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Abstract. Imitating the classical q-expansion principle we use the elliptic

character map to develop the relation between elements in elliptic cohomol-

ogy and their q-series in K-theory. We show that, under certain exactness

conditions, the integrality of elliptic objects is completely controlled by their

characters.

As an application, we obtain an interpretation of the cooperations in elliptic

cohomology as was conjectured by F. Clarke and K. Johnson. It enables us

to give a description of the elliptic based Adams-Novikov spectral sequence in

terms of cyclic cohomology of modular forms in several variables, and to set

up a higher e-invariant with values in N. Katz's ring of divided congruences.

We show how the topological q-expansion principle can be used to equip

elliptic cohomology with orientations which obey various Riemann-Roch for-

mulas.

Introduction

The most fundamental result about the relation between modular forms and

their q-expansions is known as the q-expansion principle. It captures the fact that

the ring over which a modular form is de�ned is determined by its q-expansion coef-

�cients. Modular forms have entered algebraic topology during the past decade by

the construction of elliptic cohomology [34][41][15], a complex oriented generalized

cohomology theory attached to the universal elliptic curve de�ned over the ring of

modular forms. The point of this work is to carry over the q-expansion principle

into the topological framework and to develop the relation between elliptic objects

and their q-series in K-theory.

An algebraic technique due to P. Landweber [31] ensures the existence of a coho-

mology theory corresponding to any elliptic curve which satis�es certain exactness

criteria. For the universal elliptic curves over the ring of modular forms these condi-

tions are most easily veri�ed (1.2.1) by applying the classical q-expansion principle.

We set up a character map for these theories using the method of H. Miller [35].

The topological q-expansion principle (1.2.3) then gives necessary and suÆcient

conditions on the elliptic homology and K-theory of a space X for the integrality

of a homology class to be controlled by its character. Its cohomological version

(1.3.2) provides a description of elements in elliptic cohomology in terms of power

series in virtual bundles over X which rationally behave in a modular fashion. The

assumptions are satis�ed for all Landweber exact theories, many classifying spaces

and Thom spectra.

As a �rst application we identify the K-theory of elliptic cohomology (2.2.5) with

Katz's universal ring of divided congruences [24][25][26]. It allows us to transform
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topological results into algebraic geometrical ones and vice versa (2.2.6) as was

already indicated by F. Clarke and K. Johnson [11]. We then prove their conjecture

[11] on the structure of the cooperations in elliptic cohomology (2.3.1). It can be

viewed as the elliptic equivalent to a well known result of Adams, Harris and Switzer

[6] on the structure of the ring K�K. More generally, we show that the homotopy

ring of an n-fold smash product of the elliptic spectrum can be interpreted as the

ring of integral modular forms (2.3.3) in n variables and that it admits a multivariate

q-expansion principle.

Our results enable us to compute the one-line of the elliptic based Adams-

Novikov spectral sequence (3.1.6). Moreover, we establish a symmetry relation

(3.2.4) to interpret the rich mathematical structure of the two-line as �rst cyclic

cohomology of modular forms in several variables with coeÆcients in Q=Z (3.2.5).

An embedding (3.2.3) in a version of Katz's ring of divided congruences leads to

the de�nition of the f -invariant, the higher relative of the classical e-invariant. It

associates to each even dimensional homotopy class s between spheres an inhomo-

geneous sum of rational modular forms. In the presence of a certain congruence

the f -invariant vanishes and s lies in third Adams-Novikov �ltration. Its relation

to index theorems and to the �-invariant still represents work in progress and will

be given somewhere else.

Finally, we show how the topological q-expansion principle can be used to equip

elliptic cohomology with orientations which obey various Riemann-Roch formulas

(4.1.8). For instance, the original Landweber-Ravenel-Stong elliptic cohomology

admits an orientation which leads to the Witten genus [48] of Spin manifolds with

vanishing p1=2.
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THE TOPOLOGICAL q-EXPANSION PRINCIPLE 3

1. The Topological q-Expansion Principle

1.1. Rational Faithfulness. This section is meant to provide the algebraic con-

text in which the q-expansion principle is going to be developed. We start by looking

at maps of abelian groups whose rational behaviour characterizes their sources. We

then ask under which algebraic operations this property remains stable.

De�nition 1.1.1. A morphism of abelian groups f : X �! Y is rationally faith-

ful if it satis�es one and hence all of the following equivalent conditions:

(i) the diagram

X
��f

��

Y

��
X 
 Q ��f
Q

Y 
 Q

is a cartesian square.
(ii) ker f is a rational vector space and coker f is torsionfree.
(iii) tors X �! tors Y is iso and cotors X �! cotors Y is mono, where the

`cotorsion' cotors X of an abelian group X is X 
 Q=Z.
(iv) the sequence

0 �� X ��(1;f)
(X 
 Q) � Y ��(f
Q;�1)

Y 
 Q

is exact.

There are two faces to the source of a rationally faithful map f . If X is torsion-

free, the elements of X are precisely the elements of its rationalization which lift

under f 
 Q to Y . On the other hand if f 
 Q is injective, we can describe the

elements of X as the elements of Y which rationally lift to X 
 Q.

Example 1.1.2. Let N be a positive integer and R be a torsionfree ring which

contains 1=N and a primitive N 'th root of unity �N . We denote by M
�1(N)
� (R) the

graded ring of modular forms over R for the congruence subgroup

�1(N) = f

�
1 �

0 1

�
mod Ng � Sl2Z:

Let

�
�1(N)

2k :M
�1(N)

2k (R) �! Z((q))
R

f 7! f(q) = f(Tate(qN)=Z((q))
R; !can; �
i

Nq
j)

be the q-expansion ring homomorphism for some choice of N -division point �i
N
q
j

0 � i; j � n� 1 and some weight k 2 N (cf. A.2.2). Then the classical q-expansion

principle (cf. A.1.3, A.2.3) can be stated by saying �
�1(N)
� is rationally faithful on

its homogeneous components.

Lemma 1.1.3. (i) Every isomorphism of abelian groups is rationally faithful.
(ii) The composite of rationally faithful homomorphisms is rationally faithful.

(iii) If the composite X
f
�! Y

g
�! Z is rationally faithful and g is mono or

rationally faithful then f is rationally faithful.
(iv) Let ff� : X� �! Y�g be an inverse system of rationally faithful morphisms

such that the sources X� are torsionfree. Then limX� �! limY� is rationally
faithful.
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(v) Let ff� : X� �! Y�g be a direct system of rationally faithful morphisms.
Then colimX� �! colimY� is rationally faithful. In particular, let M �! N

be a rationally faithful R-module homomorphism between R-modules M;N

and S be a multiplicative set in R. Then M [S�1] �! N [S�1] is rationally
faithful.

(vi) Let X be a 
at module over some ring R and f :M �! N a rationally faithful
R-module map. Then f 
R X :M 
R X �! N 
R X is rationally faithful.

(vii) Let M be a module over a Noetherian ring R such that M is torsionfree as
an abelian group. Then the completion map

c :M 
R R[[q]] �!M [[q]]

is mono and rationally faithful.

Proof. The �rst three claims are immediate from well known properties of cartesian

squares. To prove (iv) we use the second characterization of rational faithfulness

in 1.1.1. Sources X� and targets Y� are torsionfree. Hence, it is enough to show

that the map induced in cortorsion is mono. In the diagram

cotors (limX�) ��

��

cotors (lim Y�)

��
lim(cotorsX�) �� lim(cotorsY�)

the bottom map is a monomorphism. If we know that the left vertical arrow is

another monomorphism, we are done. Let (x�) 
 1=N 2 (limX�) 
 Q represent

an arbitrary element in its kernel. Then x� 
 1=N = x
0
� 
 1 for unique elements

x
0
�
2 X�. The sequence (x0

�
) de�nes an element in (limX�) which agrees with

(x�)
 1=N in (limX�)
 Q.
(v) is immediate from 1.1.1(iv) because exactness is preserved by direct limits.

The statement (vi) follows trivially from 1.1.1(iv) since

(M 
 Q) 
R X �= (M 
R X)
 Q:

(vii) We �rst show the injectivity of the completion map for any (not necessarily

torsionfree) module N . Without loss of generality we may assume that N is �nitely

generated since every module is the direct limit of its �nitely generated submodules.

Now the Artin-Rees lemma applies [7] and states that the completion map for N

is iso. It follows that the completion map for M is monic. Also, for every prime p

the completion map for M=p is monic. It can be factorized in the form

M=p
R R[[q]] = (M 
R R[[q]])=p
c=p

�! (M [[q]])=p �! (M=p)[[q]]

and so c=p is monic. Thus, Tor(coker c;Z=p) vanishes in the long exact sequence

induced by Tor( ;Z=p): That is, coker c is torsionfree and the assertion follows

from 1.1.1(ii).

1.2. The Elliptic Character in Homology. We are now able to give more ex-

amples of rationally faithful homomorphisms. The universal elliptic curves give rise

to formal groups over the ring of modular forms

M
�1(1)
� =

def

M
�1(1)
� (Z[1=6])

M
�1(N)
� =

def

M
�1(N)
� (Z[1=N; �N]) for N � 2:
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In appendix A we have chosen parameters such that the exponentials f in these

charts take the explicit form

f(z) = �2p(z; �)=p0(z; �) for N = 1

f(z) =
�(z; �) �(�2�i=N; �)

�(z � (2�i=N); �)
for N � 2:

Formal group laws are classi�ed by Lazard's universal ring. In algebraic topology

this ring is presented by the complex cobordism ring 
U� due to the work of Quillen

[1][39]. Hence, each formal group law generates a genus, so there arises a ring

homomorphism

MU� = 
U� �!M
�1(N)
� :

The genera induced by the exponentials f are known as Hirzebruch genera for levels

N � 2 and coincide with the Landweber-Ravenel-Stong genus for N = 2 (cf. [18]).

Theorem 1.2.1. [34][15] There are complex oriented ring spectra E�1(N) s.t.

E
�1(N)
� X �=M

�1(N)
� 
MU� MU�X

are natural isomorphisms. E�1(N) is unique up to unique isomorphisms in the stable
homotopy category.

Level 2 elliptic cohomology was originally de�ned in [34] and [32]. The level 1

case is treated in [9] and an alternative proof was given in [20]. See also [15] for the

existence and uniqueness statement of the corresponding ring spectra.

The existence of elliptic cohomology for higher levels can be shown as in [15] with

the help of results from algebraic geometry. We are able to give an elementary proof

below which only uses the q-expansion principle. In fact, it also shows that there

is an elliptic cohomology theory associated to any congruence subgroup � � Sl2Z
for which a q-expansion principle is available.

Recall that the coeÆcient ring of complex K-theory is the ring K� = Z[v
�1] of

�nite Laurent series in the Bott class v 2 KS2. It is convenient to de�ne

K
�1(N)
� =

def

�
K�[1=6] N = 1

K�[�N ; 1=N ] N � 2
:

Then for any choice of cusp and N � 2, the q-expansion induces a map

E
�1(N)

2k
�=M

�1(N)

2k �! Z((q))
Z[1=N; �N] � Z[1=N; �N]((q)) �= K
�1(N)

2k ((q))

which we simply call �
�1(N)

2k again. The case N = 1 is treated similarly. That is, we

use the coeÆcient ring ofK-theory to keep track of the grading. In the sequel it will

not be necessary to refer to the level again and we let � be any of the congruence

subgroups �1(N).

Lemma 1.2.2. ��� : E�
� �! K

�
� ((q)) is rationally faithful.

Proof. ��� is the direct sum of rationally faithful maps.

Proof of 1.2.1. We have to verify the Landweber exactness criterion [31] for the

MU�-modules M�
� . Let p be a prime and uk the the coeÆcient of xp

k

in the [p]-

series of the formal group law. Then the regularity of sequence (p; u1; u2; : : : ) is to

be shown. First u0 = p is not a zero divisor sinceM�
� is torsion free. Next, we claim
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that multiplication by u1 is injective modulo p. For that we use the injectivity of

the q-expansion map modulo p

E
�
�
=p ,! K

�
�
((q))=p ,! (K�

�
=p)((q))

which is an immediate consequence of the lemma as the cokernel of ��� is torsionfree.

Hence, it is enough to verify that u1 does not vanish identically modulo p. In

A.2.6 we provide an explicit strict isomorphism � between the formal group law

�
�
� F̂� of the universal elliptic curve viewed over the ring of power series and the

multiplicative formal group law Ĝm. Let u0
k
denote the corresponding classes for

Ĝm. Then we compute modulo p

�(
P
k
�
�
�
(uk)x

p
k

) � �([p]
��
�
F̂�
(x)) � [p]

Ĝm
(�(x)) �

P
k
u
0

k
(�(x))p

k

and a comparison between coeÆcients gives

�
�
� (u1) � u

0

1 = v
p�1

:

In particular, u1 is even invertible over the ring of power series. Finally, it is

suÆcient to verify that u2 is invertible modulo (p; u1). For that we may use the

well known proof by contradiction due to J. Franke: Assume u2 is not invertible

modulo (p; u1) and let m be a maximal ideal containing p; u1 and u2. Then the

elliptic curve over the residue �eld k = M
�
� =m has height greater than two which

is impossible (cf. [46]).

H. Miller [35] has shown how to make the q-expansion into a map of ring spectra

and we recall his work here. Let us be given graded formal group laws F over a

ring R and F 0 over S, a ring homomorphism � : R �! S and a strict isomorphism

� : F 0 �! �F . Assume further that (R;F ); (S; F 0) satisfy the Landweber exactness

conditions. Then there is a natural transformation �� s.t. on X = � we have �� = �

and, if L is a line bundle over X and eR; eS are the corresponding Euler classes of

L, then ��(eR) = �(eS). � is not a map of MU�-modules. However, we may split

�� into two parts

R
F MU�X
�
1
�! S 
�F MU�X

(id;��)
�! S 
F 0 MU�X

in which the �rst one is. The last two objects are entirely the same theory but

with di�erent orientations. The isomorphism � guarantees that �F is a Landwe-

ber formal group. In the case of our ring homomorphims �� we give K�((q)) the

multiplicative (Todd) orientation, which is isomorphic to the Tate orientation by

A.2.6. Note that K�
� (X)((q)) is not represented by a spectrum. However, there is a

Landweber theory which agrees with K�
� (X)((q)) for �nite spectra X and serves as

intermediary in

E
�
� (X)

�
�
�

1

�! K
�
� ((q)) 
K�

�

K
�
� (X)

c
�! K

�
� (X)((q))

for arbitraryX . (It is a close relative of the function spectrum F (BS1;K�) = K
�
S1
.)

The completed ��� is the elliptic character. At the low risk of confusion we keep

the old notation ��� .

We come now to the main result of this section, which we call the topological

q-expansion principle. It gives an equivalence between the Landweber exactness

criteria and the q-expansion principle.
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Theorem 1.2.3. Let X be a spectrum. The elliptic character

�
�
� : E�

�X �! K
�
�X((q))

is rationally faithful if the following two conditions are satis�ed:

(i) E�
�
X and K�

�
X are torsionfree

(ii) for each prime p the multiplication by the Hasse invariant u1 on E
�
�X=p is

monic.

Moreover, if X has the weak homotopy type of a countable CW -spectrum then the
converse statement holds.

Proof. Let the two conditions be satis�ed. Then the map

�
�
�

 1 : E�

�
X �= E

�
�

E�

�

E
�
�
X �! K

�
�
((q)) 
E�

�

E
�
�
X

is an inclusion by assumption (i) since it is rationally monic. Moreover, it remains

injective modulo p. To see this, note that by assumption (ii) we may as well replace

E
�
�X by

u
�1
1 E

�
�X =

def

colim(E�
�X

u1
�! E

�
�X

u1
�! : : : )

and show that for any �nite subspectrum Y � X the map

u
�1
1 (��� 
 1)=p : u�11 E

�
� Y=p �! K

�
� ((q)) 
E�

�

E
�
� Y=p

is an inclusion. Furthermore, if we write M(p) for the mod p Moore space and put

Z = Y ^M(p), then by the universal coeÆcient theorem it suÆces to verify the

injectivity of

u
�1
1 (��� 
 1) : u�11 E

�
�Z �! K

�
� ((q))
E�

�

E
�
�Z:

A theorem of P. Landweber [31] says that MU�Z is a �nitely presented MU�MU -

comodule and admits a �ltration of MU�MU -subcomodules

MU�Z = F0 � F1 � � � � Fs = 0

so that for 0 � i < s, Fi=Fi+1 is isomorphic to the comodule

MU�=(u0; u1; � � � ; un)

for some n which will in general depend on i. Tensoring the �ltration with the

Landweber exact MU�-modules u�11 E
�
� and K

�
� ((q)) 
E�

�

E
�
� gives a �ltration of

source and target of u�11 (��� 
1). Moreover, the dummy version of the elliptic char-

acter u�11 (��� 
1) respects this �ltration as it is a map of leftMU�-modules. Hence,

without loss of generality we may assumeE�
�Z to be of the form E

�
� =(u0; u1; : : : ; un)

for some n. Then in the only non-trivial cases n = �1 and n = 0 the map in ques-

tion is an inclusion as a consequence of the q-expansion principle 1.2.2.

We now conclude that

�
�
� : E�

�X �! K
�
� ((q)) 
E�

�

E
�
�X

�= K
�
� ((q)) 
E�

�

E
�
� 
MU� MU�X

�= K
�
� ((q)) 
TateMU�X

(id;�)
�= K

�
� ((q)) 
ToddMU�X

�= K
�
� ((q)) 
K�

�

K
�
� (X):

is rationally faithful as follows: In the long exact sequence induced by Tor�(�
�
� ;Z=p)

we have

Tor1(coker�
�
� ;Z=p) = 0
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since ��
�
=p is monic and K�

�
((q)) 
K�

�

K
�
�
(X) is torsionfree. Thus, coker��

�
is tor-

sionfree and 1.1.1(iii) applies.

Finally, the composite with the completion

K
�
� ((q)) 
K�

�

K
�
� (X)

c
�! K

�
� (X)((q))

gives the elliptic character. The assertion now follows from 1.1.3(vii) after a local-

ization at q since K�
� is Noetherian and K�

�X is torsionfree.

To show the converse, let X be of the weak homotopy type of a countable CW -

spectrum and �
�
�
be rationally faithful. Then the induced map in torsion is an

isomorphism. Hence, condition (i) is a consequence of the fact that torsE�
�X is

countable (cf. [13]VII 3) whereas each torsion element in K�
�
X generates uncount-

ably many torsion series in K
�
�X((q)). Furthermore, ��� is monic modulo p as its

cokernel is torsionfree. Hence, mod p multiplication by u1 is monic as it is invertible

in the ring of power series (K�
�
X=p)((q)).

Corollary 1.2.4. The elliptic character

�
�
�
: E�

�
X �! K

�
�
X((q))

is rationally faithful if E�
�X is a 
at E�

� -module.

Proof. Multiplication by p on E�
� and K�

� ((q)) and by u1 mod p on E�
� are monic

and remain so after tensoring with the 
at module E�
�X over E�

� . Since K� is a

direct summand in K�((q)) we also veri�ed the absence of torsion in K�
�X so that

1.2.3 applies.

Corollary 1.2.5. The elliptic character ��� : E�
� F �! K

�
� F ((q)) is rationally faith-

ful for any Landweber theory F .

This is a consequence of

Lemma 1.2.6. Let E and F be Landweber exact theories. Then E�F is a 
at

E�-module.

Proof. The lemma is well known but for the reader's convenience we repeat the

argument. Let M �! N �! O be an exact sequence of E�-modules and hence

of MU�-modules. Then tensoring with the 
at MU�-module MU�MU yields an

exact sequence

M 
MU� MU�MU �! N 
MU� MU�MU �! O 
MU� MU�MU

of MU�MU -comodules. The comodule structure of each object comes from

MU�MU . If we tensor the exact sequence with F� from the right it still remains

exact since

TorMU�MU

1 (F�; O 
MU� MU�MU) = 0:

To see the vanishing of Tor, one writes O
MU� MU�MU as direct limit of �nitely

presented comodules as in [36] 2.11 and uses the Landweber exactness of F�. Finally,

M 
MU� MU�F
�=M 
E� E�F for any E�-module M .

There are interesting universal examples which are not Landweber theories. Let

MString = MO h8i be the Thom spectrum of the 7-connected cover of BO. (The

word `String' in this context is due to H. Miller and will be explained later.)
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Corollary 1.2.7. The elliptic character

�
�
� : E

�
�MString[1=2] �! K

�
�MString[1=2]((q))

is rationally faithful.

Proof. Let p � 5 be a prime. Ravenel and Hovey [21] have shown that the reduced

powers in the Steenrod algebra act freely on the Thom class in the mod p cohomol-

ogy of MString. This means MString is a wedge of BP 's when localized at p. In

particular E�
�MString(p) is a 
at E�

� module and 1.2.4 applies.

3-locally MString ^X splits into a wedge of BP 's where X is a �nite spectrum

with cells in dimension 0,4 and 8 [21]. It suÆces to prove that E�
�X is a free

E
�
� -module, for then E

�
� (MString ^ X) is just E�

�MString 
E�
�

E
�
�X , and hence

E
�
�MString is 
at. Let Y be the bottom two cells. Then we have a long exact

sequence

: : : �! E
�
� S

3
�! E

�
� S

0
�! E

�
� Y �! E

�
� S

4
�! E

�
� S

1
�! : : :

and E
�
�
S
0 is evenly graded. It follows that the sequence is actually short exact,

and then it has to split since E�
� S

3 is free. Similarly, we have a long exact sequence

: : : �! E
�
� S

7
�! E

�
� Y �! E

�
�X �! E

�
� S

8
�! E

�
��Y �! : : :

and the same argument applies. So E�
�X is free, and we are done.

1.3. The Elliptic Character in Cohomology. We now turn to the picture in

cohomology. For �nite spectra the topological q-expansion principle gives criteria

for the rational faithfulness of the elliptic character by applying Spanier-Whitehead

duality. However, we are mainly interested in in�nite spectra.

De�nition 1.3.1. Let F;G be contravariant functors from a category D to abelian
groups. A natural transformation � : F �! G is pro-rationally faithful if

limX2D F (X) ��

��

limX2D G(X)

��
limX2D(F (X)
 Q) �� limX2D(G(X)
 Q)

is a cartesian square.

Let X;F;G be spectra and � : F �! G be a map. We say �� : F �X �! G
�
X is

pro-rationally faithful if it is so as natural transformation on the category of �nite

subspectra of X .

Theorem 1.3.2. The elliptic character ��� : E��X �! K
�

�X((q)) is pro-rationally

faithful if E�
�X(p) is a projective E�

� -module for each rime p.

Corollary 1.3.3. The elliptic character

�
�

� : E��MString[1=2] �! K
�

�MString[1=2]((q))

is pro-rationally faithful.

We prepare the proof of 1.3.2 with three lemmas.

Lemma 1.3.4. The p-local elliptic character

�
�

�(p) : E�
�

(p)X �! K�
�

(p)X((q))

is pro-rationally faithful if E�
(p)�

X is a projective E�
(p)�

-module.
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Proof. Let E be an evenly graded Landweber exact theory such that E�X is a

projective E�- module. Then the universal coeÆcient spectral sequence [3] [15]

E
p;q

2 = Ext
p;q

MU�
(MU�X;E�) =) E

p+q
X

collapses and the edge homomorphism E
�
X �! HomMU�(MU�X;E�) is an iso-

morphism. In particular, lim1 vanishes since it is the kernel of

E
�
X � lim

Y�X

E
�
Y �! lim

Y�X

HomMU�(MU�Y;E�) �= HomMU�(MU�X;E�):

We may take E to be E�
(p)
, K�

(p)
((q)) or their rationalizations as with E�

�X(p) also

K
�
�
((q)) 
E�

�

E
�
�
X(p)

�= K
�((q))�X(p)

are projective. Hence, when evaluating the left exact functor HomMU�(MU�X; )

on the rationally faithful �� of 1.2.2, we obtain the cartesian square

HomMU�
(MU�X;E

�
� (p))

��

��

HomMU�
(MU�X;K

�
� (p)((q)))

��
HomMU�

(MU�X;E
�
�

 Q) �� HomMU�(MU�X;K

�
� (p)((q)) 
 Q)

in which each corner may be replaced by limY�X E
�
Y . That is, there is a pro-

rationally faithful map. However, it is not yet the elliptic character. To �nish the

proof we have to compose it with the natural automorphism on limY�X K
�

�Y(p)((q))

induced by (id; �) for each K�

�Y ((q))
�= K

�
�DY ((q)) as we did in 1.2.3. (Here DY

denotes the Spanier-Whitehead dual of Y .)

Lemma 1.3.5. Let A be an abelian group and P (A) be the set of all primes p s.t.
there is an element of order p in A. Assume P (A) is �nite. Then the diagonal map

A
�
�!

Q
p
A(p)

is rationally faithful. Moreover, the completion

(
Q
p
A(p))
 Q �!

Q
p
(A
 Q)

is mono.

Proof. We use the third characterization of rational faithfulness in 1.1.1. There is

a splitting Q
p
A(p) =

L
p2P (A)A(p) �

Q
p 62P (A)A(p)(y)

in which the second summand is a torsion free group. Now it is clear that the torsion

parts map isomorphically. It remains to show the monomorphy in cotorsion. For

that compute

cotorsA = A
 Q=Z =
L

p
A
Z=p1 =

L
p
A(p) 
 Q=Z =

L
p
cotorsA(p)

Thus, the composition of cotors� with cotors
Q
A(p) �!

Q
cotorsA(p) is mono as

it is just the inclusion of the sum in the product of cotorsions. The last statement

is easily veri�ed by using (y).

Lemma 1.3.6. Let M be a �nitely generated module over a Noetherian ring R.
Then P (M) is �nite.
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Proof. Every p 2 P (M) lies in some associated prime ideal ap of M . That is, there

exists an element xp 2M whose annihilator is the prime ideal ap. Any other prime

q 2 P (M) is not contained in ap as xp has precise order p. We conclude that there

are at least as many associated prime ideals in M as primes in P (M). It is a well

known fact that the set of associated primes of a �nitely generated module over a

Noetherian ring is �nite (cf. [28]VI 1.4, 4.9 and 5.5).

Proof of 1.3.2. From the �rst lemma we know that

��(p) : (E
�

�Y )(p) �! (K�

�Y )(p)((q))

is pro-rationally faithful on the category of �nite subspectra Y of X . Let us now

be given a sequence (zY ) 2 limY K
�

�Y ((q)) which rationally lifts to a sequence

(yY ) 2 limY E
�

�Y 
 Q. Then for every prime p there is a unique sequence (xY
(p)
) 2

limY (E
�

�Y )(p) which agrees with (yY ) rationally and whose character is (zY
(p)
) 2

limY (K
�

�Y )(p)((q)). Thus, if we apply 1.3.5 to (xY
(p)
) 2

Q
p
(E��Y )(p) for each �nite

complex Y , we �nd a unique sequence (xY ) 2 limY E
�

�Y with the desired properties.

This is possible since E��Y is �nitely generated over the Noetherian ring E��.

2. Divided Congruences and Multiple Expansions

2.1. Formal Characters. In the previous sections we understood the elliptic co-

homology of various spectra by exploring the properties of the elliptic character

map. It is useful to generalize this concept slightly.

De�nition 2.1.1. A multiplicative transformation � : R �! S between Landweber
exact theories is a formal character if � is monic in homotopy.

Obviously the elliptic character and the Chern character are formal characters.

More examples are given by the following simple

Lemma 2.1.2. Assume the formal groups F over a ring R and F 0 over S satisfy
the Landweber exactness conditions. Then so does F over R�S and the natural
transformation R �! R ^ S is a formal character.

Proof. We have to verify the sequence (u0; u1; u2; : : : ) to be regular in R�S. As

(R�; F ) suÆces the Landweber exactness conditions, un is not a zero divisor in

R�=(u0; u1 : : : ; un�1). Hence, when tensoring with the 
at R�-module R�S (cf.

1.2.6), uk does not divide zero in R�S=(u0; u1; : : : ; un�1) and (R�S; F ) is Landweber

exact. In particular, we have that R �! R�S �! R�S 
 Q �= R
 S 
 Q is monic

which shows the second claim.

In case S is rational stable homotopy SQ and F 0 is the additive formal group one

obtains the Dold character

d : R�X �! (R ^ SQ)�X �= R� 
 ��X 
 Q:

which is an inclusion if X is Landweber exact.

Consequently, if one wishes to determine the structure of the Hopf algebroid

R�R of cooperations, one can do so by embedding R�R in the trivial Hopf algebroid

R� 
R� 
 Q via the Dold character. Before carrying out this program in the case

of elliptic cohomology, we compute the ring K�E
�.
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2.2. The Ring of Divided Congruences. K�
E
�
�

Q is concentrated in even

dimensions and can be identi�ed with the ring of inhomogeneous rational (mero-

morphic) modular forms
P
fi where fi has weight i. We omit the redundant powers

of the Bott class v to keep the notation easy.

Proposition 2.2.1. K�E
� is the ring of sums

P
fi as above which satisfy the

following conditions: For each non zero integers k and for each choice of cusp the
sum of q-series

P
k
�i
fi(q) takes coeÆcients in Z�[1=k] where Z� = �0K

�.

Proof of 2.2.1. We �rst show that the integrality condition is necessary. For that

recall the Adams operations  k which were originally constructed as unstable op-

erations in [2]. To obtain a map of spectra one has to introduce coeÆcients

 
k : K �! K[

1

k
]:

Alternatively,  k may be de�ned as in section 1 by the ring homomorphism which

maps v to kv and the strict isomorphism

1

k
[k] : Ĝm �!  

k
Ĝm:

Here [k] denotes the k�series of the multiplicative formal group law Ĝm. The

Adams operations  k ^ 1 act on K0E
�[1=k] by  

k(
P
fi) =

P
k
�i
fi. Hence, if

� : K ^ K �! K denotes the multiplication map in K-theory, then

��((q))�
�
� (
P
k
�i
fi) is the q-expansion of the whole sum and it takes coeÆcients

in Z�[1=k].
The converse statement is a question about rational faithfulness. By 1.2.5 we

know that

�
�
0 : K0E

� �= E
�
0K �! K

�
0K((q))

is rationally faithful. Furthermore, we see from 2.2.2 below that

�0(�(1 ^  
k))((q)) : K�

0K((q)) �! (
Y

k2Z�0

Z�[
1

k
])((q)) �=

Y
k2Z�0

(Z�[
1

k
]((q)))

is rationally faithful as well. Now the composite of the two homomorphisms reveals

that K0E
� consists of sums

P
fi which satisfy the stated condition.

Lemma 2.2.2. The map

�0(�( 
k
^ 1)) : K0K

�
�!

Y
k2Z�0

(Z�[
1

k
])

is rationally faithful.

Proof. Recall the classical result of Adams, Harris and Switzer [6] [1] which identi-

�es K�K with the set of �nite Laurent series in K�K 
 Q satisfying

f(t; kt) 2 Z[t; t�1; 1=k] for all k 2 Z� 0:

The conditions can be reformulated to the equivalent statement that

K�K
1^ k

�!

Y
k2Z�0

K�K[
1

k
]
(��)
�!

Y
k2Z�0

K�[
1

k
]
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is rationally faithful. Now let � be the congruence subgroup �1(N) for some N > 1.

Then

K�K 
Z[�N;
1

N
] �! (

Y
k2Z�0

�0K[
1

k
])
Z[�N;

1

N
] �= (

Y
k2Z�0

�0K[�N ;
1

k
])
Z[

1

N
]

is rationally faithful by 1.1.3(vi). It remains to show the rational �delity of the

completion

(
Y

k2Z�0

�0K[�N ;
1

k
])
Z[

1

N
] �!

Y
k2Z�0

(Z�[
1

k
])

which is easily veri�ed. The case N = 1 is similar.

Example 2.2.3. For n > 1 and any congruence subgroup � de�ne the elements

j2n = (B2n=4n)(1�E2n) 2 K0E
�

 Q:

The q-expansion of j2n is integral (cf. A.1). In order to check if j2n actu-

ally represents an element in K0E
�, it suÆces to show the Z[1=k]-integrality of

(B2n=4n)(1 � k
�2n

E2n) for all non zero integers k. The only term in question is

the coeÆcient of q0

(1� k
�2n)B2n=4n:

Let

�
4n
2 Ext1;4n

K
= f� 2 �4nK 
 Q : �L(�)� �R(�) 2 K4nKg=�4nK

be the class with e-invariant B2n=4n. Then

�(1 ^  k)(�L(�) � �R(�)) = �(�L(v
�2n

B2n=4n)� �R((kv)
�2n

B2n=4n))

= v
�2n

B2n=4n� (kv)�2nB2n=4n

= v
�2n(1� k

�2n)B2n=4n

lies in �4nK[1=k] and coincides with the 0-coeÆcient under the periodicity map

�4nK
�= �0K

�= Z:

Hence, we have shown j2n 2 K0E
�.

The condition in 2.2.1 has a surprising re�nement.

Lemma 2.2.4. Let
P
fi be an inhomogeneous sum of rational modular forms.

Then the following statements are equivalent:

(i)
P
fi lies in K0E

�.
(ii)

P
fi(q) takes coeÆcients in K0K

�.
(iii)

P
k
�i
fi(q) takes coeÆcients in Z�[1=k] for all non zero integers k.

(iv)
P
h
i
fi(q) takes coeÆcients in Z�[1=h] for all non zero integers h.

(v)
P
(h
k
)ifi(q) takes coeÆcients in Z�[1=hk] for all non zero integers h; k.

(vi)
P
a
i
fi(q) takes coeÆcients in Z�

(p)
for all prime p - N and a 2 Z�

(p)
.

(vii)
P
a
i
fi takes coeÆcients in Z�

p
for all prime p - N and all a 2 Z�

p
.

(viii)
P
fi(q) takes coeÆcients in Z�.
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Proof. The equivalences (i) () (ii) () (iii) have already been established in

1.2.5 and 2.2.1. (iv) and (v) are equivalent to the previous by the symmetry

K0K
� �= K

�
0K and 2.2.2. (vi) is equivalent to (v) since\

p-hkN

Z�(p) = Z
�[

1

hk
]:

Next, the implication (vii) =) (vi) follows from Z�
(p)
� Z�

p
and Z(p) = Zp\ Q. As

(viii) is a trivial consequence of (iii), we are left with the statement (viii) =) (vii)

which is the hard part. Let Fp[�N ] = Fpd be the splitting �eld of (xN �1) of degree

d (the order of p in (Z=N)�). Then Z�
p
is the ring of Witt vectors of Fpd . Now

the assertion is a consequence of 1.7 in [23]. An alternative proof is provided in the

appendix B.1.4.

Theorem 2.2.5. The ring K0E
� coincides with the ring of divided congruences

D
� of N. Katz [23]. In other words, for any choice of cusp

���
�
: K�E

� �= E
�
�
K

�
�
�

�! K
�
�
K((q))

��((q))
�! K

�
�
((q))

is rationally faithful.

Proof. K0E
� is the ring of sums

P
fi of rational modular forms such that

P
fi(q)

takes coeÆcients in Z� by 2.2.1 and 2.2.4.

The theorem is a q-expansion principle for trivialized modular forms in which form

it is due to N. Katz [23]. Katz identi�ed the ring of divided congruences with the

coordinate ring of the moduli space of elliptic curves together with isomorphisms

of their formal groups with the multiplicative group. It also can be found in [11].

As a consequence we obtain a proof of a well known result of Serre [43] [11]:

Corollary 2.2.6. The denominator of B2k=2k is the largest one (away from N)
occuring as constant term of any modular form for �1(N) of weight 2k with q�series
in Q +Z�((q)) � C ((q)).

Proof. Let f be a modular form such that

f(q)� q
0(f) 2 Z�((q))

where q0(f) denotes the 0-coeÆcient of its q-expansion. Then f � q
0(f) lies in

K0E
�. Thus q0(f)(v�2k � 1) represents an element in Ext

1;4n

K[1=N ]
which is well

known to be a cyclic group of order equal to the denominator of B2k=2k.

We also get an elliptic form of the Hattori-Stong theorem for free:

Corollary 2.2.7. The K-Hurewicz map E�
� �! K�E

� is rationally faithful.

Proof. immediate from 1.1.3(vii), 1.2.2 and 2.2.5.

2.3. Multivariate Modular Forms and Expansions. We are now prepared to

give a description of E�
�E

� in terms of integral modular forms in two variables and

a q-expansion principle for such forms.

The theory K
� splits into a direct sum of K[1=N ]-theories. Using 2.2.5 we

conclude that the elliptic character

~��� : K�
�E

� �= K
�
� 
K�

K�E
� K

�
�

���

�

�! K
�
� 
K�

(K�
� ((q)))

�= (K�
� 
K�

K
�
� )((q))

is a rationally faithful map of left K�
� -modules.
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Let
Vn

E denote a ^-product of n copies of a theory E. Likewise we use the

notation
Nn

R
M for a product of modules M over a ring R. Then we may consider

the (q0; q1; : : : ; qn)-expansion

��(
Vn+1

E
�) �= E

�
�
(
Vn

E
�)

�
�
�

�! K
�
�
(
Vn

E
�)((q0)) �=

Nn

K�
�

K
�
�
E
�((q0))

N
~��
�
((q0))

�! (
Nk=1;::: ;n

K�
�

(K�
� 
K�

K
�
� )((qk)))((q0))

c
�! (

Nn+1

K�

K
�
� )((q0; : : : ; qn))

Hence, in even dimension the (q0; : : : ; qn)-expansion takes coeÆcients in the tensor

product

Z(n+1)� =
def

N
n+1

Z�

which is simply Z[1=2] for � = �1(2). For this congruence subgroup and the case

n = 1 the following multivariate q-expansion principle was conjectured by F. Clarke

and K. Johnson in [11].

Theorem 2.3.1. The (q0; q1; : : : ; qn)-expansion is rationally faithful. That is,

��(
Vn+1

E
�) is given by sums

P
f0 
 f1 
 : : :
 fn of products of rational (mero-

morphic) modular forms with integral (q0; : : : ; qn)-expansion.

Proof. The �rst map ��� in the above is rationally faithful by 1.2.5. Next, we observe

that the tensor product of elliptic characters is the composite of n maps of the form

1
 : : : 
 1 
 ~��� 
 1 
 : : : 
 1 each of which is rationally faithful by 1.1.3(vi) and

the discussion above. Hence, the product
N

~��� ((q0)) is so by 1.1.3(iv). Finally, we

use 1.1.3(iv), (vii) and an obvious induction to show that the completion map is

rationally faithful.

There is a modular interpretation of the ring ��
V
n
E
�.

De�nition 2.3.2. A test object in n variables over a ring R is a sequence

(E0=S ; !0; P0)
'0
�! (E1=S ; !1; P1)

'1
�! : : :

'n�2
�! (En�1=S ; !n�1; Pn�1)

consisting of

(i) elliptic curves Ei over an (
Nn

R)-algebra S for each 0 � i < n

(ii) nowhere vanishing sections !i on Ei
(iii) points Pi of exact order N on Ei
(iv) isomophisms 'i : Êi �! Êi+1 of formally completed formal groups s.t.

'
�
i
!i+1 = !i when viewed over Êi.

A modular form for �1(N) over R in n variables of weight k is a rule f
which assigns to each test object an element

f((E0=S ; !0; P0)
'0
�! : : :

'n�2
�! (En�1=S ; !n�1; Pn�1)) 2 S

satisfying the following conditions

(i) f only depends on the S-isomorphism class of the sequence

(ii) the formation f((E0=S ; !0; P0)
'0
�! : : :

'n�2
�! (En�1=S ; !n�1; Pn�1)) commutes

with arbitrary base change
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(iii)

f((E0=S ; �!0; P0)
'0
�! : : :

'n�2
�! (En�1=S ; �!n�1; Pn�1))

= �
�k
f((E0=S ; !0; P0)

'0
�! : : :

'n�2
�! (En�1=S ; !n�1; Pn�1))

We denote by M
n�1(N)

k
(R) the (

N
n
R)-algebra of such forms.

The fundamental test object is the sequence of Tate curves

(2.1) (Taten(qN ); !can; fPig) =
def

(Tate(qN0 ); !can; P0)
'0
�! : : :

'n�1
�! (Tate(qNn�1); !can; Pn�1)

over Zn�1(N)((q0; : : : ; qn�1)) with the canonical isomorphisms 'i : qi 7! qi+1 be-

tween them and any choice of N -division points

Pi = �
ki

N;i
q
li

i
for 0 � ki; li < N:

Let R be a ring in which N is invertible and which contains a primitive N -th root

of unity �N . Then the (q0; q1; : : : ; qn)-expansion at the sequence of cusps fPig

is the ring homomorphism

M
(n+1)�
� (R) �! Z((q0; : : : ; qn))


N
n+1

R
c
�! (

N
n+1

R)((q0; : : : ; qn))

de�ned by

f 7! f(q) = f(Taten(qN )Z((q0;::: ;qn))
(
N

n+1
R); fPig):

We say f is holomorphic if f(q) already q-expands in (
N

n+1
R)[[q0; : : : ; qn]] and

write �M
(n+1)�
� (R) for the graded ring of such forms.

Corollary 2.3.3. There is a canonical isomorphism

��

V
n
E
� �=M

n�
� (Z�) =

def

M
n�
�

and the following q-expansion principle holds: If for some cusp f 2 M
n�
k

(Q[�N ])

has all its (q0; : : : ; qn�1)-expansion coeÆcients in the ring Zn� then it does so at all

cusps and there is a unique ~f 2Mn�
k

which gives rise to f by extension of scalars.

Proof. ��(
V
n
E
�) corepresents the functor from graded rings to sets given by the

following data

R� 7!

8>>>>><
>>>>>:

(i) isomorphism classes (Ei=R; !i; Pi) of n elliptic curves Ei;

nowhere vanishing sections !i and points Pi of order N:

(ii) a sequence of graded isomorphisms F̂0
 0
�! : : :

 n�2
�! F̂n�1

where F̂i is the formal group law of Êi in the formal parameter

z = z(Ei; !) under which ! = dz:

9>>>>>=
>>>>>;

This is a consequence of the universal property of
Nn�1

MU�
MU�MU and the following

commutative diagramNn
MU�

��

��

N
n
E
�
�

�� ��

�

����������

Nn�1

MU�
MU�MU �� Nn�1

E�
�

E
�
�E

� ���

R�

:
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Any ring homomorphism � gives rise to n elliptic curves via �, n graded formal

group laws together with a sequence of isomorphisms of graded formal group laws

classi�ed by
N

n�1
MU�

MU�MU and vice versa.

Likewise, there is a canonical mapN
n
M

�
� �!M

n�
�

given by

(
P
f
0

 : : :
 f

n)((E0=S ; !0; P0)
'0
�! : : :

'n�2
�! (En�1=S ; !n�1; Pn�1))

=
P
f
0(E0=S ; !0; P0) � � � f

n�1(En�1=S ; !n�1; Pn�1)

which induces n elliptic curves and graded formal group laws F̂i overM
n�
�

. Choos-

ing the identity isomorphism beween them, we get a graded ring homomorphism

��

V
n
E
�
�!M

n�
� :

On the other hand, any modular form f in n variables over Zn� can be evaluated

on the obvious universal test object over ��
V
n
E
�. One readily veri�es that this

gives a well de�ned inverse.

The q-expansion principle for modular forms in n variables is now an immediate

consequence of 2.3.1.

3. Modular Homotopy Invariants

3.1. The Elliptic Based Adams-Novikov Spectral Sequence. Recall the con-

struction of the Adams-Novikov spectral sequence (ANSS) [3]. Let E be a ring

spectrum with unit �E : S �! E. Let �E denote the �bre of �E and

�E

��
S �� E

��

be the exact triangle. De�ne spectra �Es =
Vs �E and Es = E ^

Vs �E. By smashing

the exact triangle with Es and applying the functor �� one obtains an exact couple.

The associated �ltration of �S
�
is given by

F
s = im (�� �E

s
�! ��S):

Our goal is an intrinsic description of the E2-term in terms of the coeÆcients E�
by means of a formal character. Such a description is only known for the character

�E ^ E : E �= S ^ E �! E ^E.

Lemma 3.1.1. Let E, F be 
at ring theories with torsion free coeÆcient groups.
Let r : E �! F be a map such that r�(1) = 1. Under these assumptions the group
of s-cycles Zs� satis�es

Z
s

� = equalizer ( ��E
s ����(�F^E

s)

��
��(r^ �E

s)
������� ��(F ^ E

s)

��(F ^ �Es)

��
��(F^�E^ �Es)

������

):
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Proof. r �ts into a commutative solid rombus

E

��

r

��
�F^E

��������

S

��
�E ��������

���F �������� F ^ E

F

		
F^�E

��������

and makes the left triangle commute. After applying the functor ��( ^ �Es) we

have to show that the cycles are precisely the classes in the upper corner ��E
s

which make the right triangle commute.

Let us refer to the elements in the image of �� �E
s
�! ��E

s as permanent cycles

even though they may be boundaries in the E2-term. A permanent cycle certainly

lies in the equalizer by what we have said so far.

Next, let z be a arbitrary cycle in ��E
s. Then z lies in the kernel of the di�er-

ential ��(d ^ �Es) where

d : E �! � �E �! �E ^ �E:

When smashing with F the last map in d becomes an inclusion of a direct summand

since the suspension of

F ^E ^ �E
F^r^ �E
�! F ^ F ^ �E

�^ �E
�! F ^ �E

provides a retraction map. Thus, z generates an element in the kernel of the

F�Hurewicz map ��� �Es+1 �! F�� �Es+1. As rationally this map is an inclusion,

we conclude that z gives a torsion element in ��� �Es+1. Hence, by exactness N z

is a permanent cycle for some integer N . As we have seen earlier this implies that

N(�F ^E
s
�r^�E^

�Es)�z vanishes in the torsion free group F�^E
s. Consequently,

any cycle lies in the equalizer.

Finally, let z lie in the equalizer. Then by exactness, z is annihilated by

��(�F ^ d ^ �Es). Since the F -Hurewicz map ���E
s+1

�! F��E
s+1 is injective z

has to be a cycle.

Note that if F is rational stable homotopy SQ then a natural transformation r :

E �! SQ with r�1 = 1 always exists. It is convenient to think of ��� �E
Q as the

quotient (E� 
 Q)=Q . More generally, de�ne the tensor algebra

T� = (
L1

k=0

N
k
E� 
 Q)=I

of the algebra E� 
 Q. Here I is the two sided ideal generated by the relation

[1] = 1 and � is the direct sum of rational vector spaces. Then (�� �E
s) 
 Q

naturally agrees with the degree s part of the graded algebra G� associated to the

�ltration im(
L

n�k

Nn
E� 
 Q �! T�). In detail, we have

(���
s �Es)
 Q �=

Ns
E� 
 Q=

Ps

i=1

Ni�1
E� 
 Q 


Ns�i
E�

�= G
s
�:

Proposition 3.1.2. Let E be 
at with torsionfree coeÆcients. Let Z, B be the be
the groups of cycles and boundaries of the AN-E1 term, respectively. Then there
are canonical isomorphisms

Z
s

�
�= fz 2 G

s

� : 1
 z 2 im (E�
Vs

E �! E� 

Ns

E� 
 Q �! E� 
G
s
�)g

B
s

�
�= im (E�

Vs�1
E �!

Ns
E� 
 Q �! G

s
�)
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induced by

� =
def

��(r ^ �s �Es):

Proof. In the commutative diagram

Z
s
�

��

��
�

E��
s �Es

��

E�

V
s
E





��
G
s
�

�� E� 
G
s

E� 

Ns

E� 
 Q





the left square is a pullback of monomorphisms by 3.1.1. Hence, a short diagram

chase gives the �rst isomorphism. Similarly, one sees from

E�

Vs�1
E

�� ��

��

E��
s�1 �Es�1 ����d

��

E��
s �Es

��
�N

s
E� 
 Q �� �� E��s�1 �Es�1 
 Q �� Gs

that the subgroups of boundaries correspond.

In the case of elliptic cohomology we can take r : E�
�! SQ �= HQ to be the

0-coeÆcient in the elliptic character followed by the 0-dimensional term of the

complexi�ed Chern character. Then r is not a ring map, but r�(1) = 1. Each class

of degree n of the graded algebra G� contains an essentially unique representative

f =
P
f
1

 : : :
 f

n where non of the rational modular forms f i is constant.

Corollary 3.1.3. The n-line of the E�-based AN-E2 term consists of sums

f =
P
f
1

 : : :
 f

n
2 G

n
�

of products of rational modular forms fk such that 1 
 f 2 E
�
�

 G

n
�
admits a

representative with integral (q0; q1; : : : ; qn)� expansion.
The group of boundaries is given by sums which admit a representative with

integral (q0; : : : ; qn)-expansion.

Corollary 3.1.4. Let I = (i1; i2 : : : ; in) be a multi index with only nonzero entries.
Let qI : Gn

�
�! Q be the map which sends a sum of products of modular forms to

the qI = q
i1
0 � � � q

in
n -coeÆcient of its expansion. Then q

I(f) is integral for every
cycle f .

Proof. 1
 f has a representative of the form

v = 1

P
f
1

 : : :
 f

n +
Pn

i=1

P
g 
 h

1

 � � � 
 h

i�1

 1
 h

i+1

 : : :
 h

n

with integral (q0: : : : ; qn)-expansion. Hence,

q
I(f) = q

(0;I)(1
 f) = q
(0;I)(v)

is integral.

Example 3.1.5. We can ask whether the divided Eisenstein series

�E2k =
def

E2kB2k=4k

are nonzero elements in the 1-line. 1 
 �E2k 2 E
�
� 
 G

1
� admits the representative

1 
 �E2k � �E2k 
 1 with integral (qL; qR)-expansion. Hence it lies in the E2-term.
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�E2k is non trivial since the 0-coeÆcient is not integral. Indeed, for level N modular

forms we can de�ne the homomorphism

�
1 : E

1;4k
2

�= Z
1
4k=B

1
4k �! Z�
 Q=Z; k > 0

sending a form to the 0-coeÆcient of its q-expansion. �1 is well de�ned for positive

dimensions. Any boundary has integral q-coeÆcients as it is its only representative

in G1
4k. We claim that �1 is a monomorphism. Let f be an element in its kernel.

Then by the corollary all coeÆcients of f are integral. That is, f is an integral

modular form and thus bounds.

Theorem 3.1.6. The 1-line E
1;4k
2 of the E

�-based ANSS is the cyclic group of
order m(2k) generated by the Eisenstein series �E2k. Here, m(t) is the numerical
function with

�p(m(t)) =

�
0 if t 6� 0 mod (p� 1) or 1=p 2 Z�

1 + �p(t) if t � 0 mod (p� 1) and 1=p 62 Z�

for all odd primes p and

�2(m(t)) =

8<
:

0 if 1=2 2 Z�

1 if t 6� 0 mod (p� 1) and 1=2 62 Z�

2 + �p(t) if t � 0 mod (p� 1) and 1=2 62 Z�
:

In this notation �p(n) is the exponent to which the prime p occurs in the decompo-
sition of n into prime powers, so that

n = 2�2(n)3�3(n)5�5(n) � � � :

Proof. We have just seen that �E2k generates a cyclic subgroup of E
1;4k
2 of order

equal to the denominator of B2k=4k which is m(2k) up to invertible elements in

Z� (c.f. [4]). Now let z be any non constant rational meromorphic modular form

of weight 2k. If z is a cycle and is represented by some f , then all non zero q-

coeÆcients are integral by 3.1.4. Furthermore, q0(f) lies in Q + Z� � C as one

easily veri�es. It follows with 2.2.6 that there is a multiple a 2 Z[1=N ] such that

q
0(f) = q

0(a �E2k) mod Z�. We conclude that f � a �E2k lies in the kernel of �1

and thus bounds. That is, z belongs to the cyclic subgroup of E
1;4k
2 generated by

�E2k.

3.2. The 2-Line and Cyclic Cohomology. In order to identify the second line

of the E�-based ANSS we set up the higher analogue of the monomorphism �
1. For

that a better description of the group of boundaries is necessary.

Lemma 3.2.1. Let z be a 2-cycle of degree 2k. Then there is a representativeP
f 
 g which satis�es

q
(0;0)(

P
f 
 g) 2 Q +Z2�

Proof. Let �f denote the modular form over Q obtained from f 2 M
�1(N)
� (Q[�N ])

by setting �N = 1. Let
P
a
 b be any representative of z. We claim thatP

f 
 g =
def

P
a
 b� �b a
 1�

P
1
 �a b

will do the job. Let u;w; s and t be such thatP
1
 a
 b+ u
 1
 w + s
 t
 1 � 0 mod Z3�:
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In particular, we haveP
1
 a
 �b+ u
 1
 �w + s
 t
 1 � 0 mod Z3�P
1
 �a
 b+ u
 1
 w + s
 �t
 1 � 0 mod Z3�

Next, observe that for any f; gP
q
0(f g) =

PP
i2Zq

i(f)q�i(g) =
PP

i2Zq
(i;�i)(f 
 g)

=
P
i2Zq

(i;�i)(
P
f 
 g)

3:1:4
� q

(0;0)(
P
f 
 g)

=
P
q
(0;0)(f 
 g) =

P
q
0(f) q0(g) mod Z2�

(3.1)

Hence, we have

q
(0;0;0)(1


P
f 
 g) �

P
1
 (q0(a)
 q

0(b)� q
0(�b) q0(a)
 1� q

0(�a) 1
 q
0(b))

�

P
q
0(u)
 1
 q

0( �w) + q
0(s)
 q

0(�t)
 1

�

P
(q0( �w) + q

0(�t)(q0(u) + q
0(s))
 1
 1

Setting �N 
 1
 1 = 1, we conclude

q
(0;0)(

P
f 
 g) � (q0( �w) + q

0(�t))(q0(�u) + q
0(�s)) 2 Q mod Z2�:

Hence, when representing 2-cycles we may always assume them to be of the above

form. Note also, for every cycle
P
q
0(g)f expands in (Q 
Z�)((qL; qR)) (

P
q
0(f)g

in (Z�
 Q)((qL ; qR)) respectively) up to series in Z2�((qL; qR)).

Lemma 3.2.2. Let
P
f 
 g represent a 2-cycle of degree 2k. Then the following

statements are equivalent:

(i)
P
f 
 g is a boundary.

(ii)
P
f 
 g + v 
 1 + 1
 w � 0 mod Z2�((qL; qR)) for some v; w of weight k.

(iii) there is a system of equationsP
f 
 q

0(g) + v 
 1 + 1
 q
0(w) � 0 mod Z2�((q))P

q
0(f)
 g + 1
 w + q

0(v)
 1 � 0 mod Z2�((q))

for some v; w of weight k.
(iv)

P
q
0(g) f � h mod Q +Z�((q)) for some h of weight k.

(v)
P
q
0( �f) g � h mod Q +Z�((q)) for some h of weight k.

Proof. The equivalence of the �rst two statements has already been established in

3.1.3. The third statement follows trivially from the second by looking only at the

left and right series. On the other hand (iii) implies (ii) by 3.1.4. (iv) and (v) are

trivial consequences of (iii) by letting h be �v and �w respectively.

Now let (iv) be satis�ed. Using 3.1.4 and 3.1 we know thatP
f 
 g �

P
q
0(g)(f 
 1)�

P
q
0(f)(1
 g) +

P
q
0(f g)

has integral (qL; qR)-expansion. Setting qL = qR = q and �N 
 1 = 1 
 �N we

concludeP
f g �

P
q
0(g)f �

P
q
0(f)g +

P
q
0(fg) � 0 mod Z�((q)):(3.2)
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Hence, we de�ne v = �h and w = h�
P
f g and computeP

f 
 q
0(g) + v 
 1 + 1
 q

0(w)

�

P
f 
 q

0(g)� h
 1 + 1
 q
0(h� f g)

�

P
f 
 q

0(g) + q
0(h)
 1� q

0(g)f 
 1

+q0(f)q0(g)
 1 + 1
 q
0(h)� 1
 q

0(f) q0(g) � 0P
q
0(f)
 g + 1
 w + q

0(v)
 1

�

P
1
 q

0(f)g + 1
 h� 1
 f g � q
0(h)
 1

�

P
�1
 q

0(g)f + 1
 q
0(f g) + 1
 h� q

0(h)
 1

�

P
1
 (�q0(g)f + h+ q

0(f)q0(g)� q
0(h)) � 0:

(v) is similar.

Filter the ring of divided congruences D� by

D
�
k =
def

im(
Lk

l=0M
�
l

 Q �! D

�

 Q) \D�

and de�ne the subgroups of D�
k

 Q

D
�
k

=
def

Q +D
�
k

D
�

k
=
def

Q +D
�
k
+M

�
k

 Q

Proposition 3.2.3. The homomorphism

�
2 : E2;k2

�= Z
2
k
=B

2
k
�! D

�

k

 Q=Z

sending
P
f 
 g to

P
q
0(g)f is injective.

Proof. � is well de�ned and injective by the equivalence (i)() (iv) of the lemma.

We may draw another useful consequence of equality 3.2.

Proposition 3.2.4. A cycle represented by
P
f 
 g satis�es the identityP

f 
 g � f g 
 1 = �

P
g 
 f + 1
 f g mod Z2�:

In particular, we have

�
2(
P
f 
 g) = ��

2(
P
g 
 f):

Proof. We have to verify the integrality of

q
I(
P
f 
 g � f g 
 1 + g 
 f � 1
 f g)

which is immediate from 3.2 and 3.1.4.

The proposition suggests that we may restrict ourselves to antisymmetric cy-

cles. For that de�ne the cocyclic object M
(s+1)�
� with faces di for i = 0; : : : ; s,

degeneracies sj for j = 0; : : : ; s and cyclic operators ts given by

di :M
s�
� �!M

(s+1)�
� ;

P
f
0

 : : :
 f

s�1
7!

P
f
0

 : : : f

i�1

 1
 f

i
: : :
 f

s�1

sj :M
(s+2)�
� �!M

(s+1)�
� ;

P
f
0

 : : :
 f

s+1
7!

P
f
0

 : : :
 f

j
f
j+1


 : : :
 f
s+1

ts :M
(s+1)�
� �!M

(s+1)�
� ;

P
f
0

 : : :
 f

s
7! (�1)s

P
f
1

 : : :
 f

s

 f

0
:
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Then one easily veri�es the identities

djdi = didj�1 for i < j

sjsi = sisj+1 for i � j

sjdi =

8<
:

disj�1 for i < j

id for i = j; i = j + 1

di�1sj for i > j + 1

tsdi = �di�1ts�1 for 1 � i � s; tsd0 = (�1)sds

tssi = �si�1ts+1 for 1 � i � s; tss0 = (�1)ssst
2
s+1; t

s+1
s

= id

The di�erence between cyclic and cocyclic objects is not serious. Each cocyclic

object gives rise to cyclic one and vice versa (cf. [22]). Dualizing Connes' original

de�nition, we de�ne the cocyclic bicomplex CCM��
�

M
3�

��

��1�t

M
3�

��

��N

M
3�

��

��1�t

M
3�

��

��N

M
2�

��

b

��1�t

M
2�

��

�b
0

��N

M
2�

��

b

��1�t

M
2�

��

�b
0

��N

M
�

��

b

��1�t

M
�

��

�b
0

��N

M
�

��

b

��1�t

M
�

��

�b
0

��N

where

b =
def

sX
i=0

(�1)idi; b
0 =
def

s�1X
i=0

(�1)idi

and N = 1 + t + � � � + t
s is the norm map corresponding to the cyclic operator

t = ts. Let M
� in the left hand corner have bidegree (0; 0) and write

HC
s(M��) = H

s(TotCCM��)

for the s-cohomology of the total complex TotCCM�.

Theorem 3.2.5. The canonical map

can : Hs(TotCCM��
� ;Q=Z) �! E

s+1;�
2

induced by the projection onto the �rst column

TotCCM
��
�

�� �� (M� b
!M

2� b
!M

3� b
! : : : )

is an isomorphism in dimensions s = 0 and s = 1.

Proof. Let z = (f; �) 2 M
(s+1)�
� �

L
1�r�sM

r� = Tot
s
CCM

��
� be a cycle. Then

b(f) is an integral representative of 1
 f 2M��
� 
G

s+1
� and thus a cycle in E

s+1;�
1 .

Hence, can is well de�ned as any b(g) 2 M
(s+1)�
� bounds in E

s+1;�
1 . In dimension

s = 0 we have 1� t = 0 and the two cycle conditions 1
 f � f 
 1 = 0 mod Z2�

obviously coincide.
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Next, let s = 1 and let z =
P
f 
 g + h 2 Tot

2
CCM

��
�

be a cycle of degree

2k. Then N(h) = h vanishes. We wish to verify the injectivity of can and assume

can[z] is a boundary in E1. That is, mod Z2� we haveP
f 
 g = v 
 1 + 1
 w

for some v; w of degree 2k. Then

0 = (1� t)(
P
f 
 g) =

P
f 
 g + g 
 f = (v + w)
 1 + 1
 (v + w)

shows v � q
0(v) = q

0(w) � w. Using

0 = q
(0;0;0)(b(

P
f 
 g)) =

P
q
0(f) q0(g) = q

0(v) + q
0(w)

we conclude that
P
f 
 g = v 
 1� 1
 v = b(v) bounds.

It remains to show the surjectivity of can. Let ~z =
P
f 
 g be a cycle in E1.

Then

z =
def

P
f 
 g �

P
f g 
 1

satis�es (1� t)(z) = 0 by the antisymmetry relation of 3.2.4. Moreover,

b(z) =
P

1
 f 
 g � f 
 1
 g + f 
 g 
 1� 1
 f g 
 1

is easily checked to be integral using the equalities 3.2 and 3.1.

The complex

C
�
�
:M� b

!M
2� b
!M

3� b
! : : :

coincides with the well known cobar complex CM2�
�

(M�
� ;M

�
� ) (cf. [40] A.1.2.11)

under the isomorphism

M
�
� 
M�

�

Ns

M�
�

M
2�
� 
M�

�

M
�
� �! M

s�
�

(e (f1 
 g
1)jf2 
 g

2
j : : : j(fs 
 g

s)h) 7! e f
1

 g

1
f
2

 : : :
 g

s�1
f
s

 g

s
h:

Hence, for positive s we have

E
s;�

2
�= H

s
CM2�

�

(M�
� ;M

�
� )
�= Cotor

s

M2�
�

(M�
� ;M

�
� )

�= Cotor
s�1
M2�

�

(M�
� ;M

�
� 
Q=Z)�= H

s
CM2�

�

(M�
� ;M

�
� 
 Q=Z)

�= H
s�1(C�

�
;Q=Z)

by the exactness of Cotor. Most results of this section can also be deduced from the

cobar complex. However, it is important to have explicit geometric isomorphisms

at hand.

3.3. d, e and f-Invariants. In this section we shall de�ne some basic invariants

of stable homotopy groups. Throughout, we assume that E is a 
at ring theory

with evenly graded coeÆcients E�.

Suppose given a stable homotopy class s 2 �nS in the �ltration group Fs of the

E-based ANSS. Then we can consider its image under the map

e
s;n+s
2 : Fs

n
�! F

s

n
=F

s+1
n

�= E
s;n+s
1 ,! E

s;n+s
2 :

If we take n = s = 0 then the invariant

e
0;0
2 : �0S = F

0
0 �! E

0;0
2 = �0E
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gives the degree d of s. Now let the dimension of s be positive. Then e
0;n
2 vanishes

as �nS is all torsion. Hence, we get the `Hopf-Steenrod invariant'

e
1;n+1
2 : �nS = F

1
n
�! E

1;n+1
2 :

In case E is elliptic cohomology E� and n = 4k�1 the invariant may be composed

with the monomorphism �
1 of 3.2.3 for some choice of cusp to yield

e : �nS
e
1;n+1
2
�! E

1;n+1
2

�
1

,! Z�
 Q=Z

Proposition 3.3.1. e coincides with the classical Adams invariant [5] in dimen-
sions 4k � 1 for � = �1(2) at the cusp 0.

Proof. Let s 2 �4k�1S be represented by a manifoldM with a framing on its stable

tangent bundle. Then M is the boundary of some Spin manifold N since the Spin-

cobordism group vanishes in dimension 4k� 1. The e-invariant of s is given by the

relative Â-genus of N (cf. [8]). The manifold N represents an element in the �rst

line of the MSpin-based ANSS (cf. [12]). Now �
1 takes N to the 0-coeÆcient in

��MSpin
 Q �! ��E
�1(2)


 Q
�
�1(2)
�

�! ��K
�1(2)

((q)) 
 Q:

Its value is the relative Â-genus of N as ��1(2)(0) sends Æ to � 1
8
and � to 0 [18].

The e-invariant vanishes in even dimensions. Hence, for even n > 0 we have

e
2;n+2
2 : �nS = F

2
n �! E

2;n+2
2

which we may compose with the monomorphism �
2 of 3.2.3 to obtain

f : �nS
e
2;n+2
2
�! E

2;n+2
2

�
2

,! D
�

n

 Q=Z:

The f -invariant permits a description in terms of Hirzebruch genera on manifolds

with corners, but the details shall be developed somewhere else. The next result

shows that the f -invariant already takes values in the smaller group of holomorphic

divided congruences.

Proposition 3.3.2. The f -invariant admits a factorization

�nS
��f

��
�f
������ D

�

n

 Q=Z

�D
�

n

 Q=Z

		
can

�����

where

�D
�

n
=
def

im(
L

n

l=0
�M�
l

 Q �! D

�

 Q) \D�

n
:

The kernel consists of elements in the higher �ltration group F3.

Proof. Let s 2 �nS be a stable class of even dimension n > 0. Then s lies in second

MU -�ltration and we can �nd a ~s 2 �n( �MU ^ �MU) which projects to s. Now

recall that the elliptic genus o : 
U� �! M
�
� already takes values in the subring

�M�
� of holomorphic modular forms (cf. [18] I.7 6.4). Moreover, by looking at the

(qL; qR)-expansion we see that the map

��(o ^ o) :MU�MU �! E
�
�E

� =M
2�
�
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already takes values in the subring �M2� of holomorphic modular forms in 2 vari-

ables. Hence, we obtain the commutative diagram

��(�
2 �MU ^ �MU) ��

��
�

��(�
2 �E�

^ �E�)

��
��(�

2 �MU^ �MU)
Q

MU�(� �MU)
��

��
=

��(�
2
E
�
^E

�)
Q

E�
�
(� �E�)

��
=

MU�
MU�
Q
MU�MU+MU�
Q+Q
MU�

��

��

M
�
�

M

�

Q

M2�
�
+M�

�

Q+Q
M�

�

��
=

�M�
�

 �M�


Q
�M2�
�
+ �M�

�

Q+Q
 �M�

�

��

�� M
�
�

M

�

Q

M2�
�
+M�

�

Q+Q
M�

�

��
�
2

�D
�

�

 Q=Z ��can

D
�

�

 Q=Z

in which ~s is mapped to the f -invariant of s in the lower right corner. Since

�(~s) = e
2;n+2
2 (s) in the MU -based ANSS we obtain a well de�ned factorization of

the f invariant. The last statement is clear.

We are now going to compute the f -invariant of the periodic family � which was

�rst considered by L. Smith in [45]. Recall that the Hazewinkel generators vn are

congruent to un modulo the ideal generated by (p; u1; : : : ; un�1) (cf. [32]).

Theorem 3.3.3. [45]

(i) Let V (0) be the co�bre of p : S ! S and p be an odd prime. Then there is a
self map

�0 : �
2(p�1)

V (0) �! V (0)

inducing multiplication by v1 in complex bordism.
(ii) Let V (1) be the co�bre of �0 and p � 5. Then there is a self map

�1 : �
2(p2�1)

V (1) �! V (1)

inducing multiplication by v2 in complex bordism.
(iii) Let � be the composite

S
2(p2�1) i0

! �2(p2�1)
V (0)

i1
! �2(p2�1)

V (1)
�1
! V (1)

p1
! �2p�1

V (0)
p0
! S

2p

where i0; i1; p0; p1 come from the co�bre sequences above and p � 5. Then �

represents a non-trivial permanent cycle.

A useful result in this context is the Geometric Boundary Theorem:

Theorem 3.3.4. [40] Let E be a 
at ring spectrum and E� be commutative. Let

W
f
�! X

g
�! Y

h
�! �W

be a co�bre sequence of �nite spectra with E�(h) = 0. Assume further that [s] 2

E
t;�+t
2 (Y ) converges to s 2 �t(Y ). Then Æ [s] converges to h�(s) 2 �

st
t�1(W ) where
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Æ is the connecting homomorphism to the short exact sequence of chain complexes

0 �! E1(W ) �! E1(X) �! E1(Y ) �! 0:

Consider the case E = E
�1(1). In [32] it was shown that for p > 3

v2 � (�1)(p�1)=2�(p2�1)=12 mod (p; v1)

and we saw earlier already

v1 � Ep�1 mod p:

�1i1i0 : �
2(p2�1)

S ! V (1) is represented by

v2 2 E
0;2(p2�1)
2 (V (1)) � �2(p2�1)E

�1(1)=(p; v1):

Since E
�1(1)
� (p1) = 0 we may apply the Geometric Boundary Theorem to the co�bre

sequence

�2(p�1)
V (0)

�1
�! V (0) �! V (1)

p1
�! �2p�1

V (0):

Thus, the boundary Æ(v2) converges to p1�1i1i0. To determine the boundary, we

view v2 as an element in

E
�1(1)

2(p2�1)
V (0) = �2(p2�1)E

�1(1)=p;

compute its di�erential and divide by v1. It is customary to identify E
�1(1)
� � �E�1(1)

with the augmentation ideal in the Hopf algebroid E
�1(1)
� E

�1(1). Then the �rst

di�erential becomes the di�erence �L � �R between left and right unit. Let mi be

the coeÆcient of xp
i

in the logarithm of the p�typicalized formal group law ~FE�1(1)
.

Let ti be the image of the standard generators in BP�BP under the classifying map.

Then we have the formulas (cf. appendix of [40], [30])

�R(mk) =
X
i+j=k

mit
p
i

j
(m0 = t0 = 1)

pmn+1 =
X
i+j=n

mjv
p
j

i+1:

Hence, we obtain

�R(v1) = p �R(m1) = p t1 + v1

�R(v2) = p �R(m2)� �R(m1) �R(v
p

1)

= p t2 + v1t
p

1 + (v2 + v
p+1
1 =p)� (t1 + v1=p)(p t1 + v1)

p

� v1t
p

1 + v2 � t1v
p

1 mod p

and thus

Æ(v2) = t
p

1 � v
p

1 t1 2 E
1;2(p2�1)
2 (V (0)):

Finally we apply 3.3.4 to the co�bre sequence

S
2p�1 p

�! S
2p�1

�! �2p�1
V (0) �! S

2p
:

and see that � is represented by

1=p d(t
p

1 � v
p

1t1) 2 E
2;2((p2�1)�p+1)
2 :
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In our old notation this element carries the name

1=p (1
 (v1=p)
p
� v

p�1
1 
 (v1=p)) � �1=p2(v

p�1
1 
 v1) = �1=p2(E

p�1
p�1 
Ep�1):

We conclude from 3.2.4:

Proposition 3.3.5.

f(�) = �p
�2
E
p�1
p�1 = p

�2
Ep�1:

The Deligne congruence Ep�1 � 1 mod p shows that � has order at most p.

The nontriviality of � is equivalent to the non-existence of a congruence

1=p (Ep�1 � 1) � w � q
0(w) mod p

for any integral w � q
0(w) of weight (p2 � p).

4. Orientations and Riemann-Roch Formulas

We can use the topological q-expansion principle to equip E� with orientations

which di�er from the original complex ones. Recall that the Landweber-Ravenel-

Stong elliptic genus originated from the signature operator on the loop space of a

compact Spin manifold M after a transformation of variables. More precisely, E.

Witten [48] formally identi�ed the S1-equivariant signature with the index of

@
+(TM)
 (

N
k>0V

qk
TM 
 SqkTM 
 C )

using the Lefschetz �xed point formula. Here @+(TM) is the Dirac operator of M

and we abbreviated
V
t
E =

def

P1

k=0(
V
k
E)tk and StE =

def

P1

k=0(S
k
E)tk.

As the signature is only a twisted version of the Dirac operator one might expect

to obtain a more powerful genus by using the Dirac operator itself. The correspond-

ing expression

@
+(TM)


N
k>0

Sqk (TM � dimM)
 C

leads to the Witten genus (the factor q
�4k
24 �

4k
24 included). The Witten genus gives

an integral modular form for every MString manifold. We can ask if it arises from

a map of ring spectra w :MString �! E
� when restricting to the coeÆcients.

Lemma 4.1.6. There is a unique map of ring spectra ! :MString �! K
�((q)) s.t.

the Riemann-Roch formula

! f
MString

! (�) = f
Â

! (
N

k>0
Sqk (dim �M � �M )
 !(�)
 C )

holds for all String-oriented maps f :M �! X between smooth compact manifolds
and all � 2MString�M . Here �M is the normal bundle of M .

Proof. We �rst show uniqueness. Let X be a smooth compact manifold. Then by

the work of D. Quillen [39] every element inMString4dX is of the form f
MString

! (1)

for a certain f :M �! X as above. The value of ! on f
MString

! (1) is given by the

Riemann-Roch formula. Furthermore every �nite CW-complex has the homotopy

type of a smooth manifold. Hence, ! is determined when restricted to the co�nal

system of �nite subspectra in MString. We have seen earlier that all lim1 vanish

locally at each prime. Thus they vanish globally and there can only be one map !

with the required properties.

We could take the Riemann-Roch formula to show existence. However, there

is a more natural approach. Let ~A : MString �! MSpin �! K
�((q)) be the
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usual orientation which induces the (complexi�ed) Â-genus on MString manifolds.

Let u
~A(�) be the induced Thom class for an arbitrary MString bundle �. Then

u
!(�) = u

~A(�)

Nk>0

Sqk (dim ���) is another natural Thom class as the twisting

factor is a unit in the ring of power series. The limit of all such Thom classes

yields a map of spectra ! : MString �! K
�((q)). Moreover, the new Thom class

is multiplicative. To see this, let � be another MString bundle. Then certainly

u
~A(� + �) = u

~A(�)u
~A(�). It remains to check the exponential behaviour of the

symmetric powers

Sqk (�� + ��) =

1X
n=0

S
n(�� + ��) qkn =

1X
n=0

X
r+s=n

S
r(��)
 S

s(��) qkn

=

1X
r=0

S
r(��) qkr 


1X
s=0

S
s(��) qks = Sqk (��)
 Sqk (��):

Thus ! is a map of ring spectra. The correct Riemann-Roch transformation follows

as in [14].

Theorem 4.1.7. There is a unique map of ring spectra w : MString �! E�[1=2]

s.t. ��w = !. In particular, the Riemann-Roch formula holds

ch ��w f
MString

! (�) = f
HQ
! (Â(TM) ch (

N
k>0

Sqk (TM � dimTM)
 w(�) 
 C )):

Proof. Consider the cartesian diagram of 1.3.3

E
�

�MString[1=2] ����

��
d

K
�

�MString[1=2]((q))

��
ch

H
�(MString; E�� 
 Q)

����
H
�(MString;K�

� 
 Q)((q))

in which the left vertical arrow is the Dold character. The lemma provides an

element ! 2 K�MString((q)). In order to lift ! to E�MString[1=2] it is enough to

prove that

ch! f
MString

! (1) = f
HQ
! (Â(TM) ch (

Nk>0
Sqk (TM � dimTM)
 C ))

gives an element in H
0(X;E�� 
 Q) for every MString oriented map M �! X .

The argument is well known (cf.[18](6.3)) but customly stated in terms of Chern

numbers instead of Chern classes. The computation of

Â(TM) ch (
N

k>0
Sqk (TM � dimTM)
 C )

in formal Chern roots xi of TM leads to

2mY
i=1

xi=2

sinh(xi=2)

1Y
k=1

(1� q
k)2

(1� qkexi)(1� qke�xi)

=

2mY
i=1

xi=2

sinh(xi=2)

 
1Y
k=1

(1� q
k)2

(1� qkexi)

!
e
� �E2(�)x

2
i =

2mY
i=1

xi

�L� (xi)
:

Here, the �rst identity holds since the �rst Pontrjagin class of �M and hence of TM

vanish. �E2 denotes the divided second Eisenstein series. In the last equality �L� is

the Weierstra� �-function for the lattice L� (cf. [49]). The coeÆcients of the r-th

homogeneous part of the last expression are homogeneous lattice functions of weight

r, and so modular forms with respect to any congruence subgroup � � Sl2(Z). Since
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f
HQ
! is linear over the coeÆcients its pushforward lies in H�(X;E��
Q). It remains

to show that w is a map of ring spectra. Obviously,

E
�

�(MString ^MString)[1=2]
��
�! K

�

�(MString ^MString)[1=2]((q))

is injective. Thus the assertion follows from 4.1.6.

The Witten genus w of E� in the above theorem coincides with the canonical

orientation recently provided in [19] by the theorem of the cube. Our approach is

more direct and elementary but less conceptual than the one of Mike Hopkins.

We do not wish to invert 2 but MString is not well understood at the prime 2.

However, the method described above applies for other Thom spectra as well.

Proposition 4.1.8. Let MG be a Thom spectrum and E�
�MG(p) be projective for

all prime p. Let F : E�
�! K

�((q)) be an exponential class s.t.

chF (V ) 2 H0(X;E�
�

 Q)

for all G-oriented vector bundles V over X. Then there is a unique orientation

! :MG �! E
�

s.t. the Riemann-Roch formula

�� ! f
MG

! (�) = f
Todd

! (F (�M )
 ��!(�))

holds for all G-oriented f :M �! X and all � 2MG
�
M .

Proof. The topological q-expansion principle 1.3.2 applies.

Appendix A. The Classical q-Expansion Principle

In this appendix we recall the classical q-expansion principles of the basic elliptic

curves which lead to Landweber exact theories. The main references are the books

of Silverman [46] [47], Serre [42] and the articles of Katz [25] [26].

A.1. Weierstra� Cubics. Classically a complex modular form of weight k is a

function on the upper half plane H = f� 2 C ; Im(�) > 0g which obeys certain

transformation laws and is holomorphic in a suitable sense. In order to obtain

the notion of a modular form over any ring, we will view them as certain kind of

`distributions'. The test objects are elliptic curves together with nowhere vanishing

invariant di�erentials.

Let

GL
+ = f(!1; !2) 2 C

2 ; Im(!2=!1) > 0g

be the space of oriented R-bases of C . Its orbit space L under the right action of

Sl2(Z) is the space of lattices L = Z!1+ Z!2 in C . Weierstra� theory establishes

a correspondence between points L of L and elliptic curves given as cubics in the

complex projective plane by the inhomogeneous equations

E=C : y
2 = 4x3 � g2(L)x� g3(L)

where

g2(L) = 60
P

06=l2L 1=l
4; g3(L) = 140

P
06=l2L 1=l

6
:
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Let � = g
2
3 � 27g32 be the discriminant of E=C . Then L becomes the open subspace

Spec(C [ g2 ; g3;�
�1 ]) of C 2 = Spec(C [ g2 ; g3 ]). Physically, the Weierstra� cubic

associated to L is analytically isomorphic to the torus C =L:

z 2 C =L 7! (x = p(z; L); y = p
0(z; L))

where p is the Weierstra� function

p(z; L) =
1

z2
+
X
06=l2L

(
1

(z � l)2
�

1

l2
):

Under this map the translation invariant 1-form dz is sent to the nowhere vanishing

holomorphic di�erential

! = dx=y 2 H
0(E=C ;


1
E=C

):

Conversely, any Weierstra� cubic with invariant di�erential ! generates a lattice of

periods (cf. [25])

L = f

R


!; 
 2 H1(E=C ;Z)g:

We will freely think of the C� -space L as lattices with stretching action of C� or

as the space of pairs (E=C ; !) with a (E=C ; !) = (E=C ; a !) for a 2 C
� . A function

f : L �! C is said to be homogeneous of weight k 2 Z if it is equivariant under the

action on C de�ned by z 7! a
�k
z.

For instance, the global coordinates g2 and g4 have weight 4 and 6 respectively.

They are closely related to the Eisenstein series of weight 2k

G2k(L) =
P

0 6=l2L l
�2k

=2�(2l); �(s) =
P

n�1 n
�s

as G4 = 12 g2 and G6 = 216 g3. A homogeneous function f gives rise to a periodic

function f(�) = f(2�i(Z+ �Z)) on H. If f viewed as a function of q = exp(2�i�)

extends to a holomorphic function of q in jqj < 1 it is called a holomorphic modular

form. In this case, its Fourier series or q-expansion determines f completely.

g2 and g3 are of particular importance as they freely generate the ring of holo-

morphic modular forms

�M�1(1)(C ) = C [G2 ; G3]:

We associate to each modular form twice its weight, i.e. jG2kj = 4k, so that
�M
�1(1)
� (C ) becomes a graded ring. Furthermore, each Weierstra� cubic has the

structure of a one dimensional group scheme. Its formal completion is a formal

group. As it turns out, the Weierstra� parametrization is in fact an isomorphism

of groups. Near the identity element 1 = [0; 1; 0] the formal parameter

t = �2x=y = �2p(z; L)=p0(z; L) = z +
P
n�2 anz

n

is the exponential of the group law in this chart. The series t = f(z), a priori with

coeÆcients an 2 �M
�1(1)
2n (C ) � C [[q]], actually gives an element in Z[1=6][[w; q]] for

w = 1� exp(�z). This can be seen from the q-expansion of p (cf. [18])

p(z; �) =
X
n2Z

1

(qn=2ez=2 � q�n=2e�z=2)2
� (�

1

12
+
X

06=n2Z

1

(qn=2 � q�n=2)2
)

It is more convenient to equip L� = 2�i(Z+ �Z) with the di�erential 2�i dz rather

than dz. Then f(2�i z) is the unique parameter in terms of which dz = dx=y for



32 GERD LAURES

the universal Weierstra� cubic

y
2 = 4x3 � e4x+ e6:

In this notation

12 e4 = E4; 216 e3 = E6

where E2k = (2�i)2k G2k are the normalized Eisenstein series. We would like

to give an interpretation of the ring Z[1=6; E4; E6] in terms of integral modular

forms.

De�nition A.1.1. Let S be a R-algebra. A test object is a pair (E=S ; !) where
E is an elliptic curve over S (an abelian scheme of dimension one) and ! is a
nowhere vanishing di�erential on E. A modular form over R is a rule which
assigns to a test object (E=S ; !) an element

f(E=S ; !) 2 S

satisfying the following conditions:

(i) f(E=S ; !) only depends on the isomorphism class of the pair (E=S ; !)
(ii) the formation of f(E=S ; !) commutes with base change

(iii) for any a 2 S� we have f((E=S ; a !) = a
�k
f((E=S ; !)

We denote by M
�1(1)

k
(R) the R-algebra of such forms.

Alternatively, they can be thought of as global sections of certain invertible

sheaves over the moduli space of elliptic curves, but we will not pursue this point

of view any further.

We wish to construct a q-expansion map for arbitrary modular forms, i.e. a

ring embedding of M�1(1)(R) into some power series ring. The original complex

q-expansion map can be recovered by evaluating the modular forms on the test

object given by the universal Weierstra� cubic over

M
�1(1)(C ) = C [E4 ; E6;�

�1]

and its section pushed over the ring of �nite tailed Laurent series C ((q)) via the

Fourier expansion. We could use this process to de�ne a q-expansion for modular

forms over any ring in which 6 is invertible by the following observation. Recall the

development of the Eisenstein series [42]

E2k(�) = 1�
4k

B2k

1X
n=1

(
X
djn

d
2k�1)qn:(A.1)

Here B2k denote the Bernoulli numbers determined by

x=(ex � 1) =

1X
i=0

(Bi=i!)x
i
:

An inspection of this formula at k = 2; 3 shows that the Weierstra� test object is

already de�ned over Z[1=6]((q)). This leaves us with rings R which do not contain

1/6. Under the change of variables

x 7! x+ 1=12 y 7! x+ 2y

the Weierstra� equation takes the form

y
2 + xy = x

3 +B(q)x + C(q)
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where

B(q) = �1=48 (E4(q)� 1) C(q) = 1=496 (E4(q)� 1)� 1=864(E6(q)� 1)

are power series with integral coeÆcients (cf. [26]). This is the famous Tate curve

which is de�ned over Z((q)) and restricts to the Weierstra� curve if 6 is inverted.

De�nition A.1.2. The q-expansion map is the ring homomorphism

�
�1(1)
� :M

�1(1)
� (R) �! Z((q))
R � R((q))

given by

f 7! f(q) =
def

f(Tate=Z((q))
R; !can = dx=(2y + x)):

Needless to say, the ring of complex meromorphic modular forms M
�1(1)
� (C ) is

just C [E4 ; E6;�
�1 ] and the two notions of q-expansions agree. If we de�ne the

ring of holomorphic modular forms �M
�1(1)
� (R) to be the subring of M

�1(1)
� (R) with

q-expansion in Z[[q]]
R, we again have �M
�1(1)
� (C ) = C [E4 ; E6 ].

The most fundamental result about modular forms and their q-expansion is

known as q-expansion principle.

Theorem A.1.3. [13][24] If the q-expansion of a (possibly meromorphic) modular
form f over S of weight k has all its coeÆcients in a subring R � S then there

is a unique modular form ~f of weight k over R which gives rise to f by extension
of scalars. Moreover, a modular form of weight k is uniquely detemined by its
q-expansion.

Corollary A.1.4. If R is a torsionfree ring, then the q-expansion map

� :M
�1(1)

k
(R) �! Z((q))
R

is rationally faithful.

In fact, the corollary is just a reformulation of the theorem for torsionfree rings

R. It is also worth mentioning that the canonical map

M
�1(1)
� (Z)
R �!M

�1(1)
� (R)

is an isomorphism (cf. [25]) if 2 and 3 are invertible in R.

A study of the q-expansion of the Eisenstein series E4 and E6 gives

Corollary A.1.5. M
�1(1)
� (Z [ 1=6 ])�= Z [ 1=6; E4; E6;�

�1 ].

A.2. Jacobi Quartics and Hirzebruch Curves. In the �rst paragraph we saw

that integral modular forms do not behave well at the primes 2 and 3. This is

reason enough to enlarge the concept of modular forms by varying the class of test

objects.

Consider the family of Jacobi quartics given by the inhomogeneous equation

y
2 = 1� 2Æ x2 + � x

4
:

Its closure in CP 2 is singular at 1 = (0; 1; 0). However, viewed as curve in CP 3

under the normalisation map [x; y; 1] 7! [1; x; x2; y] it becomes an honest elliptic

curve whenever � = 64 � (Æ2 � �) does not vanish. The universal one of these lives

overZ [ Æ; �;��1 ], i.e. any ring homomorphism into some ring R determines a Jacobi

quartic over R.
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We wish to investigate their relation with lattices. For that we restrict the action

of Sl2Z on the space of oriented based lattices GL+ to the subgroup

�1(2) =
def

f

�
1 �

0 1

�
mod 2g:

Then the half basis point !1=2 satis�es

(a!1 + c !2)=2 � !1=2 mod L for all

�
a b

c d

�
2 �1(2):

Hence, it is not hard to verify that the orbit space

L1(2) =
def

GL
+
=�1(2)

is the space of lattices together with a distinquished 2-division point. In order to

construct the desired correspondence de�ne the function [18]

f : C � L1(2) �! C ; f(z; L; !1=2) = 1=
p
p(z; L)� p(!1=2; L) = z +O(z2)

which is elliptic with respect to the sublattice ~L = Z!1+Z 2!2 of order 2 in L. f

gives a group homomorphism

(z 2 C =~L; dz; !1=2) 7! ((x = f(z; L; !1=2); y = f
0(z; L; !1=2)); dx=y;1):

Conversely, for arbitrary coeÆcients Æ and � with � 6= 0 we get a di�erential

equation for f which is uniquely solved with power series methods by a function f

which is elliptic with respect to a lattice ~L. This implies that L1(2) takes the form

Spec C [ Æ; �;��1 ].
By picking x as coordinate near the identity we identify f as exponential of the

associated formal group law. The distinguished point

f(!1=2) =1 2 2E=C = ker(E=C
2
�! E=C)

of order 2 imparts an additional structure to each Jacobi quartic.

There is a natural generalization of this concept to higher levels N � 2. Jacobi

quartics belong to the family of Hirzebruch curves

1

xN
+ a2Nx

N = (
y

x
)N + a1(

y

x
)N�1 + : : : aN�1(

y

x
) + aN :

Let f(z; L; !1=N) be the theta function for which fN is elliptic with respect to L,

which has divisor div f = (0) � (2�i=N) and whose Taylor expansion around 0 is

of the form z+O(z2). Again, f can be taken as exponential of a formal group law

and !1=N generates a subgroup of order N . Note that given an elliptic curve over

an arbitrary ring the existence of a point of order N on a curve over R implies that

N is invertible in R (cf. [26]).

De�nition A.2.1. A �1(N)-test object over R is a triple (E=S ; !; P ) where E is
an elliptic curve over an R-algebra S, ! a nowhere vanishing di�erential on E and
P is a point of exact order N . A modular form for the congruence subgroup

�1(N) of weight k is a rule f which assigns to a test object (E=S ; !; P ) an element

f(E=S ; !; P ) 2 S

satisfying the analogous conditions of A.1.1. We denote by M
�1(N)

k
(R) the R-

algebra of such forms.
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Interesting test objects are the Tate curves Tate(qN)=Z((q)) with their canonical

di�erential !can = dx=(2y + x) and any point of order N . They are deduced from

(Tate(q); !can) by the extension of scalars Z((q)) �! Z((q)) q 7! q
N . The Tate

curves have multiplicative reduction given by

(e2�iz = u 2 C �=qNZ; du=u) 7! (x =
X
k2Z

q
Nk
u

(1� qNku)2
� 2

1X
k=1

q
Nk

1� qNk
;

y =
X
k2Z

(qNku)2

(1� qNku)3
+

1X
k=1

q
Nk

1� qNk
; dx=2y + x):

Thus, the points of order N in Tate(qN) correspond to the points of order N on

C �=qNZ and have the form

�
i

Nq
j 0 � i; j � n� 1

where �N denotes a primitive N 'th root of unity. All �1(N)-structures are de�ned

over Z((q))
Z[�N; 1=N ].

De�nition A.2.2. Let R be a ring in which N is invertible and which contains a
primitive N-th root of unity �N . Then the q-expansion map at the cusp �i

N
q
j is the

ring homomorphism

�
�1(N)
� :M

�1(N)
� (R) �! Z((q))
R � R((q))

de�ned by

f 7! f(q) =
def

f(Tate(qN)=Z((q))
R; !can; �
i

Nq
j):

We say f is holomorphic if f(q) already q-expands in R[[q]] for one and hence for

all cusps (cf. [27]) and write �M
�1(N)
� (R) for the graded ring of holomorphic �1(2)-

modular forms over R.

Theorem A.2.3. [13][26] If for some cusp a (possibly meromorphic) �1(N)-
modular form f over S of weight k has all its q-expansion coeÆcients in a subring
R � S then it does so at all cusps and there exists a unique �1(N)-modular form
f0 of weight k over R which gives rise to f by extension of scalars. Furthermore,
every q-expansion map is injective.

Corollary A.2.4. If R is torsionfree, then the q-expansion map ��1(N) is ratio-
nally faithful on its homogeneous components.

The expansions of � and Æ at the cusp 0, i.e. (Tate(qN); !can; q), are given by

the formulas [18]

Æ(�) = �

1

8
� 3

X
n�1

(
X
2-djn

d)qn=2; �(�) =
X
n�1

(
X
2-djn

(
n

d
)3)qn=2:

From that it is easy to conclude

Corollary A.2.5.

M
�1(2)(Z [ 1=2 ]) �= Z [ 1=2; Æ; �;��1 ]

�M�1(2)(Z [ 1=2 ]) �= Z [ 1=2; Æ; � ]
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The q-expansion map of M
�1(N)
� =

def

M
�1(N)
� (Z[1=N; �N]) can be used to push

the formal group F̂�1(N) de�ned by the exponential f to the ring of power series.

Explicitly, at the cusp 1, i.e. at (Tate(qN); !can; �N ), we have the formulas [18]

AI.7/6.4:

f(z; �) =
�(z; �)�(�2�i=N; �)

�(z � (2�i=N); �)

where

�(z; �) = (ez=2 � e
�z=2)

1Y
n=1

(1� q
n
e
z)(1� q

n
e
�z)

(1� qn)2
:

A short calculation shows that f gives a power series in Z[1=n; �N; ][[w; q]] where
w = 1� exp(�z). We conclude with the q-expansion principle:

Corollary A.2.6. There are unique isomorphisms of formal groups over Z((q))

Z[1=N; �N]

Ĝm
�= �

�1(N)
� F̂�1(N)

�= F̂Tate(qN ):

In particular, the ring inclusion

M
�1(N)
� ,!M

�1(NM)
�

induces an isomorphism of formal groups. The equivalent statement also holds for

M
�1(1)
� =

def

M
�1(1)
� (Z[1=6]):

Appendix B. The p-adic q-Expansion Principle

Modular forms over the p-adic numbers as de�ned in appendix A do not re
ect

the p-adic topology in a serious way as they are just the tensor product of integral

modular forms with Zp. One wishes to allow limits of such forms in such a manner

that forms with highly congruent q-expansion are close. The �rst approach for

such a theory was taken by Serre [44]. He identi�ed p-adic modular forms with

their q-expansion and showed they can be associated a weight which is a character

� : Z�p �! Z�p . Serre modular forms form a subring of the ring of trivialized

modular forms developed by N. Katz. Katz's theory is preferable to us as it allows

a modular interpretation and his ring is the p-adic counterpart of K0E
�.

For a detailed and complete treatment of p-adic modular forms `with growth

conditions' the reader is referred to the articles of Katz [24] [25] [26] and the overview

given in [16].

B.1. Trivialized Modular Forms and Diamond Operators. Trivialized mod-

ular forms were �rst introduced by Katz in [24]. Katz uses the expression `gener-

alized modular forms' as they include honest modular forms, modular forms in the

sense of Serre and `modular forms with growth condition 1'.

Let R be a p-adic ring. We will always assume that R contains a primitive Nth-

root of unity with p - N , and that it is a p-adically complete, discrete valuation

ring or a quotient of such a ring.
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De�nition B.1.1. A trivialized �1(N)-test object is a triple (E=S ; '; P ) con-
sisting of an elliptic curve over a p-adically complete and separated R-algebra S, a
trivialization of the formal group of E=S by an isomorphism

' : Ê
�
�! Ĝm

over S and a point P of exact order N . A modular form for �1(N) over R is a
rule f which assigns to any trivialized �1(N)-test object a value

f(E=S ; '; P ) 2 S

satisfying the following conditions:

(i) f(E=S ; '; P ) depends only on the S-isomorphism class of (E=S ; '; P )
(ii) the formation f(E=S ; '; P ) commutes with arbitrary base change.

We denote by T�1(N)(R) the ring of trivialized modular forms over R.

Note that we do not require these modular forms to have a weight. However,

there is an action of Z�p on T�1(N)(R): For a 2 Z�p we de�ne the diamond oper-

ator

([a]f)(E=S ; '; P ) = f(E=S ; a
�1
'; P ):

It is clear that an ordinary �1(N)-modular form f gives rise to a trivialized one by

f(E=S ; '; P ) = f(E=S ; '
�(dT=(1 + T )); P )

where dT=(1 + T ) is the standard di�erential on Ĝm. The Tate curve admits a

canonical trivialization 'can with

'
�

can(dT=(1 + T )) = !can

in the notation of appendix A.

De�nition B.1.2. The q-expansion map of trivialized modular forms at �i
N
q
j is

the ring homomorphism

���1(N) : T�1(N)(R) �!\R((q))

given by

f 7! f(q) =
def

f(Tate(qN)
=\R((q))

; 'can; �
i
q
j):

We say f is holomorphic if it already q-expands in the subring R[[q]] and write
�T�1(N)(R) for the resulting ring.

Theorem B.1.3. If a trivialized �1(n)-modular form over S already q-expands in
\R((q)) for some subring R � S then there is a unique modular form ~f over R which
gives rise to f by extension of scalars. Moreover, a trivialized modular form is
uniquely determined by its q-expansion.

In [24] Katz gives two proofs of the theorem. The hard part is to show the

injectivity of the q-expansion for a �eld of characteristic p. It is a consequence

of the irreducibility of the moduli space of trivialized test objects for which Katz

refers to Igusa or Ribet.

Corollary B.1.4. Let W be the Witt vectors of a perfect �eld of characteristic p
which contains a primitive N 'th root of unity �N . Let

P
fi be a sum of true �1(N)-

modular forms over W [1=p] which q-expands in \W ((q)) at some cusp. Then so doesP
a
i
fi for all a 2 Z�p .
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Proof. Let N be such that pN fi is a modular form over W . Then
P
p
N
fi gives

rise to an element in T
�1(N)(W ) with q-expansion divisible by pN . Thus, by the

q-expansion principle
P
p
N
fi is uniquely divisible by pN . We conclude that

P
fi

lies in T�1(N)(W ) and so does [a]
P
fi. But the e�ect of the diamond operator is

([a]
P
fi)(E=S ; '; P ) = (

P
fi)(E=S ; a

�1
'; P )

=
P
fi(E=S ; a

�1
'
�(dT=(1 + T )))

=
P
a
i
fi(E=S ; '

�(dT=(1 + T )))

= (
P
a
i
fi)(E=S ; '; P ):

Hence, any q-expansion of
P
a
i
fi is integral.
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