

corresponding summand in Vn,7 (|{k, l,m, i}| = 4), we have

Vn,5,1 +

p∑
k,l,m,i=1,
|{k,l,m,i}|=4

BklBmiE[YkjYljYmjYij ] =

p∑
k,l,m,i=1,
|{k,l,m,i}|=4

BklBmi

(
E[YkjYljYmjYij ]− n−1TimE[YkjYlj ]

)

=

p∑
k,l,m,i=1,
|{k,l,m,i}|=4

BklBmi (E[YkjYljYmjYij ]− E[YijYmj ]E[YkjYlj ]) + o(1)

=

p∑
k,l,m,i=1,
|{k,l,m,i}|=4,

(I(k)∪I(l))∩(I(m)∪I(i))6=∅

BklBmi Cov(YkjYlj , YmjYij) + o(1) = o(1) .

For the last equality, we used that, if one random variable, say Ykj , is independent of Yij , Ykj and

Ylj , then the corresponding covariance term satisfies due to (3.2)

|Cov(YkjYlj , YmjYij)| = |E[Ykj ]E[YijYkjYlj ]− E[Ykj ]E[Ylj ]E[YmjYij ]| = o
(
n−2

)
,

and in this case, we have O(n2) summands. Otherwise, we use the estimate

Cov(YkjYlj , YmjYij) = o
(
n−1

)
and note that we only have O(n) summands in this case due to (A3). Next, we combine Vn,5,2 with

a corresponding summand in Vn,7 (k = l, |{k,m, i}| = 3) and get

Vn,5,2 +

p∑
k,m,i=1,
|{k,m,i}|=3

BkkBmiE[Y 2
kjYmjYij ] =

p∑
k,m,i=1,
|{k,m,i}|=3

BkkBmi

(
E[Y 2

kjYmjYij ]− n−1E[YmjYij ]
)
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=

p∑
k,m,i=1,
|{k,m,i}|=3,
k∈I(m)∪I(i)

BkkBmi Cov(Y 2
kj , YmjYij) (B.4)

=

p∑
k,m,i=1,
|{k,m,i}|=3,
k∈I(m)∪I(i),
I(m)∩I(i)6=∅

BkkBmi Cov(Y 2
kj , YmjYij) +

p∑
k,m,i=1,
|{k,m,i}|=3,
k∈I(m)∪I(i),
I(m)∩I(i)=∅

BkkBmi Cov(Y 2
kj , YmjYij) = o(1),

where we used

|Cov(Y 2
kj , YmjYij)| =

o
(
n−1

)
if k ∈ I(m) ∪ I(i) and I(m) ∩ I(i) 6= ∅,

o
(
n−2

)
if k ∈ I(m) ∪ I(i) and I(m) ∩ I(i) = ∅,

and (3.2), (3.3) as well as assumption (A3).

Considering Vn,6, we decompose

−Vn,6 =n−2
p∑

i,k,m=1,
|{i,k,m}|=3

BkkTimBmi + n−2
p∑

i,k,m=1,
i 6=m,

k=i or k=m

BkkTimBmi

=n−2
p∑

i,k,m=1,
|{i,k,m}|=3

BkkTimBmi + n−2
p∑

i,k,m=1,
i 6=m,

k=i or k=m,
i∈I(m)

BkkTimBmi

=n−2
p∑

i,k,m=1,
|{i,k,m}|=3

BkkTimBmi + o(1),

where we used (A3). Combining this term with the corresponding term in Vn,7 (m = i, |{k, l,m}| =
3) we have

Vn,6 +

p∑
k,l,m=1,
|{k,l,m}|=3

BklBmmE[YkjYljY
2
mj ] =

p∑
k,l,m=1,
|{k,l,m}|=3

BklBmm

(
E[YkjYljY

2
mj ]− n−2Tkl

)
+ o(1)

=

p∑
k,l,m=1,
|{k,l,m}|=3

BklBmm

(
E[YkjYljY

2
mj ]− n−1E[YkjYlj ]

)
+ o(1)

=

p∑
k,l,m=1,
|{k,l,m}|=3,
m∈I(k)∪I(l)

BklBmm Cov(YkjYlj , Y
2
mj) + o(1) = o(1),

where we concluded similarly to (B.4) for the last estimate. Finally, we devote our attention to the

remaining terms in Vn,7, which are∑
k,m,i=1,
|{k,m,i}|=3

BkmBmiE[YkjYijY
2
mj ],

∑
k,m,i=1,
|{k,m,i}|=3

BklBmkE[Y 2
kjYljYmj ],



LSD FOR LARGE SAMPLE CORRELATION MATRICES 31∑
k,m,i=1,
|{k,m,i}|=3

BklBkiE[Y 2
kjYljYij ],

∑
k,m,i=1,
|{k,m,i}|=3

BklBmlE[YkjY
2
ljYmj ].

Exemplarily, we consider∣∣∣∣∣∣∣∣
p∑

k,m,i=1,
|{k,m,i}|=3

BkmBmiE[YkjYijY
2
mj ]

∣∣∣∣∣∣∣∣ ≤
p∑

k,m,i=1,
|{k,m,i}|=3

∣∣BkmBmiE[YkjYijY
2
mj ]
∣∣

=o(n−1)

p∑
k,i=1,
k 6=i

p∑
m=1,
m/∈{k,i}

|BkmBmi| = o(1).

The other terms can be shown to be asymptotically negligible in a similar way. Thus, (B.2) holds

true and since our estimates did not depend on j, (B.2) holds also uniformly in j. �

Appendix C. Properties of the Laplace Transform ϕk

In the following, we investigate the Laplace transform ϕk of X2
k1 further and provide estimates

for integrals involving this function. Throughout this section, we work under the assumptions of

Section 3 if not explicitly stated otherwise.

Lemma C.1. There exists a positive sequence (δn)n∈N independent of 1 ≤ k ≤ p converging to zero

and satisfying

lim
n→∞

n max
1≤k≤p

P(|Xk1| >
√
nδn) = 0.

Proof. Since 1 = E[X̃2
11] = 2

∫∞
0 xP(|X̃11| > x)dx, there exists a positive sequence (δ̃n)n∈N converg-

ing to zero with the property

lim
n→∞

nP(|X̃11| >
√
nδ̃n) = 0.

Moreover, we observe for any y > 0

{|Xk1| > y} ⊂

 ∑
l∈I(k)

|UklX̃l1| > y

 ⊂
 ∑
l∈I(k)

|X̃l1| > y

 ⊂
{

max
l∈I(k)

|X̃l1| >
y

q

}
,

where, by assumption (A3), q := supn∈N max1≤k≤p |I(k)| <∞. Using

max
1≤k≤p

P(|Xk1| > y) ≤ max
1≤k≤p

P
(

max
l∈I(k)

|X̃l1| >
y

q

)
≤ qP

(
|X̃11| >

y

q

)
,

we conclude that the assertion of Lemma C.1 holds true if we set δn = δ̃n/q for n ∈ N. �

The following two lemmas are generalizations of Lemma 3.1 and Lemma 3.5 in [16], respectively.

Lemma C.2. For every s > 0, the Laplace transforms ϕk(s) are uniformly bounded by one, that

is,

sup
n∈N

max
1≤k≤p

ϕk(s) < 1.
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Proof. Assume that there exists some ε > 0 with the property

sup
n∈N

max
1≤k≤p

P(X2
k1 ≤ ε) < 1. (C.1)

Then, it follows for every s > 0

ϕk(s) =E
[
exp(−sX2

k1)I{X2
k1 ≤ ε}

]
+ E

[
exp(−sX2

k1)I{X2
k1 > ε}

]
≤P(X2

k1 ≤ ε) + exp(−sε)P(X2
k1 > ε) = (1− exp(−sε))P

(
X2
k1 ≤ ε

)
+ exp(−sε),

which implies the assertion of Lemma C.2. Thus, it is left to show that (C.1) holds true, which will

be proven by contradiction. Assume that (C.1) does not hold. Then, one can obtain a sequence

(X2
k(n)1)n∈N which converges in probability to zero as n → ∞. Using E|Xk1|2+δ < ∞ uniformly

over 1 ≤ k ≤ p, n ∈ N by assumption (A4), we note that

sup
n∈N

E
[
X2
k(n)11{X

2
k(n)1 > c}

]
≤ 1

cδ
sup
n∈N

E
[
X2+δ
k(n)1

]
→ 0, c→∞,

which shows that the sequence (X2
k(n)1)n∈N is uniformly integrable. Consequently,

lim
n→∞

E[X2
k(n)1] = 0,

which contradicts the fact that E[X2
k1] = 1 for every 1 ≤ k ≤ p, n ∈ N.

�

Lemma C.3. For all s > 0, the Laplace transform ϕk(s) and the absolute value of its derivative

ϕ′k(s) are uniformly bounded away from zero, that is,

inf
n∈N

min
1≤k≤p

ϕk(s) > 0 and inf
n∈N

min
1≤k≤p

(
−ϕ′k(s)

)
> 0.

Proof. We start by proving the first statement. Note that

ϕk(s) ≥E

exp

−s
 ∑
l∈I(k)

|UklX̃l1|

2 ≥ E

exp

−s
 ∑
l∈I(k)

|X̃l1|

2
≥E

exp

−s( q∑
l=1

|X̃l1|

)2
 > 0 uniformly in k ∈ N,

where

q = sup
n∈N

max
1≤k≤p

|I(k)| <∞.

Next, we study the derivative of the Laplace transform. Choose ε > 0 such that (C.1) from the

proof of Lemma C.2 holds true. Then, we obtain the estimate

−ϕ′k(s) = E
[
X2
k1 exp

(
−sX2

k1

)]
= E

[
X2
k1 exp

(
−sX2

k1

)
1{X2

k1 ≤ ε}
]

+ E
[
X2
k1 exp

(
−sX2

k1

)
1{X2

k1 > ε}
]

≥ εϕk(s)P(X2
k1 > ε) > 0,

uniformly over 1 ≤ k ≤ p, n ∈ N, where we used (C.1) and assumption (A3).

�
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Lemma C.4. For all ε > 0, the quantity

Cn(ε) = max
1≤k≤p

n

∞∫
ε

sϕ′′k(s)ϕ
n−1
k (s)ds

converges to zero as n tends to infinity.

Proof. By using Lemma C.3 and Lemma C.2 and considering the estimate

Cn(ε) ≤ max
1≤k≤p

(
nϕnk(ε)

ϕk(ε)

)
max
1≤k≤p

 ∞∫
ε

sϕ′′k(s)ds

 = o(1) max
1≤k≤p

 ∞∫
ε

sϕ′′k(s)ds

 ,

it is sufficient to prove that

max
1≤k≤p

∞∫
ε

sϕ′′k(s)ds <∞.

We obtain via partial integration and dominated convergence
∞∫
ε

sϕ′′k(s)ds = −εϕ′k(ε) + ϕk(ε) . 1,

where the last inequality holds uniformly over k ∈ N. �

Lemma C.5. Assume that E|ξ|2+δ <∞ for some δ > 0. For all ε > 0, the integral

Dn(ε) = max
1≤k≤p

ε∫
0

nE
[
Xk1 exp

(
−sX2

k1

)
1{|Xk1| ≤

√
nδn}

]
(ϕk(s))

n−1 s−
1
2ds

converges to zero, as n tends to infinity.

Proof. Performing a Taylor expansion for exp(−s), s > 0, we get

exp(−s) = 1− (1− exp(−ζ(s))s,

where ζ(s) ∈ (0, s), which implies∣∣E [Xk1 exp
(
−sX2

k1

)
1{|Xk1| ≤

√
nδn}

]∣∣
=
∣∣E [Xk1

{
1−

(
1− exp(−ζ(sX2

k1))
)
sX2

k1

}
1{|Xk1| ≤

√
nδn}

]∣∣
≤
∣∣E [Xk11{|Xk1| ≤

√
nδn}

]∣∣+ sE
∣∣X3

k11{|Xk1| ≤
√
nδn}

∣∣ .
Hence, we get |Dn(ε)| ≤ Dn,1(ε) +Dn,2(ε), where

Dn,1(ε) = max
1≤k≤p

ε∫
0

n
∣∣E [Xk11{|Xk1| ≤

√
nδn}

]∣∣ (ϕk(s))n−1 s− 1
2ds,

Dn,2(ε) = max
1≤k≤p

ε∫
0

nsE
∣∣X3

k11{|Xk1| ≤
√
nδn}

∣∣ (ϕk(s))n−1 s− 1
2ds.

In the following, we will show that Dn,1(ε) = o(1) and Dn,2(ε) = o(1). Using

E
[
Xk11{|Xk1| ≤

√
nδn}

]
= −E

[
Xk11{|Xk1| >

√
nδn}

]
,
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we find the following estimate using Hölder inequality and Lemma C.1∣∣E [Xk11{|Xk1| ≤
√
nδn}

]∣∣ ≤ (E|Xk1|2+δ
) 1

2+δ (P (|Xk1| >
√
nδn
)) 1+δ

2+δ

.
(
P
(
|Xk1| >

√
nδn
)) 1+δ

2+δ = o
(
n−

1+δ
2+δ

)
,

which implies for sufficiently large n

n
1+δ
2+δ
∣∣E [Xk11{|Xk1| ≤

√
nδn}

]∣∣ . 1. (C.2)

Moreover, we have using (5.13)

n
1

2+δϕn−1k (s)s−
1
2 =

(
nsϕn−1k (s)

) 1
2+δ s−

1
2
− 1

2+δ
(
ϕn−1k (s)

)1− 1
2+δ . s−

1
2
− 1

2+δ , (C.3)

which is integrable on (0, ε). Combining (C.2) and (C.3), we may apply the dominated convergence

theorem for the integral in Dn,1(ε) and, by Lemma C.2, we conclude that Dn,1(ε) = o(1).

Investigating Dn,2(ε) further, we see that

E
∣∣X3

k11{|Xk1| ≤
√
nδn}

∣∣ ≤ E |Xk1|2+δ
(√
nδn
)1−δ

. n
1
2
(1−δ)

and

(sn)1+
1
2
(1−δ) ϕn−1k (s) . (sn)1+

1
2
(1−δ) ϕnk(s) ≤ (sn)1+

1
2
(1−δ) ensϕ

′
k(s)

.
(
sn(−ϕ′k(s))

)1+ 1
2
(1−δ)

ensϕ
′
k(s) . 1, (C.4)

where we used Lemma 3.3 in [16] and Lemma C.3. This implies for the integrand in Dn,2(ε)

nsE
∣∣X3

k11{|Xk1| ≤
√
nδn}

∣∣ (ϕk(s))n−1 s− 1
2 . s−

1
2
− 1

2
(1−δ) = s−1+

1
2
δ,

which is integrable on (0, ε). Thus, by an application of the dominated convergence theorem and

Lemma C.2, it follows that Dn,2(ε) = o(1). �
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