
An E∞ splitting of spin bordism

Gerd Laures

Abstract. The work determines the E∞ structure of the K(1)-local spin bor-
dism spectrum by giving a multiplicative splitting into E∞ cells. The splitting

leads to a cellular decomposition of the Â-map and creates new isomorphisms
of Conner-Floyd type.

Introduction and statement of results

One of the most important results on spin bordism goes back to Anderson,
Brown and Peterson (ABP). They showed that two spin manifolds are spin bordant
if and only if all Stiefel-Whitney and KO-characteristic numbers coincide. More-
over, the spin bordism groups can be computed from the additive 2-local splitting

MSpin ∼=
∨

n(J)even
16∈J

ko 〈4n(J)〉 ∨
∨

n(J)odd
16∈J

ko 〈4n(J) + 2〉 ∨
∨
i∈I

ΣdiHZ/2.

Here, J is a finite sequence of non negative integers, n(J) is the sum over all entries
and I is some index set. However, the formula does not capture the ring structure
of spin bordism. This problem has been around for the last thirty years because
the Eilenberg Mac Lane part is very hard to track in practice. Fortunately, when
the attention is restricted to the part which can be detected by K-theory this term
disappears. More precisely, the localization of spin bordism with respect to mod 2
K-theory K(1) is a sum of KO-theories.

The generator ζ of the -1st homotopy group of the K(1)-local sphere vanishes
in KO and so it does in MSpin. These considerations lead to an E∞ map from
the E∞ cone Tζ over ζ to the K(1)-local MSpin. One may hope that this map
is an isomorphism since the homotopy groups appear to be the same. However,
when taking into account the Dyer-Lashof operations it becomes apparent that in
KO-homology one gets a free θ-algebra in one generator for Tζ and one in infinitely
many generators for MSpin. Analyzing the action of the Adams operations and
collecting all results this work shows the following multiplicative splitting:

MSpin ∼= Tζ ∧
∞∧
i=1

TS0.

Here, TS0 is the free E∞ spectrum generated by the sphere spectrum and ∧ is the
coproduct in the category of E∞ spectra. The proof of this splitting formula takes
the major part of the work. The difficulty is the determination of the θ-algebra
structure and a good control of the behavior of the map from Tζ . For that, one
needs to understand the ABP-splitting map in KO-homology and to conduct some
2-adic analysis.
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Consequences of the splitting formula. As a first immediate corollary one
obtains the θ-algebra structure of the spin bordism itself:

π∗MSpin ∼= π∗KO ⊗ T {f1, f2, . . .}
That is, the homotopy of MSpin is the free θ-algebra over π∗KO in infinitely many
generators. Moreover, there is an algorithm for constructing the generating classes.

Despite this formula for the θ-algebra structure it turns out thatMSpin can not
be made into a KO-algebra even in the K(1)-local world. (The question whether
it can be made into an KO-module spectrum in the category of spectra was asked
by Mahowald and answered in the negative by Stolz in [Sto94].)

The splitting formula allows a cellular decomposition of KO-theory when
viewed as a relative E∞ CW complex via the Â-map (see corollary 6.5). In partic-
ular, the Â-map arises from a map of E∞ spectra. Moreover, a new proof of the
formula

MSpin∗X ⊗MSpin∗ KO∗
∼= KO∗X

is given. This result was first obtained by Hovey and Hopkins in [HH92] by different
methods. It is not hard to see that the difficulties in proving this Conner-Floyd
isomorphism appear in the K(1)-local setting. Thus the splitting formula can be
applied and promptly furnishes the result.

In [Lau01] the splitting formula is used to equip the topological modular forms
spectrum tmf of Hopkins with an orientation

W : MO 〈8〉 −→ tmf

in the K(1)-local E∞ setting. This map induces the Witten genus in homotopy.
Moreover, in complete analogy to real K-theory, the formula gives new isomor-
phisms of Conner-Floyd type for tmf .

Organization and statement of results. We first supply the technical
framework for the splitting formula. We recall the basic properties of the K(1)-
local category and then turn to E∞ spectra. We take the classical point of view
and work with operads in order to have H∞ techniques available. However, the
results can easily be translated into the brave new world of [EKMM97] or into the
category of symmetric spectra of [HSS00] as well. The reader who is familiar with
these concepts may skip the first section without harm.

In the second section Dyer-Lashof operations in K-theory are reviewed. The
θ-algebra structure of π∗K ∧ TS0 was first computed by McClure by using Dyer-
Lashof operations in singular homology. It is a free θ-algebra in one generator and
so is π∗K∧Tζ . We give a new proof of these results by looking at the representations
of the symmetric groups and using results of Hodgkin and Atiyah. Hence, the right
hand side of the splitting formula is completely understood in homotopy.

In the third section we construct the map ϕ from the cone Tζ to MSpin and
determine its behavior in KO-homology. For that, we compute the image πJ∗ϕ∗b of
the generator b ∈ π0KO ∧ Tζ under the ABP-splitting map

(πJ)∗ : π0KO ∧MSpin
∼=−→

⊕
1 6∈J

π0KO ∧KO.

The ring π0KO ∧ KO can be identified with the ring of continuous functions on
Z×2 /± 1. It turns out

Theorem A. The 2-adic function associated to πJ∗ϕ∗b is the continuous homo-
morphism h which sends the topological generator 3 ∈ Z×2 / ± 1 to 1 for J = ∅ and
vanishes for all other J .

Next we provide explicit polynomial generators u4, u8, u12, . . . of the ring
π0KO ∧ BSpin+

∼= π0KO ∧ MSpin. In order to express ϕ∗b in these classes
we compute their image under the ABP-map as well.
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Theorem B. The associated 2-adic function ΘJ(un) vanishes for all non empty
J which do not contain 1. For Θ = Θ∅ and all odd k we have the formula∑

n

Θ(un)(k)xn = k−1 (1− x)k − (1− x)−k

(1− x)− (1− x)−1

These two formulas show that ϕ∗b is very close to u4. A precise formulation of
this statement is postponed to 5.9.

An E∞ map induces a map of θ-algebras. Hence the map ϕ is determined in
KO-homology once we know how θ operates in spin bordism. The fourth section is
devoted to the computation of the θ-algebra structure of various bordism theories.
Partial results were obtained earlier by Snaith in [HS75] by looking at representa-
tions of the symmetric groups. Unfortunately, all calculations of Snaith are made
in characteristic 2 and hence are not of any use for us. Moreover, it seems to be
difficult to generalize his calculations to higher orders of 2. Hence, we take a differ-
ent approach and look at tom Dieck operations instead. A fixed point formula of
Quillen and a ‘change of suspension formula’ help to compute the action of ψ and
hence of θ for complex bordism.

Theorem C. The θ-algebra structure of π0K ∧MU is determined by the equa-
tion ∑

i≥0

ψ(bi)xi = g(2)−1g(1 +
√

1− x)g(1−
√

1− x).

Here, g(x) is the invertible power series
∑
i≥0 bix

i, b0 = 1 with coefficients in the
ring π0K ∧MU ∼= Z2[b1, b2, . . .]. Note that for reasons of symmetry there is no root
to take in the product: express g(u)g(v) in the elementary symmetric polynomials
and substitute u + v = 2, uv = x. With this formula we can proceed to compute
the θ-algebra structure for SU and Spin bordism. It is convenient to introduce a
length l2 in 4.10 which controls the modifiability of θ-algebra generators.

Theorem D. π0KO ∧MSpin is the free θ-algebra generated by the set of all
u8k+4 for k ≥ 0. Moreover, each generator u8k+4 can be altered by elements of
strictly smaller l2-length.

In the fifth section we compute the action of the Adams operations to describe
the spherical classes, that is, the KO-Hurewicz image π0MSpin ⊂ π0KO∧MSpin.
In 5.6 we give an algorithm to construct spherical classes zk for odd k ≥ 1 with the
property that each zk coincides with u4k up to elements of strictly smaller l2-length.

Main Theorem. The E∞ map

(ϕ, z3, z5, . . .) : Tζ ∧
∞∧
i=1

TS0 −→MSpin

is a KO-equivalence.

This splitting theorem is a consequence of Theorem D, 5.6 and 5.9: in KO-
homology the E∞ map (ϕ, z3, z5, . . .) maps the free θ-algebra generators b, z3, z5, . . .
to the free generators u4, u12, u20, . . . up to smaller classes and thus is an isomor-
phism.

In the final section the promised applications to real K-theory are given.

Acknowledgements. The author would like to thank Mike Hopkins for posing
the problem at the Oberwolfach Homotopietagung 1998 and for sharing the notes
[Hop98] so freely. He is indebted to Matthias Kreck and Haynes Miller for their
encouragement and for interesting discussions. He is also grateful to Matthew Ando,
Pete Bousfield, Hans-Werner Henn and Peter May for their help in getting various
points straight.
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1. E∞ spectra and localizations

This section reviews the basics of the category of E∞ spectra and their prop-
erties under localization. We will work in the category of May, Puppe et al. which
is described in [LMS86]. We use operads to describe E∞ structures. This classical
approach to E∞ spectra has the advantage that every object is fibrant and hence
calculations are easy to survey.

1.1. The category of spectra. In this work a topological space is a com-
pactly generated weak Hausdorff space. We write T for the category of topological
spaces and T∗ for its based pendant. To talk about the category of spectra we first
fix a real inner product space U of countable dimension, a so-called universe. A pre-
spectrum X is a collection of pointed spaces XV indexed by the finite dimensional
subspaces V ⊂ U equipped with maps

σW,V : SW−V ∧XV −→ XW

for all V ⊂ W . Here, the space W − V is the orthogonal complement of V in W
and SW−V denotes its one-point compactification. One requires that σV,V is the
identity and that the associativity condition (1∧σV,U )σW,V = σW,U holds whenever
U ⊂ V ⊂ W . A spectrum is a prespectrum with the additional property that the
adjoint maps

τW,V : XV −→ ΩW−VXW

are homeomorphisms. A map of (pre-) spectra f : X −→ Y is a collection of maps
fU : XU −→ YU commuting with the structure maps.

A construction of Lewis shows that the forgetful functor from the category of
spectra SU to prespectra admits a left adjoint L, called the spectification. The
spectification is easy to visualize in case that each σW,V is a closed inclusion:

LX ∼= (V 7→ colim
W⊃V

ΩW−VXW ).

The morphism set SU (X,Y ) has a natural topology as subspace of the product of
mapping spaces T (XV , YV ). Moreover, for each pointed space Q we may form the
spectrum

XQ : V 7→ T∗(Q,XV )
and its adjoint

X ∧Q = L(V 7→ XV ∧Q).
These constructions are natural with respect to all variables and we have the rela-
tionship

T∗(Q,SU (X,Y )) ∼= SU (X ∧Q,Y ) ∼= SU (X,Y Q).
The category SU becomes a closed model category if we define the fibrations and
weak equivalences spacewise. That is, a map f from X to Y is a fibration (or w.e.)
if for all V the maps fV : XV −→ YV are so. The resulting homotopy category is
equivalent to the stable category of Adams for any infinite dimensional U .

This coordinate free approach to spectra enables us to change universes in
a continuous way. Suppose U and V are universes and let L(U ,V) denote the
(contractible) space of linear isometries from U to V. Any f ∈ L(U ,V) defines an
adjoint pair of functors:

f∗X = L(W 7→ SW−f(U) ∧XU ) f∗X : V 7→ XfV

with U = f−1W . Since the functors continuously depend on the isometry f this
construction can be generalized as follows. A map from a space A to L(U ,V)
gives rise to a functor Ao : SU −→ SV and its adjoint F [A, ) : SV −→ SU . The
construction is natural in A and reduces to the above if A is a point. Moreover, the
half smash product has the following properties:
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(i) the identity map idU ∈ L(U ,U) serves as a unit

id∗X = {idU}oX ∼= X

(ii) for any X ∈ SU and for any A −→ L(U ,V), B −→ L(V,W) the map

B ×A −→ L(V,W)× L(U ,V) −→ L(U ,W)

satisfies
(B ×A) oX ∼= B o (AoX).

(iii) for any X ∈ SU , Y ∈ SV and for any A −→ L(U ,U ′), B −→ L(V,V ′) the
map

A×B −→ L(U ,U ′)× L(V,V ′) −→ L(U ⊕ V,U ′ ⊕ V ′)
satisfies

(A×B) o (X ∧ Y ) ∼= (AoX) ∧ (B o Y ).

In [Elm88] Elmendorf defines a big category S with objects all spectra over all
universes. A morphism from a spectrum X over U into a Y over V is given by a
pair, an isometry f : U −→ V and a map of spectra from f∗X to Y . It is convenient
to topologize S(X,Y ) in a way that we have

T /L(U ,V)(A,S(X,Y )) ∼= SV(Ao Y ).

Here, T /L(U ,V) denotes the category of spaces over L(U ,V).
These constructions are useful once it comes to smash products. If X is indexed

over U and Y over V then the spectification of the (partial) prespectrum

U × V 7→ XU ∧ YV
is indexed over U × V. This product is associative and symmetric up to coherent
equivalences and turns S into a symmetric monoidal category with unit I = (S0, 0).
To get an internal product in SU we can choose an isometry f : U × U −→ U and
take the pushforward f∗(X ∧ Y ). A more canonical object is the spectrum

L(U × U ,U) o (X ∧ Y ).

However, it still is only associative up to coherent equivalences in the homotopy
category. To talk about ‘ring-like’ objects in SU we need to introduce the concept
of an operad.

1.2. Operads and E∞ spectra. Let M be a symmetric monoidal category
with product ⊗ and unit I. An operad in M is a family of objects T0, T1, . . . ∈
M together with right Σn-actions on each Tn and Σn × Σi1 × . . .Σin -equivariant
structure maps

Tn ⊗ Ti1 ⊗ . . .⊗ Tin −→ Ti1+i2+...+in .

These maps should satisfy certain associativity axioms. A pointed operad is an
operad together with a map I −→ T1 which behaves like a unit when composed
with structure maps.

Instead of dealing with the details here we give the most important class of
examples of pointed operads: the endomorphism operad End(X) for each object X
inM. Its n’th object is the morphism setM(X⊗n, X) and the structure maps are
given by compositions

fn ⊗ fi1 ⊗ · · · ⊗ fin 7→ fn(fi1 ⊗ · · · ⊗ fin).

If M is enriched over M′ we obtain an operad in M′. For instance, the linear
isometry operad L = End(U) is an operad of spaces and so is End(X) for any
spectrum X indexed over U . Moreover, the canonical projection

p : End(X) −→ L
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is a map of pointed operads, meaning a collection of maps which is compatible with
all structure maps. It associates to a map of spectra f : X∧n −→ X the underlying
isometry p(f) : U×n −→ U .

An operad T over L is called an E∞ operad if each of the spaces is contractible
and the symmetric groups act in a free fashion. This way, the operad L becomes
an E∞ operad itself. An E∞ ring spectrum is a spectrum X together with a map
T −→ End(X) of pointed operads over L.

There is another way to describe the action of T on X which will prove useful
later. Let G be a group which acts on U by linear isometries and on X by a map
µ : GoX −→ X. Then for a G-equivariant map A −→ L(U ,V) let AoG X be the
coequalizer of the two maps

(A×G) oX
µo1−→ AoX and (A×G) oX ∼= Ao (GoX)

1oµ−→ AoX.

The spectrum
TX =

∨
n≥0

Tn oΣn
X∧n

is the free E∞ algebra generated by X over the operad T . This way, T becomes an
endofunctor of SU . More precisely, T is a triple (or a ‘monad’) since it comes with
a unit η : id −→ T and a natural transformation µ : T 2 −→ T . The latter is built
from the structure maps data of the operad T . An algebra over T is a spectrum X
together with a morphism ξ : TX −→ X making the diagrams

T 2X
Tξ //

µX

��

TX

ξ

��
TX

ξ // X

X
ηX //

=
!!DDDDDDD TX

ξ

��
X

commute. An E∞ map between E∞ spectra is a map of spectra which commutes
with the action of T . Later we will also use the notion of an H∞ spectrum which is
defined in the same way but the diagrams need only to commute up to homotopy.

Examples 1.1. (i) The sphere spectrum is an E∞ spectrum since it is
the free object T (∗) generated by a point.

(ii) Let G be one of the classical groups O,SO,P in, Spin or one of their com-
plex analogues U, SU, Spinc or Sp ect. Then the geometric bar construc-
tion [May77][May72] gives simplicial toplogical spaces B∗(GV, SV ) and
B∗(GV ) for each V ⊂ U . Their geometric realizations BGV (B(GV, SV )
resp.) allow multiplication maps

µ : BGV ×BGW −→ B(GV ×GW ) −→ BG(V ⊕W )

which are commutative and associative on the nose. The spectification of

Th : V 7→ B(GV, SV )/BGV

is called the Thom spectrum MG. For f ∈ Ln and for subspaces
V1, V2, . . . , Vn define the structure maps

Th(V1) ∧ . . . ∧ Th(Vn)
Thµ−→ Th(V1 ⊕ . . .⊕ Vn)

Th(f)−→ Th(f(V1 ⊕ . . .⊕ Vn))
and spectify to obtain an E∞ structure on MG.

(iii) Other examples are less elementary. An investigation of the infinite loop
spaces shows that connective real and complex K-theory ko and k are
represented by E∞ ring spaces and hence are E∞ ring spectra. More-
over, the stable Adams operations ψr act as E∞ maps after completion.
Recently it was proved that the periodic theories KO and K are commu-
tative S-algebras in [EKMM97] and symmetric spectra in [Joa01].
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We write STU for the category of E∞ spectra. The free functor T is left adjoint
to the forgetful functor U : STU −→ SU . Hence, inverse limits in STU are inherited
from SU . Colimits are more difficult. It can be shown that for any diagram (Xα)
of T -algebras the ordinary coequalizer of

T (colimUTXα)
d0 //
d1

// T (colimUXα)

admits a T -algebra structure which satisfies the universal property of a colimit in
STU . Here, d0 is induced by the T -algebra structure on each Xα whereas d1 comes
from the natural transformation µ which makes T into a monad. The argument uses
the fact that UT preserves reflexive coequalizers which can be checked spacewise
[Hop96]. Alternatively, the existence of colimits follows from a general fact about
categories of algebras over a triple (compare [BW85].) The E∞ category STU admits
a closed model category structure with the following data: a map is a fibration (resp.
weak equivalence) if and only if Uf is one.

The coproduct of E∞ spectra E and F is weakly equivalent to the product E∧F
(see [EKMM97].) Note that for E∞-spectra E and F the product E ∧ F ∈ SU×U
is an E∞ spectrum in the following way: E ∧ F is an algebra over the product E∞
operad T × T via

(Ln × Ln) oΣn
(E ∧ F )n ∼= (Ln o En ∧ Ln o Fn)/Σn

−→ Ln oΣn
En ∧ Ln oΣn

Fn −→ E ∧ F.
This justifies the notation in the splitting formula. Finally we remark that

∞∧
i=1

TS0 ∼= T (
∞∨
i=1

S0) ∼= colim
k
T (

k∨
i=1

TS0).

This follows from the fact that T is a left adjoint and hence commutes with colimits.
The middle term reveals that the above colimit of free E∞ spectra coincides as a
spectrum with the ordinary colimit in SU .

1.3. The Bousfield localization with respect to K(1). A map of spectra
f : X −→ Y is called an E-equivalence if the induced map f∗ in E-homology is
an isomorphism. Since E does not distinguish between honest isomorphisms and
E-equivalences it is useful to have a category in which E-equivalences are invertible
and no other information is lost. The existence of this E-local category was proved
by Bousfield in [Bou79]. He even showed that it can be realized as a full subcategory
of the stable category HoSU .

In detail, a spectrum Z is E-local if each E-equivalence f induces a bijection
in cohomology f∗ : Z∗Y −→ Z∗X. The inclusion functor of the full subcategory
C of E-local objects in HoSU admits a left adjoint LE : HoSU −→ C, called the
Bousefield localization functor. Hence, the unit of the adjunction η : X −→ LEX
is an E-equivalence and associates an E-local spectrum to any spectrum X.

The Bousfield localization has the following elementary properties:
(i) LE takes E-equivalences to isomorphisms.
(ii) LE is idempotent: LE LE ∼= LE .
(iii) LE preserves homotopy inverse limits.
(iv) LE preserves cofibre sequences.
(v) If E is a ring spectrum and X is a module spectrum over E then X is

E-local: X ∼= LEX.
Note that the localization functor LE can be chosen to preserve E∞ structures (see
[EKMM97]ch.8.) We want to take E to be the first MoravaK-theory. At the prime
2 the theory K(1) coincides with mod 2 K-theory KZ/2 for the following reason:
the 2-typicalization of the multiplicative formal group law Ĝm is the Honda formal
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group law since the 2-series are the same. Hence, the localization with respect to
K(1) can be obtained as a process in two stages:

LK(1)
∼= LSZ/2LK(2) .

Here, SZ/2 is the Z/2-Moore spectrum. Note that for the localization it makes
no difference to work with complex or real K-theory [Mei79]. The latter was
investigated by Adams, Baird and Ravenel. They showed that the KO-local sphere
is closely related to the image of J spectrum: Let J(2) be the fibre of

ψ3 − 1 : KOZ(2) −→ KOZ(2).

Here, ψ3 is the third stable Adams operation. Then there is a fibration of the form

LKOZ(2)S −→ J(2) −→ Σ−1SQ.
The rational part vanishes once we localize with respect to the Moore spectrum
SZ/2: for allX the localization LSZ/2X is the function spectrum F (Σ−1SZ/2∞, X).
The localization with respect to SZ/2 acts as a completion on homotopy groups
since there is an exact sequence [Bou79]

0 −→ Ext(Z/2∞, π∗X) −→ π∗LSZ/2X −→ Hom(Z/2∞, π∗−1X) −→ 0.

Summarizing, we see that the K(1)-local sphere coincides with the completed image
of J-spectrum LSZ/2J(2). Moreover, we get the fibration

LK(1)S −→ LK(1)KO
ψ3−1−→ LK(1)KO.

which enables us to calculate the homotopy groups of the K(1)-local sphere. In
addition, it turns out that KO(2)-theory is smashing (see [Rav84]8.12.) This means
that for all X the spectrum LKO(2)S ∧ X is a KO(2)-localization of X. Hence,
smashing the sequence above with X gives the fibre sequence

X −→ KO ∧X ψ3−1−→ KO ∧X
in the K(1)-local category.

2. θ-Algebras

This section is devoted to the algebraic objects which come up as the homotopy
of K(1)-local E∞ ring spectra. A θ-algebra is an algebra together with a single oper-
ation θ which satisfies certain properties. The classical theory of such θ-algebras goes
back to Grothendieck and Atiyah who investigated the exterior power operations
in the representation theory and in K-cohomology rings. These power operations
were later generalized by McClure, Ando and Hopkins to Dyer-Lashof operations
for arbitrary K(1)-local E∞ spectra. Their general properties were recently studied
by Bousefield in [Bou99][Bou96b][Bou96a] from an axiomatic point of view.

We first review Atiyah’s and Hodgkin’s work on power operations. Then we
give a new proof of McClure’s result on the structure of TS0. Finally, we turn to the
spectrum Tζ and work out the computations of Hopkins. There is hardly any new
result in this section. However, the new treatments and proofs provide a convenient
framework for things to come.

We work in the category C of K(1)-local spectra and omit the localization
functor from the notation.

2.1. The K-homology ring of TS0. Since Atiyah’s work on power opera-
tions we know that there is a close relationship between operations in K-theory and
the K-homology ring of

TS0 ∼=
∞∨
n=0

BΣn+.

The latter can be computed.
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Theorem 2.1. There is an isomorphism of rings

π∗K ∧ TS0 ∼= π∗K[θ1, θ2, θ4, . . .]

The ring of the right hand side is to be understood as an object in the category
of 2-complete π∗K-algebras. More precisely, it is the free commutative 2-complete
algebra on the indicated generators. For instance, the power series

∑
n θ2n2n is a

valid class. The proof of the theorem uses the following result of Hodgkin which
can be found in [Hod72]:

Proposition 2.2. Let RΣn be the representation ring and RΣ∧ its completion
with respect to the augmentation ideal IΣn. Equip RΣn ⊂ RΣ∧n with the IΣn-adic
topology. Then we have

π∗KZ/2r ∧BΣn+
∼= Homcts(RΣn, π∗KZ/2r)

π∗KZ/2r ∧ TS0 ∼= π∗KZ/2r[θ1, θ2, θ4, . . .].
Here, Homcts denotes the group of continuous homomorphisms.

Hence, the theorem follows from the following lemma. (Recall that the K(1)-
localization functor is omitted from the notation.)

Lemma 2.3.

π∗K ∧BΣn+
∼= lim

r
π∗KZ/2r ∧BΣn+

∼= Homcts(RΣn, π∗K)

π∗K ∧ TS0 ∼= lim
r
π∗KZ/2r ∧ TS0

Proof. For all spectra X the K(1)-local K∧X can be written as the homotopy
inverse limit of the sequence

KZ/2 ∧X ←− KZ/4 ∧X ←− KZ/8 ∧X ←− . . .
Hence, there is a short exact sequence

0→ lim
r

1π∗+1KZ/2r ∧X → π∗K ∧X → lim
r
π∗KZ/2r ∧X → 0

and it suffices to show that the lim1-term vanishes. This is obvious for the case
X = TS0 from Hodgkin’s result and follows for the classifying spaces since they are
direct summands of TS0. �

We are going to describe the elements θk in more detail. The class θ1 comes
from the unit of the operad T

S0 −→ T1S
0 −→ TS0 ∼= S0 ∧ TS0 −→ K ∧ TS0.

For the others we consider the dual representation ring Hom(RΣn,Z2) of all homo-
morphisms. It admits an interpretation as the group of elements of degree n in the
ring of symmetric polynomials in indeterminants ti of degree 1: let

∆k,n ∈ Z2[t1, t2, . . . , tk]Σk
n ⊗RΣn

be the function
∆k,n(t1, t2, . . . , tk, g) = Trace(gT⊗n).

In this notation we regard RΣn as the character ring and g lies in Σn. The letter
T denotes here the diagonal matrix (t1, t2, . . . , tk) acting on Ck. Atiyah showed in
[Ati66] that the map

∆ :
⊕
n≥0

Hom(RΣn,Z2) −→
⊕
n≥0

lim
k

Z2[t1, t2, . . . , tk]Σk
n

given by
∑
fn 7→

∑
(1⊗ fn)∆k,n is a ring isomorphism.
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Example 2.4. Σ2 admits two irreducible representations: the trivial 1 and the
sign representation σ. One readily verifies

∆k,2 = e2 ⊗ σ + (e21 − e2)⊗ 1

for all k ≥ 2. Here, the ei’s denote the elementary symmetric polynomials. The
augmentation ideal of RΣ2 = Z[σ]/σ2 − 1 is generated by 1− σ. We claim that all
homomorphisms are continuous. Obviously e21 is so. Hence it suffices to check e2:

e2(1− σ)n = −
∑
k odd

(
n

k

)
= −2n−1

In these terms, we can inductively define the θi’s by declaring the powers sums
σ2k =

∑
t2

k

i to be the k-th Witt polynomial in the θi’s

σ2k = θ2
k

1 + . . .+ 2kθ2k

or, equivalently,
∞∏
i=0

(1− tix) =
∞∏
n=0

(1− θnxn).

A proof for the continuity of θn can be found in [Hod72]. Atiyah explained how
such an element θk leads to an operation

θk : K(X)
()⊗n

−→ KΣn
(X) ∼= K(X)⊗ RepΣn

1⊗θk−→ K(X)

For instance, the power sums σk give rise to the Adams operation ψk. Hence, the
formula for the first Witt polynomial may be interpreted as

ψ2(x) = x2 + 2θ2(x)

for all x ∈ K(X). This was the first topological example of what is called a θ-
algebra. Later McClure [BMMS86] showed how the θi come up by operations of
Dyer-Lashof type.

2.2. The category of θ-algebras. We now turn to the algebraic picture and
work in the category of 2-complete groups.

Definition 2.5. (compare [Bou96b][Bou96a][Bou99]) A θ-algebra is a com-
mutative algebra A over a ring R with unit together with a function θ : A −→ A
such that

θ(1) = 0
θ(a+ b) = θ(a) + θ(b)− a b
θ(a b) = θ(a)b2 + a2 θ(b) + 2θ(a)θ(b).

For a θ-algebra A we define the operation ψ : A −→ A by the equation ψ(x) =
x2 + 2θ(x). One easily checks the

Proposition 2.6. ψ is a ring homomorphism and commutes with θ.

Examples 2.7. (i) Z2 is a θ-algebra via

θ(x) =
x− x2

2
and ψ(x) = x.

Similarly, the ring C = T (Z2,Z2) of continuous functions on the 2-adics
is a θ-algebra with ψ(f) = f .

(ii) There is not any θ-algebra of characteristic 2: when setting (a, b) = (1, 1)
(and (1, 0) resp.) in the addition formula we see that 1 equals 0 for such
algebras.



AN E∞ SPLITTING OF SPIN BORDISM 11

(iii) For all spaces X the ring KX is a θ-algebra via the operation θ2 as ex-
plained in 2.1. The properties of θ immediately follow from the naturality
and the fact that the Adams operation ψ2 = ψ is a ring homomorphism.
In particular, the ring of unstable operations in K-theory Op(K) is a
θ-algebra by

θ(a)(x) = θ2(a(x)) for a ∈ Op(K), x ∈ K(X).

It turns out that the subring

π0K ∧ TS0 ∼=
⊕
n≥0

Homcts(RΣn,Z2) ⊂
⊕
n≥0

Hom(RΣn,Z2) ∼= Op(K)

is a θ-subalgebra. But instead of dealing with continuity questions here we
define a second θ-algebra structure on π0K ∧ TS0 in the next paragraph
and show in 2.12 that they coincide.

The following observation carries the name Wilkerson criterion [Bou96a]:

Proposition 2.8. Let A be torsion free and ψ an algebra endomorphism of A
with the property that ψ(a) = a2 mod 2. Then A has a unique θ-algebra structure
with ψx = x2 + 2θx for all x ∈ A.

The forgetful functor from θ-algebras F to 2-complete modules admits a left
adjoint T : if M is free on one generator x we define

TM = R[x, x1, x2, . . .]

and set θ(xi) = xi+1, θ(x) = x1. This algebra will be denoted by R ⊗ T{x} in the
sequel. If M is free on generators {xi}i∈I we set

TM = R⊗
⊗
i∈I

T{xi} ∼= R⊗ T{xi}i∈I .

For the general case we first observe that F has coequalizers and tensor products
and thus colimits: if f, g : A −→ B are θ-maps, then the ideal generated by the set

{f(a)− g(a) ; a ∈ A}
is closed under the operation of θ:

θ(f(a)− g(a)) = (f(θa)− g(θa)) + (f(a)− g(a))g(a).
Hence, the quotient ring is a coequalizer in F . Tensor products of θ-algebras are
obtained by choosing free representations and taking cokernels successively. Simi-
larly, the free functor T of a general module M is obtained by presenting M as the
cokernel of a map of free modules.

The free algebra T{x} has another basis which is constructed as follows. In
each θ-algebra A there is family of natural operations θn which satisfies

ψna = (θ0a)2
n

+ 2(θ1a)2
n−1

+ · · ·+ 2nθna

Here, ψn is the iteration of ψ. These operations can be inductively defined by the
equations (compare [Bou96a])

θna = θ∼n(θ0a) + θ∼n−1(θ1a) + · · ·+ θ∼1(θn−1a).

θ∼na =
2n−1∑
i=1

(−1)i+12i−n
(

2n−1

i

)
(ψa)2

n−1−i(θa)i.

For instance, for our θ-ring K(X) the operations θn coincide with Hodgkin’s oper-
ations θ2n considered earlier.
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Lemma 2.9. Let A be the free θ-algebra on x and set θi = θi(x). Then we have
θ(θk) = θk+1 + ε with a polynomial ε depending only on θ0, θ1, . . . , θk. In particular,
there is an isomorphism of rings

A ∼= Z2[θ0, θ1, θ2, . . .]

Proof. Compute
k+1∑
i=0

2iθ2
k+1−i

i = ψ(
k∑
i=0

2iθ2
k−i

i ) =
k∑
i=0

2i(ψθi)2
k−i

=
k∑
i=0

2i(θ2i + 2θ(θi))2
k−i

�

2.3. Dyer-Lashof Operations for K(1)-local E∞ spectra. In 2.7(iii) we
claimed that the ring π0K ∧ TS0 carries a θ-algebra structure by interpreting its
elements as operations in K-theory. There is a more intrinsic description of the
θ-algebra structure which works for arbitrary K(1)-local E∞ spectra E.

An E∞ structure ξ on E determines a power operation

P : E0X −→ E0TnX

by setting
P (x) : TnX −→ TX

Tx−→ TE
Tξ−→ E

for each x ∈ E0X. For X = S0 and n = 2 this gives a map P (x) : BΣ2+ −→ E
for each x ∈ π0E. The classifying space BΣ2+ reduces to two copies of S0 in the
K(1)-local world. To see this, consider the map

(ε, T r) : BΣ2+ −→ pt+ ∨ (EΣ2)+ ∼= S0 ∨ S0

which consists of the constant map ε = const+ and the transfer Tr. It is a weak
equivalence in C: the transfer of a one dimensional trivial bundle is the bundle cor-
responding to the representation in which Σ2 acts on C2 by permuting coordinates.
Since this bundle comes from 1 + σ we obtain the isomorphism

(1 ∧ ε, 1 ∧ Tr)∗ : π0K ∧BΣ2+
∼= Z2σ2 ⊕ Z2e2

1−→ Z2 ⊕ Z2.

as one easily checks.
We follow the lines of [Hop98] and define maps

θ, ψ : S0 −→ BΣ2+

by requiring (
Tr
ε

) (
θ ψ

)
=

(
−1 0
0 1

)
.

For e : S0 ∼= Be+ −→ BΣ2+ we have εe = 1, Tr e = 2 and thus

e = ψ − 2θ.

With θ(x) = P (x) θ and ψ(x) = P (x)ψ the last equation gives

ψ(x)− 2θ(x) = P (x) e = x2

which is Atiyah’s equation. This also justifies the sign in the definition of θ. It is
clear that θ is natural with respect to E∞ maps. In fact the H∞ property suffices
in this context.

Proposition 2.10. The operation θ turns π0E into a θ-algebra.

Proof. First assume that π0E is torsion free. Then it suffices to check that the
operation ψ is a ring homomorphism. Recall from [BMMS86]p.253 the formulae

P (x+ y) = Px+ Py + Tr∗(x y)
P (x y) = PxPy.
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With these it suffices to show that the stable map ψ induces a ring map in E-
cohomology. That is, ψ should commute with the diagonal map

∆+ψ = (ψ ∧ ψ)∆+ ∈ π0BΣ2+ ∧BΣ2+.

Since ε commutes with ∆+ we have

(ε ∧ ε)∆+ψ = ∆+εψ = ∆+ = (ε ∧ ε)(ψ ∧ ψ)∆+.

Moreover, the map f = (Tr ∧ Tr)∆+ψ is null: in K-theory we have

f∗1 = ψ∗(Tr(1)2) = ψ∗((1 + σ)2) = ψ∗(2(1 + σ)) = 2ψ∗Tr(1) = 0.

Also the composite ∆+Tr ψ vanishes for trivial reasons. Since (ε, T r) is a K(1)-
equivalence and E is local we have established the commutativity of ψ and ∆+.
This finishes the proof for the torsion free case.

For general E let x, y be classes in π0E. Consider the E∞ map

(x, y) : T (S0 ∨ S0) ∼= TS0 ∧ TS0 −→ E.

In order to establish the addition and multiplication laws it suffices to show that
π0T (S0 ∨ S0) is torsion free. There are many ways to see that the Hurewicz map

π0T (S0 ∨ S0) −→ π0K ∧ T (S0 ∨ S0) ∼= π0K ⊗ T{x, y}
is injective. For instance, the computation in the Adams-Novikov spectral sequence
based on K at the end of this section gives an argument. �

Example 2.11. For a space X consider the function spectrum KX+ . Since it
is an E∞ ring spectrum we have a θ-algebra structure on π0K

X+ = K(X). From
the definition of the power operations we see that the operations ψ and θ coincide
with the second Adams operation ψ2 and Atiyah’s operation θ2.

The ring of all operations contains the subring π0K ∧ TS0 as explained earlier.
Its θ-algebra structure is determined by the

Theorem 2.12. In π0K ∧ TS0 we have the equality ψ(σ2k) = σ2k+1 . In partic-
ular, π∗K ∧ TS0 is the free θ-algebra on θ1.

Proof. The equation looks like the relation among Adams operations ψ2ψ2k

=
ψ2k+1

. Indeed the formula will follow once we have established (ψf)(x) = ψ2(f(x))
for all x ∈ K(X) and f ∈ π0K∧BΣn+. In this context f is regarded as an operation
as explained earlier. The equality is part of the following commutative diagram

X+

ψ∧1

��

��

�
�

�
�
�
�
�
�
!
"
$
%
'
)
*

BΣ2+ ∧X+
∆ //

1∧f∧1

��

EΣ2+ ∧
Σ2
X2

+
1∧(fx)2 //

1∧(f∧1)2

��

EΣ2+ ∧
Σ2
K2

		

)
'
&
$
"
!
�

�
�
�
�

�
�

�

EΣ2+ ∧
Σ2
BΣ2

n+ ∧X+
1∧∆ //

ξ

��

EΣ2+ ∧
Σ2

(BΣn+ ∧X+)2

1∧∆

��
EΣ2+ ∧

Σ2
(EΣn+ ∧

Σn

Xn
+)2 1∧x2n

//

ξ

��

EΣ2+ ∧
Σ2

(EΣn+ ∧
Σn

Kn)2

ξ

��

ξ

OO

BΣ2n+ ∧X+
1∧∆ // EΣ2n+ ∧

Σ2n

X2n
+

1∧x2n
// EΣ2n+ ∧

Σ2n

K2n

ξ

��
K
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Here, we assumed that f lies in theK-Hurewicz image which is allowed by induction.
Then the composite over the left curved side of the outer square is (ψf)(x) whereas
the right side gives ψ2(f(x)) by 2.11. The last statement is immediate from 2.1 and
2.9. �

An alternative proof of the theorem is given in [BMMS86]ch.9. McClure used
the ordinary Dyer-Lashof operations in singular homology instead of representation
theory to obtain the result.

Corollary 2.13. For every K(1)-local E∞ spectrum E, π∗E ∧ TS0 is the free
θ-algebra on the generator θ1.

Before proving the corollary we need a lemma which is easily checked.

Lemma 2.14. Suppose E,F are E∞ ring spectra and x ∈ π0E ∧ F lies in the
Hurewicz image of π0E. Then we have

θEx = θE∧Fx ∈ π0E ∧ F.

Proof of 2.13: The case E = K of the corollary was shown in the theorem.
For E = S0 we consider the Adams-Novikov spectral sequences

ExtK∗K(π∗K,π∗K) =⇒ π∗S
0

ExtK∗K(π∗K,π∗K ∧ TS0) =⇒ π∗TS
0

They converge by the theorem 6.10 of [Bou79]. To compute the E2-term of the
second observe that for the isomorphism

π∗K ∧ TS0 ∼= π∗K ⊗ T{θ1}
all classes θn are spherical by the lemma. Hence, the spectral sequence for π∗TS0

takes the form

ExtK∗K(π∗K,π∗K)⊗ T{θ1} =⇒ π∗S
0 ⊗ T{θ1}

and we are done.
Finally, the general statement follows from the Kuenneth isomorphism:

π∗E ∧ TS0 ∼= π∗E ⊗π∗S0 (π∗S0 ⊗ T{θ1}) ∼= π∗E ⊗ T{θ1}
for arbitrary K(1)-local E∞ spectra E. �

The corollary can be found without proof in [Hop98].

2.4. The spectrum Tζ. In the last paragraph we computed the θ-algebra
structure associated to the homotopy of the free spectrum generated by the sphere.
Now we proceed with our basic calculations and investigate the sphere spectrum
with one more E∞ cell attached. The cone is taken over a class in the homotopy of
S0 which comes up in other contexts in topology as well.

Recall from 1.3 that we have a cofibre sequence

S0 −→ KO
ψ3−1−→ KO.

Since ψ3 acts trivially in π0KO the element 1 ∈ π0KO ∼= Z2 gives rise to a non
trivial class ζ ∈ π−1S

0. Obviously, ζ topologically generates π−1S
0 ∼= Z2.

Remark 2.15. The class ζ = ζ1 belongs to a family of homotopy classes

ζn : S−1 −→ LK(n)S
0

which play an important role in the reassembling of spectra from their monochro-
matic parts, that is, in Hopkins’ chromatic splitting conjecture. The higher ζn
correspond to the determinant map on the Morava stabilizer group Sn under the
homotopy fixed point spectral sequence

E2 = H∗,∗(Sn;En∗)
Z/n =⇒ π∗LK(n)S

0.
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The interested reader is refered to [Hov95].

Definition 2.16. We define Tζ to be the homotopy pushout of the diagram

TS−1 T∗ //

ζ

��

T∗ = S0

��
S0 // Tζ

in the category CT of K(1)-local E∞ ring spectra. In particular, the class ζ is
regarded as an E∞ ring map here.

It is convenient to think of Tζ as the pushout in CT of

S0 ζ←− TS−1 −→ T (S−1 ∧ I).
Hence, Tζ corepresents the functor which associates to an object E of CT the set of
all null homotopies of ζ in E. This set is non empty for KO-theory. A choice of a
null homotopy ι defines a map of cofibre sequences

S0
γ //

=

��

Cζ
δ //

ι

��

S0

1

��
S0 1 // KO

ψ3−1 // KO

and a splitting (ι∗, ι′∗) of the exact sequence

0 −→ π0KO
γ∗−→ π0KO ∧ Cζ

δ∗−→ π0KO −→ 0.

Let b be the image of 1 ∈ π0KO under the composite

π0KO
ι′∗−→ π0KO ∧ Cζ

ηCζ ∗−→ π0KO ∧ TCζ
ξS0∗−→ π0KO ∧ Tζ

Corollary 2.17. (compare [Hop98]) The KO-linear extension of b

b∗ : π∗KO ∧ TS0 −→ π∗KO ∧ Tζ
is an isomorphism of θ-algebras. Thus π∗KO ∧ Tζ is the free θ-algebra on the
generator b.

Proof. Our choice of a null homotopy defines an E∞ map from Tζ to KO ∧
TS0. Its KO-linear extension is the inverse of b∗ as one easily checks. �

The class f = ψ(b)− b is fixed under ψ3 since

ψ3(ψ(b)− b)) = ψ3ψ(b)− ψ3(b) = ψψ3(b)− ψ3(b)
= ψ(b+ 1)− (b+ 1) = ψ(b)− b.

In fact, it turns out that f is represented by a unique spherical class and we have

Theorem 2.18. (compare [Hop98]) There is an isomorphism of θ-algebras

π∗Tζ ∼= π∗KO ⊗ T{f}.
Moreover, π0KO ∧ Tζ is free as π0Tζ-module.

This result will not be used for the splitting theorem. For the proof the reader
is referred to the work of Hopkins. He also shows in [Hop98] how the Bott class
behaves under the KO-Hurewicz map

i : π∗KO ⊗ T{f} ∼= π∗Tζ −→ π∗KO ∧ Tζ ∼= π∗KO ⊗ T{b}.
We have

i(v4) = v49−2b = v4
∞∑
n=0

(
−2b
n

)
23n ∈ T{b}.
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In particular,
i(v4) ≡ v4 mod 2

Note that the image of η is clear since it is spherical.

3. The ABP-splitting and 2-adic functions

In this section we construct an E∞ map from the cone Tζ to the K(1)-local
spin cobordism theory MSpin and investigate its behavior in KO-homology. Using
the ABP-splitting we determine the 2-adic functions associated to the class b and
to generators of the KO-homology ring of MSpin. The established formulae will
play an important role in the proof of the multiplicative structure of MSpin.

3.1. The 2-adic functions associated to the class b. As a start we remind
ourselves of the KO-Pontryagin classes πj . They are defined by setting

π0(L) = 1, π1(L) = L− 2, πj(L) = 0 for j ≥ 2

for complex line bundles L and then requiring naturality and

πs(ξ + η) = πs(ξ)πs(η)

where πs =
∑
j π

jsj . Here ξ and η are oriented bundles. In fact, these properties
determine πs because the group KO(BSO(m)) injects into K(BT[ m

2 ]) under the
complexification of the map which is induced by the restriction to the maximal
torus T[ m

2 ] (compare [ABP66]).
It is possible to express πj(ξ) in the exterior powers of ξ. Explicitly, the equation

πs(ξ) =
∞∑
i=0

Λi(ξ − dimξ)ti = (1 + t)−dim ξ
∞∑
i=0

(Λiξ)ti

is easily verified for the new generator t of KO(X)[[s]] which is given by the equation
s = t/(1 + t)2.

We write πj ∈ KO(BSpin) for the jth KO-characteristic class of the universal
stable spin bundle. Without changing the notation we also consider the same class as
an object of KO(MSpin) via the Thom isomorphism. For all non ordered sequences
of positive numbers (partitions) J = (j1, . . . , jn) we set

πJ = πj1 · · ·πjn : MSpin −→ KO.

In these terms the ABP-splitting says

Theorem 3.1. (compare [ABP66]) There is a countable set I of cohomology
classes xi ∈ H∗(MSpin,Z/2) such that the map

(πJ , xi) : MSpin −→
∨

n(J)even
16∈J

ko 〈4n(J)〉 ∨
∨

n(J)odd
16∈J

ko 〈4n(J) + 2〉 ∨
∨
i∈I

Σ|xi|HZ/2

is a 2-local homotopy equivalence.

Corollary 3.2. The map (πJ) : MSpin
∼=−→

∨
1 6∈J KO is a K(1)-equivalence.

Proof. This is an immediate consequence of the the unlocalized ABP-splitting,
the vanishing of the group K(1)∗HZ/2 and the fact that the cover ko 〈n〉 −→ KO
is a K(1)-equivalence for all n ≥ 0 (see [HH92].) �

Corollary 3.3. ζ is null in π−1MSpin.

Proof. 2-locally the unlocalized ABP-splitting gives a map from ko to MSpin
which induces an isomorphism in π0. Hence it suffices to show that ζ vanishes in
ko. The latter coincides with the periodic KO in the K(1)-local category. In KO
the class ζ vanishes by its definition. �
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In the last subsection we have chosen a null homotopy ι of ζ in KO. Hence the
corollary supplies us with an E∞ map

ϕ : Tζ −→MSpin

which will be the object of study for the rest of this subsection. We are interested
in the image of the class b of 2.17 under the induced map

π∗KO ∧ Tζ
ϕ∗−→ π∗KO ∧MSpin ∼=

⊕
1 6∈J

π∗KO ∧KO.

To describe each component of its image we have the

Proposition 3.4. [Hop98] Let Φ be the map

π∗K ∧K −→ T (Z×2 , π∗K)

which associates to a class f ∈ πkK ∧K the continuous 2-adic function

λ 7→ (f(λ) : Sk
f−→ K ∧K 1∧ψλ

−→ K ∧K µ−→ K).

Then Φ is an isomorphism. Analogously, there are isomorphisms

π∗K ∧KO
∼=−→ T (Z×2 /± 1, π∗K)

π∗KO ∧KO
∼=−→ T (Z×2 /± 1, π∗KO).

which are denoted by the same letter in the sequel.

Proof. The first statement was proved in [Rav84]7.10. For the second one
observe that the fibration [And64] ΣKO

η−→ KO −→ K induces a short exact
sequence in complex K-theory. Moreover, one readily verifies by rationalizing that
the diagram

0 // π∗K ∧KO //

Φ
��

π∗K ∧K //

∼= Φ
��

π∗−2K ∧KO //

Φ
��

0

0 // T (Z×2 /± 1, π∗K) α // T (Z×2 , π∗K)
β // T (Z×2 /± 1, π∗−2K) // 0

commutes if α is the obvious inclusion and β sends a function f to the even function

λ 7→ λ−1(f(λ)− f(−λ)).

Since the bottom row is exact as well the result follows. For the last statement
recall from [AHS71] that the action map

π∗KO ⊗ π0KO ∧KO −→ π∗KO ∧KO
is an isomorphism. In particular, the result holds for ∗ = 3, 5, 6, 7 mod 8. In the
remaining dimensions an inspection of the cone over η fibration in KO homology
and the 5 lemma finish the proof. �

Remark 3.5. The map Φ even becomes an isomorphism of θ-algebras if we set
ψ = id for the ring of continuous functions as we did in 2.7(i) .

We are now able to prove the first theorem.

Proof of Theorem A: The commutative diagram

Cζ
ι //

}}{{{{{{{

��

KO

��

1

##HHHHHHHHH

TCζ // Tζ
ϕ // MSpin

π∅ // KO



18 GERD LAURES

tells us that all πJϕ∗b must vanish except for J 6= ∅. For J = ∅ we compute with
a = ι′∗(1) with the notation of 2.4

Φ(π∅∗ϕ∗b)(3
n) = Φ((1 ∧ ι)a)(3n) = µ(1 ∧ ψ3n

)(1 ∧ ι)a

=
〈
ψ3n

ι, a
〉

= 〈ι+ n(1 δ), a〉 = n

�

Since ϕ induces a map of θ-algebras the last result completely determines its
behaviour in KO-homology. Unfortunately, the ABP-splitting does not tell us any-
thing about the θ-algebra structure of the spin bordism. Hence other methods are
required in things to come.

3.2. The KO-homology ring of BSpin. We now provide polynomial gen-
erators of the real and complex K-homology of MSpin. We first need the Thom
isomorphism for homology.

Lemma 3.6. (compare [MR81] et al.) Let E be one of the theories
ko, k,KO,K,KZ/2r. Then there is the Thom isomorphism

τ∗ : π∗E ∧MSpin
∼=−→ π∗E ∧BSpin+.

Hence, it suffices to look at the classifying space BSpin. A further simplification
is given by the following result of Snaith.

Lemma 3.7. (compare [HS75]8.11) The canonical map from BSpin to BSO
is a K(1)-equivalence.

Let L be the canonical line bundle over CP∞. EquipK-theory with the complex
orientation in the way that the Euler class of a line bundle L is given by x =
v−1(1 − L∗) As usual, define additive generators βi ∈ π2iK ∧ CP∞+ as the dual of
the classes xi.

Lemma 3.8. Let f : S1 −→ S1 be the map which sends a complex number z to
its square. Then Bf : BS1 −→ BS1 has the following impact on the generators:

Bf∗(βk) =
∑
j

(−1)k−j
(

j

2j − k

)
22j−kβj .

Here, we omitted the Bott class from the notation.

Proof.〈
Bf∗βk, x

j
〉

=
〈
βk, Bf

∗xj
〉

=
〈
βk, [2](x)j

〉
= (−1)k−j

(
j

2j − k

)
22j−k

�

Proposition 3.9. Let S1 be the maximal torus of Spin(2) and let uj be the
image of βj in π0K ∧BSpin. Then

π∗K ∧BSpin+
∼= π∗K[u4, u8, u12, . . .].

Moreover, let bk ∈ π0K ∧ BSO+
∼= π0K ∧ BSpin+ be the image of the class βk ∈

π0K ∧BSO(2)+. Then we have

uk =
∑
j

(−1)k−j
(

j

2j − k

)
22j−kbj

Hence, π∗K ∧BSpin+ is a polynomial algebra in b2, b4, b6 . . .. Finally, since

π0KO ∧BSpin+
∼= π0K ∧BSpin+

the same classes also freely generate π∗KO ∧BSpin+.
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Before proving 3.9 we need some preparation. A 2-adic number λ can be written
in its 2-adic expansion

λ =
∑
k

αk(λ) 2k.

This way, each αk becomes a continuous function with values in {0, 1} ⊂ Z2. It
turns out

Lemma 3.10. (compare [Hop98]) The map

Z2[α0, α1, . . .]/(α2
k − αk) −→ T (Z2,Z2)

is an isomorphism of rings.

Proof. Since [Hop98] is not published yet we repeat the proof here: it suffices
to show that for all m,n the map

Z/2n[α0, α1, . . . , αm−1]/(α2
k − αk) −→ T (Z/2m,Z/2n)

is an isomorphism. For finite, discrete sets S and T the natural map

T (S,Z/2n)⊗ T (T,Z/2n) −→ T (S × T,Z/2n)
is an isomorphism. Hence the claim follows from the isomorphism of sets

(αi)i<m : Z/2m −→
∏
i<m

Z/2.

�

Hence one readily verifies with 3.2 and 3.4 the

Lemma 3.11. (i) π∗K ∧MSpin ∼= limr π∗KZ/2r ∧MSpin.
(ii) The Bockstein sequences

π∗KZ/2i ∧MSpin // // π∗KZ/2i+1 ∧MSpin // // π∗KZ/2i ∧MSpin .

are short exact for all i ≥ 1.

Proof of 3.9. By the first part of the lemma it suffices to check the corre-
sponding result mod 2i for all i > 0. Using the second part of the lemma and the
5-lemma we only need to show the statement for mod 2 K-theory. This is a result
of Snaith [HS75]8.5.

The second statement follows from 3.8 and the fact that the diagram

Spin(2) ⊃ S1 z2 //

��

S1 ∼= SO(2)

��
Spin // SO

commutes. �

3.3. Stable cannibalistic classes in KO. In order to express the class ϕ∗b in
terms of generators of π0KO∧MSpin we are going to compute the 2-adic functions
associated to the ABP-image of each generator explicitly. The calculation involves
the cannibalistic classes θk(ξ) ∈ K(X) which we are recalling from [Bot69]: these
classes are defined for complex vector bundles ξ over compact spaces X and are
characterized by the following two properties

(i) θk(L) = 1 + L∗ + · · ·+ (L∗)k−1 for all line bundles L
(ii) θk(ξ × ξ′) = θk(ξ) θk(ξ′) for all complex bundles ξ, ξ′.
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In particular, we have the equality

θk(ξ + n) = knθk(ξ).

Assume in the following that k is an odd number. Then we can turn each θk into
a stable operation by setting

θ̂k(ξ)
def
=

θk(ξ)
kdimCξ

∈ K(X)

The formulae for line bundles and sums of vector bundles stay the same. The
complex classes θk do have a real counterpart for spin bundles ξ which we also
denote by θk(ξ) ∈ KO(X). If the underlying spin bundle admits a reduction to the
special unitary group then the complexification of these real classes coincide with
the complex classes [Bot69]p.87f.

In the following we write θ̂k ∈ K̃O(BSpin) for the universal cannibalistic
classes. We will see in a moment that they come up in the ABP-splitting map.

Lemma 3.12. The diagram

π0KO ∧MSpin

(1∧πJ )∗

��

Ξ // Homcts(KO(MSpin),Z2)

πJ∗

��
π0KO ∧KO

Φ // T (Z×2 /± 1,Z2)

commutes. Here, the upper horizontal arrow is the duality map. The right vertical
arrow takes a homomorphism α : KO(MSpin) −→ Z2 to the map

λ 7→ α(MSpin
πJ

−→ KO
ψλ

−→ KO).

The lemma is easily checked. We now consider the J-component of the ABP-
splitting map after composing it with the Thom isomorphism

ΘJ
def
= πJ

∗
(τ∗)−1Ξ = Φ(1 ∧ πJ)∗τ−1

∗ : π0KO ∧BSpin+−→T (Z×2 /± 1,Z2).

Proposition 3.13. For all a ∈ π0KO ∧BSpin+ we have

ΘJ(a)(k) =
〈
a, θ̂kψk(πJ)

〉
.

Proof. Let ξ8n be the universal spin bundle over BSpin(8n). Then we have
the relation

ψk(zn) = θk(ξ8n)zn
between the Adams operations and the cannibalistic classes (compare [Bot69]p.89.)
Here, zn ∈ K̃O(MSpin(8n)) is the Thom class. Let β ∈ π8KO be the Bott class
and for a ∈ π0BSpin(8n) set g = τ∗−1Ξ(a). Then compute

ΘJ(a)(k) = πJ
∗
(g)(k) = g(ψk(β−nznπJ(ξ8n)))

= g(k−4nβ−nθk(ξ8n)znψk(πJ(ξ8n)))

= τ∗g(θ̂k(ξ8n)ψk(πJ(ξ8n)) =
〈
a, θ̂k(ξ8n)ψk(πJ(ξ8n))

〉
.

Thus the claim follows after stabilization. �

Lemma 3.14. Let L be the canonical line bundle over CP∞. Then the complex-
ified real cannibalistic classes satisfy with x = 1− L∗

k θ̂k(L2 − 1)⊗ C =
(1− x)k − (1− x)−k

(1− x)− (1− x)−1
∈ K(CP∞).
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Proof. We decompose the spin bundle 1 − L2 into a sum of bundles which
admit reductions to the special unitary group by writing

(1− L2) = (L− L̄) + 1− L2 = (1− L)(1− L̄)− (1− L)2

To determine the real cannibalistic classes of the latter we compute the complex
cannibalistic classes in K(CP∞ × CP∞) ∼= Z2[[x, y]]

θ̂k((1− L1)(1− L2)) =
(1− L∗1)(1− L∗2)(1− (L∗1L

∗
2)
k)

(1− L∗1
k)(1− L∗2

k)(1− L∗1L∗2)
=
qk(x+Ĝm

y)
qk(x)qk(y)

Here, qk(x) is the polynomial

qk(x) =
1− (1− x)k

x
= (1− x) + (1− x)2 + · · ·+ (1− x)k−1

Thus we obtain

θ̂k(1− L2)⊗ C =
k

qk(x)qk(−Ĝm
x)

(
qk([2](x))
qk(x)

)−1 = k
qx(x)

qk(−Ĝm
x)qk([2](x))

.

An elementary calculation finishes the proof. �

We are now well prepared to compute the 2-adic functions which correspond to
the generators un defined in the last subsection.

Proof of Theorem B: The proposition gives

ΘJ(un)(k) =
〈
un, θ̂

kψk(πJ)⊗ C
〉

=
〈
βn, θ̂

k(L2 − 1)ψk(πJ(L2 − 1))⊗ C
〉
.

Hence, ΘJ vanishes for all non empty J which do not contain 1. Moreover, for
J = ∅ we get with the lemma∑

n

Θ(un)(k)xn =
∑
n

〈
βn, θ̂

k(L2 − 1)⊗ C
〉
xn = k−1 (1− x)k − (1− x)−k

(1− x)− (1− x)−1
.

�

Remark 3.15. Similarly, we can determine the 2-adic functions which corre-
spond to other generators. For instance, consider the map

f : CP∞ × CP∞ −→ BSU −→ BSpin

which classifies the product (1 − L1)(1 − L2). Then for the generators (compare
[Lau02]) aij = f∗(βi ⊗ βj) in π2(i+j)K ∧BSpin+ we have∑

i,j

Θ(aij)(k)xiyj =
qk(x+Ĝm

y)
qk(x)qk(y)

.

The computations of the KO-homology of the ABP-map enable us to compare
the generators to the class ϕ∗b. At this point, the reader can easily verify that ϕ∗b
corresponds to u4 and to a1,2 modulo 2. We will not go through the calculation
here since we will work out a closer relationship later.

4. The θ-algebra structures of bordism theories

In this section we determine the θ-algebra structure of the unitary, special
unitary and spin bordism theories. This problem was partially answered by Snaith
in [HS75] who used group theoretical methods to compute the action of θ modulo
2 for the classifying spaces. However, in order to give a complete description of the
θ-algebra structure we need integral information: each time when applying θ we
loose a power of 2. That is, the image of θ on a mod 2n class is only well defined
modulo 2n−1. Hence, in order to show that a class generates a free summand we
must know θ integrally. Unfortunately, Snaith’s (and Priddy’s [Pri75]) method
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does not generalize that easily to the integral situation. So we use a completely
different approach here.

4.1. The θ-algebra structure of π0K ∧MU . We investigate the H∞ struc-
ture of the function spectrum (K ∧MU)BS

1
+ by computing the value of x̃MU =

v xMU under the operation

P : (K ∧MU)0(BS1) −→ (K ∧MU)0(BΣ2 ×BS1).

described in 2.3. Here, xMU ∈MU2(BS1) denotes theMU -Euler class and v ∈ π2K
is the Bott class. In this subsection it is important not to suppress the Bott class
from the notation.

Our strategy is to calculate the operation on each factor of the product x̃MU

separately. This means the following: the complex bordism theory and theK-theory
admit H2

∞-structures or, equivalently, H∞ structures on the wedges
∨
i Σ

2iMU
and

∨
i Σ

2iK respectively. Hence so do the corresponding function spectra. The
associated operation P is the tom Dieck-Steenrod operation

P : MUnBS1 −→MU2nBΣ2 ×BS1.

for complex bordism and the Atiyah power operation for K-theory (see [BMMS86]
p.272ff.) Hence, we know how to compute the operation on each factor and only
have to relate their product to the class Px̃MU . To state the result, we use the
standard notation and write DX for the gadget EΣ2 ∧Σ2 X

2. We also write

δ : D(X ∧ Y ) −→ DX ∧DY
for the diagonal map. Then we have the following “change of suspension” formula:

Lemma 4.1. Suppose E is a Hd
∞ ring spectrum and F is a H∞ ring spectrum.

Then for all based spaces X, α : X −→ ΣdE and β : ΣdX −→ F we have

yE P (α (Σ−dβ)) = P (α) Σ−dP (β) : X ∧BΣ2+ −→ ΣdE ∧ F
with yE = P (Σd1) ∈ EdBΣ2+.

Proof. It is easy to check that the diagram

DΣdX

DΣd∆X

��

BΣ2+ ∧ ΣdX
∆Xoo Σd∆ // BΣ2+ ∧X ∧BΣ2+ ∧ ΣdX

∆∧∆

��
D(X ∧ ΣdX) δ // DX ∧DΣdX

commutes. Moreover, when we write P for the external Steenrod operation and
give E ∧ F the Hd

∞ ring structure which is induced from the isomorphism∨
i Σ

d i(E ∧ F ) ∼= (
∨
i Σ

d iE) ∧ F.
then we get

yE P (αΣ−dβ) = P (Σd(αΣ−dβ)) = P (Σd∆∗
X(α ∧ Σ−dβ))

= ∆∗P((Σd∆X)∗(α ∧ β)) = ∆∗(DΣd∆X)∗P(α ∧ β)

= ∆∗(DΣd∆X)∗δ∗(P(α) ∧ P(β))

= (Σd∆BΣ2+∧X)∗(∆ ∧∆)∗(P(α) ∧ P(β)) = P (α)Σ−dP (β)

Here, we used [BMMS86] p.250f. �

Lemma 4.2. Let E be a H2
∞-ring spectrum which is complex oriented by a H2

∞-
map f : MU −→ E. Then P (Σ21) is the Euler class yE of the sign representation.

Proof. This immediately follows from [BMMS86]p.257. �

We next show how the operation works in complex bordism.
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Lemma 4.3. For all n > r > 0 we have the formula

yn−1
MU P (xMU ) = yn−1

MU xMU (xMU +Ĝu
yMU ) ∈MU2n+2(BΣ2 × CP r).

Here, Ĝu is the universal formal group law.

Proof. For the sake of simplicity we omit the index MU from the notation.
Choose s arbitrary and recall from [Qui71]3.17) the formula

yn−1P (x) =
∑

l(α)≤n

yn−l(α)a(y)αsα(x) ∈MU2n+2(RP s × CP r)

which relates the tom Dieck-Steenrod operation to the Landweber-Novikov oper-
ations sα. Here, α is a sequence of non negative integers and l(α) =

∑
αi. The

power series aα = aα1
1 aα2

2 · · · are defined by the equation

x+Ĝu
y = x+

∑
j≥1

aj(x) yj .

Let i : CP r−1 ↪→ CP r be the inclusion and ct be the total Conner-Floyd Chern
class. Then we have for the Euler class z = e(L∗) = [−1](x)

st(z) = st(i!(1)) = i!ct(L∗) = i!(
∑
j≥1

tjz
j) =

∑
j≥1

tjz
j+1.

Since the Landweber-Novikov operations are natural the same formula holds for x
instead of z. Hence we get

yn−1 P (x) = yn x+ yn−1
∑
j≥1

aj(y)xj+1 = yn−1x (x+Ĝu
y).

The claim follows by passing to the limit

MU∗(CP r ×BΣ2) = lim
s
MU∗(CP r × RP s).

�

In the following let g(x) be the invertible power series

g(x) =
∞∑
i=0

bix
i; b0 = 1

with coefficients in π0K∧MU ∼= Z2[b1, b2, . . .]. It is known (compare [Ada74]p.60ff)
that the two Euler classes x̃MU and x = x̃K are related in (K ∧MU)0(BS1) ∼=
π0K ∧MU [[x]] by the formula

x̃MU = x g(x).

A similar relation holds for ỹMU and y = ỹK in (K ∧MU)0BΣ2. Observe that in
the notation of 2.4, the class y corresponds to 1− σ under the isomorphism

K0(BΣ2) ∼= RΣ∧2 ∼= (Z2[σ]/σ2 − 1)∧ ∼= Z2 ⊕ Z2(1− σ).

Lemma 4.4. The power sum σ2 =
∑
t2i ∈ π0K ∧BΣ2+ satisfies

〈σ2, y
n〉 = 2n.

Proof. Since yn+1 = 2ny the formula follows from

〈σ2, y〉 =
〈
e21 − e2, 1− σ

〉
− 〈e2, 1− σ〉 = 2

Here we used the explicit description of ∆k,2 given in 2.4. �
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Proof of Theorem C: We are going to show that∑
i≥0

ψ(bi)xi(2− x)i = ψ(g(x)) =
g(x)g(2− x)

g(2)
.

The first equation is clear since for K-theory the operation ψ coincides with the
second Adams operation and

ψ2x = [2]Ĝm
(x) = 2x− x2.

To do the second consider the curve b(x) = x g(v x) and regard K ∧MU as a H2
∞-

ring spectrum via the equivalence K ∧
∨
i Σ

2iMU ∼=
∨
i Σ

2iK ∧MU . Then we have
the formula

Sublemma 4.5. ψ(xMU ) = b(xK) b(2v−1 − xK).

Proof. First note that b(xK) is the MU -Euler class. Moreover, the K-
Hurewicz map π∗MU −→ π∗K ∧MU classifies the formal group law

bĜm(x, y) = b(Ĝm(b−1(x), b−1(y))).

Hence when pairing the equality of 4.3 with σ2 we get with 4.4

b(2v−1)n−1 ψ(xMU ) =
〈
yn−1
MU P (xMU ), σ2

〉
=

〈
yn−1
MU xMU (xMU +bĜm

yMU ), σ2

〉
= b(2v−1)n−1xMU (xMU +bĜm

b(2v−1)) = b(2v−1)n−1b(xK) b(2v−1 − xK).

Since the coefficient ring π∗K ∧MU is an integral domain and the module (K ∧
MU)∗(BΣ2 ∧ CP r) is free we may cancel the term b(2v−1)n−1 on both sides. The
claim follows by passing to the limit. �

Our change of suspension formula 4.1 reads for X = BS1
+, α = xMU and

β = Σ2v

yMUP (v xMU ) = P (xMU )P (Σ2v) = P (xMU ) yKP (v) = P (xMU ) yK v2

In the last two equations we used [BMMS86] p.274f. Hence we obtain with the
sublemma

ψ(x)ψ(g(x)) = ψ(x̃MU ) = ψ(xMU )
〈
yK
yMU

v2, σ2

〉
= b(xK)b(2v−1 − xK)

2v−1

b(2v−1)
v2 = ψ(x)

g(x)g(2− x)
g(2)

.

The result follows by canceling ψ(x) on both sides. �

Corollary 4.6. In π0K ∧MU we have the formula mod 2

θ(br) = (1 + b1)b2r +
r∑
i=0

bi(b2r−i + b2r−i+1)

In particular, for r > 0 this gives modulo 2 and decomposables

θ(br) = b2r + b2r+1

Proof. Since π0K ∧MU is torsion free and 2θ(x) = ψ(x)− x2 it is enough to
compute the action of ψ on the generators. Let Dk be the operator (dk/k! dxk)|x=0.
Then we get mod 4

(−1)rψ(br) = D2rψ(g(x)) = (1 + 2b1)(
∑

i+j=2r

(−1)jbibj + 2
∑

i+j−1=2r

j bibj)

The result follows after some elementary transformations which are left to the
reader. �
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Remark 4.7. Since the Thom isomorphism is compatible with the action of θ
(see [HS75]) we also determined its action on π0K ∧BU+. Hence the last formula
is equivalent modulo 2 and decomposables to the one of Snaith in [HS75] 6.3.6.

4.2. The θ-algebra structure of π0K ∧MSU . We next turn to the special
unitary bordism theory. The result will not be needed for the proof of the splitting
theorem. Once more let

f : CP∞+ ∧ CP∞+ −→ BSU+ −→ K ∧BSU+

be the map which classifies (1− L1)(1− L2) and

f(x, y) =
∑
i,j

aijx
iyj

be the associated power series.

Theorem 4.8. The θ-algebra structure of π0(K ∧MSU+) is determined by the
equations∑

i,j

ψ(aij)(x(2− x))i(y(2− y))j = ψf(x, y) =
f(x, y) f(2− x, y)

f(2, y)
.

Proof. The first equation is clear. To see the second, observe that the decom-
position (1− L1)(1− L2) = (L1L2 − 1) + (1− L1) + (1− L2) implies

ι∗ f(x, y) =
g(x) g(y)
g(x+Ĝm

y)
.

Here the map g : CP∞+ −→ K ∧BU+ corresponds to 1−L and ι : BSU −→ BU is
the inclusion. Since ι∗ is an injection it may as well be omitted from the notation.
Using the naturality of ψ we compute with Theorem C

ψ(g(x+Ĝm
y)) = µ∗ψ(g(x)) =

g(x+Ĝm
y) g(2− (x+Ĝm

y))
g(2)

and hence

ψf(x, y) =
ψg(x)ψg(y)
ψg(x+Ĝm

y)
=

g(x)g(2− x)g(y)g(2− y)
g(2)g(x+Ĝm

y)g(2− (x+Ĝm
y))

=
f(x, y) f(2− x, y)

f(2, y)
.

Here we used the identities

2− (x+Ĝm
y)) = (2− x) +Ĝm

y; 2 +Ĝm
y = 2− y

which are easily checked. �

Corollary 4.9. In π0K∧MSU we have modulo 2 and decomposables of lower
index

θ(aij) = a2i,2j + a2i+1,2j .

Proof. In view of the theorem it is clear how to proceed. �

It is not hard to give an explicit formula for the action of θ on the nose but we
will not go through the tedious calculations here.

4.3. The θ-algebra structure of π0KO ∧MSpin. The θ-algebra structure
of π0KO ∧MSpin is determined by 4.8 and the surjective map of θ-algebras

π0K ∧MSU −→ π0K ∧MSpin ∼= π0KO ∧MSpin.

Alternatively, we may use the Thom isomorphism and look at the surjective θ-
algebra map

π0K ∧BU+ −→ π0K ∧BSO+
∼= π0K ∧BSpin+

∼= π0K ∧MSpin.

In each case the analysis of the spin θ-algebra structure is ultimately based on the
θ-algebra π0K ∧MU . In Theorem C we found an implicit formula for the action
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of θ on the free generators bi. To identify free θ-algebra summands we also need to
know the action of the powers θj which we do next.

Definition 4.10. For a monomial m = bi1 · · · bik in π0K ∧MU we define its
length l(m) to be the maximum of the set of indices {i1, . . . , ik}. For a general
element x of the form

∑
s∈Sms2is with ms 6= ms′ whenever is = is′ and s 6= s′ we

define lengths

l1(x) = sup{l(ms)− is| s ∈ S}
l2(x) = sup{l(ms)2−is | s ∈ S}.

Lemma 4.11. The two lengths lk , k = 1, 2 have the following properties
(i) max{ls(a b), ls(a+ b)} ≤ max{ls(a), ls(b)} .
(ii) l2(a) ≤ l1(a) if l1(a) > 0

Proof. The easy proof is left to the reader. �

Next we consider the action of θ and ψ on the generators. In 4.6 we have seen
that the l1-length of θ(bi) (and ψ(bi)) is at least 2i + 1 (and 2i respectively.) In
fact, the following result shows the equality.

Lemma 4.12. For each i we have
(i) l1(ψ(bi)) = 2i
(ii) l1(θ(bi)) = 2i+ 1
(iii) l2(θ(x)) < 2i if l2(x) < i.

Proof. Since l(ψ(b0)) = l(1) = 0 we may assume that the equality is true for
all numbers lower than i. Then we have Theorem C (or, more convenient, with its
equivalent statement on page 24)

l1(2iψ(bi)) = l1(g(2)
∑
k+l=i

(
l

k

)
2l−kψ(bl)) = l1(

∑
k+l=i,j

(
j

k

)
2j−kblbj) = i

The second estimation follows from the first

l1(2θ(bi)) = l1(b2i + 2θ(bi)) = l1(ψ(bi)) = 2i.

To show the last statement let x =
∑
sms2is be an element with l2(x) < i. Then

there is a N > 0 with the property that the length of each ms is strictly smaller
than 2is(i− 2−N ). Hence we have with the multiplication formula 2.2.5 for θ

l2(θ(ms)) ≤ l1(θ(ms)) ≤ 2is+1(i− 2−N ).

Using θ(2a) = 2θ(a)− a2 we conclude

l2(θ(x)) ≤ supsl2(θ(ms2is)) ≤ supsmax{l2(2isθ(ms)), 2i− 21−N}
= max{sups2

−is l2(θ(ms)), 2i− 21−N} = 2i− 21−N < 2i.

�

It is convenient to work with Landau symbols. We let oi(k) represent classes
whose li-length is strictly smaller than k.

Lemma 4.13. For all i > 0 we have the formula

θ(bi + o2(i)) = b2i+1 + (1 + b1)b2i + o2(2i).

Proof. By 4.6 the class

a = θ(bi)− (b2i+1 + (1 + b1)b2i)

is a sum of monomials of length at most 2i−1 modulo 2. Moreover, by the previous
lemma we have

l2(a) = l2(o2(2i) + 2o1(2i− 1)) < max{2i, 2i− 1
2
} = 2i.
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Thus the claim follows from the third part of the lemma. �

The last formula is particularly nice when it comes to the spin groups. Before
proving Theorem D we work out the relations that appear in the passage from the
unitary to the special orthogonal groups.

Lemma 4.14. Let i : CP∞ −→ CP∞ be the map which classifies the conjugate
tautological bundle L̄. Then we have the formula

i∗βs =
s∑
t=1

(−1)t
(
s− 1
t− 1

)
βt.

Proof. Compute〈
i∗βs, x

t
〉

=
〈
βs, (i∗x)t

〉
=

〈
βs, x

t(x− 1)−t
〉

= (−1)t
(
s− 1
s− t

)
�

Lemma 4.15. In π0K ∧BSO+ we have for all k

b2k+1 = k b2k + terms with lower index ∈ π0K ∧BSO+.

Proof. Since L and L̄ are isomorphic as stable oriented real bundles the claim
follows from

i∗β2k+2 − β2k+2 =
2k+1∑
j=1

(−1)j
(

2k + 1
j − 1

)
βj = −(2k + 1)β2k+1 + (2k + 1)kβ2k

modulo terms with lower index. �

We have seen in 3.9 that the map

Z2[b2, b4, . . .] −→ π0K ∧BU+ −→ π0K ∧BSO+

is an isomorphism. Hence we can define li(x) for all x ∈ π0K ∧ BSO+ to be the
li-length of its preimage in Z2[b2, b4, . . .].

Proposition 4.16. In π0K ∧BSO+ we have the formula for all i > 0

θj(b2i + o2(2i)) = b2j+1i + o2(2j+1i).

Proof. Since b1 vanishes in π0K∧BSO+ the formula inductively follows from
4.15 and 4.13. �

Proof of Theorem D: It is enough to show that the ring homomorphism

Z2[θju8k+4| k, j ≥ 0] −→ Z2[b2, b4, b6, . . .]

is an isomorphism modulo 2. We know from 3.9 that u4k coincides with b2k up to
a class of l2-length strictly smaller than 2k. Hence, the proposition 4.16 gives

θju8k+4 = b2j+1(2k+1) + o2(2j+1(2k + 1)).

Since each even number can uniquely be written in the form 2 · 2j(2k+ 1) for some
j, k there is an obvious correspondence of the highest terms of the generators. This
finishes the proof of the theorem. �

Remark 4.17. We could have proved the theorem without using the Thom
isomorphism. For that we merely observe that the class b2k ∈ π0K ∧MSpin can
be lifted to a class of the form b2k + x ∈ π0K ∧MSU with l2(x) < 2k and proceed
as above.
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5. The proof of the splitting theorem

In the previous sections we computed the θ-algebra π0KO∧MSpin and deter-
mined the values of the free generators under the ABP-map. Now we show that all
except of one generator can be chosen to be spherical. The only missing generator
is hit by the class b under the map coming from the cone. These results lead us to
the proof of the splitting theorem.

5.1. Spherical classes. The spherical classes can be identified with the ele-
ments of π0KO ∧MSpin which are invariant under the action of the Adams oper-
ation with the help of the exact sequence

0 −→ π0MSpin −→ π0KO ∧MSpin
ψ3−1−→ π0KO ∧MSpin −→ 0.

Note that it is enough to look for classes which are invariant under ψg for any given
topological generators g of Z×2 /± 1 ∼= Z2.

Unlike the θ-operation the action of ψg is not compatible with the Thom iso-
morphism. We denote the operation on the base π0KO ∧ BSpin+ by ψgB and the
one on the Thom spectrum π0KO∧MSpin by ψgM in the sequel. Before describing
these we need the

Lemma 5.1. For all k ∈ Z×2 / ± 1 the two self maps ψk ∧ 1 and k4n (1 ∧ ψk−1
)

of π8nKO ∧KO coincide.

Proof. It is enough to check the corresponding statement for complex K-
theory. Since π2nK ∧K is torsion free we even may rationalize. A general element
of π2nK ∧K ⊗Q takes the form a =

∑
s asu

svn−s if u, v denote the left and right
Bott classes. Hence we compute

(ψk ∧ 1)(a) =
∑
s as(k u)

svn−s = kn
∑
s asu

s(k−1v)n−s = kn (1 ∧ ψk−1
)(a).

�

Lemma 5.2. The operation ψ3−1

B is given by the formula

ψ3−1

B ui =
i∑

j=0

((−1)i−j
∑

s+t=i−j

(
j

s

)(
s

t

)
3j−t)uj .

Proof. It suffices to show the equation in π0K∧BS1
+ after replacing the classes

uk with βk. The previous lemma tells us that for all i, j the equality〈
ψ3−1

βi, x
j
〉

=
〈
βi, ψ

3xj
〉

holds. Hence we obtain〈
ψ3−1

βi, x
j
〉

=
〈
βi, (1− (1− x)3)j

〉
= (−1)i−j

∑
s+t=i−j

(
j

s

)(
s

t

)
3j−t

�

Proposition 5.3. We have the formula

ψ3−1

M ui =
i∑

j=0

ajψ
3−1

B ui−j .

Here the numbers aj are determined by
∞∑
j=0

ajx
j =

1
3

(1− x)3 − (1− x)−3

(1− x)− (1− x)−1
.
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Proof. Since the duality map of 3.12 is injective it suffices to show the equality
after pairing each side with an arbitrary class a = τ∗b ∈ KO(MSpin). Let f :
BS1 −→ BSpin be the inclusion of the maximal torus of Spin(2). Then we compute
with 3.14 and 5.1:〈

ψ3−1

M ui, a
〉

=
〈
ui, ψ

3
M (τ∗b)

〉
=

〈
ui, θ̂

3 τ ψ3
B(b)

〉
=

〈
βi, (θ̂3(L2 − 1)⊗ C)f∗(ψ3

B(b))
〉

=
∞∑
j=0

aj
〈
βi−j , f

∗(ψ3
B(b))

〉
=

〈 ∞∑
j=0

ajψ
3−1

B ui−j , b

〉
�

It will prove useful to introduce another measure for the monomials of the ring

Z/2[u4k; k ≥ 1] ∼= Z/2[b2k; k ≥ 1].

Definition 5.4. Let the degree d of a monomial u4i1 ·u4i2 · · ·u4ik be
∑
k ik and

let the degree of a sum of such be the maximum degree of the monomials. We will
write o(n) for terms of degree strictly smaller than n.

Proposition 5.5. We have modulo 2 for all i
(i) ψ3−1

B u4i = u4i + o(i− 1)
(ii) ψ3−1

M u4i = u4i + u4i−4 + o(i− 1)

Proof. Consider first the case that i = 2k is even. Then we obtain modulo 2
and o(i− 1) with 3.9 and 4.15

ψ3−1

B u8k = u8k +
∑
s+t=2

(
8k − 2
s

)(
s

t

)
u8k−2 +

∑
s+t=4

(
8k − 4
s

)(
s

t

)
u8k−4

= u8k + u8k−2 + u8k−4 = u8k.

Similarly, for i = 2k + 1 we get mod 2 and o(i− 1)

ψ3−1

B u8k+4 = u8k+4 +
∑
s+t=2

(
8k + 2
s

)(
s

t

)
u8k+2 +

∑
s+t=4

(
8k
s

)(
s

t

)
u8k

= u8k+4 + u8k+2 = u8k+4.

To see the second statement observe that
∑∞
j=0 ajx

j = 1 + x4 + . . . and hence with
the previous lemma

ψ3−1

M u4i = ψ3−1

B u4i + ψ3−1

B u4i−4 + o(i− 1) = u4i + u4i−4 + o(i− 1).

�

Now we are well prepared to show the

Theorem 5.6. For each odd k > 1 there exists a zk ∈ π0KO ∧MSpin which
is invariant under the action of the Adams operations and which coincides with u4k

modulo elements of strictly smaller l2-length.

Proof. We first construct the class zk modulo 2. When we write ∆ for the
homomorphism ψ3−1

M − 1 then the previous lemma reads

∆u4i = u4i−4 + o(i− 1).

Moreover, we have for all s, t

∆(u4s u4t) = ∆(u4s)∆(u4t) + ∆(u4s)u4t + u4s ∆(u4t)
= u4s−4u4t + u4s u4t−4 + o(s+ t− 1).
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In particular, we obtain modulo terms which are the ∆-image of classes with degree
at most n+m+ 1 and with length at most 2 max(n,m+ j)

u4nu4m = u4n−4u4m+4 + o(n+m) = · · · = u4(n−j)u4(m+j) + o(n+m).

Setting n = k − 1,m = 0 and j = (k − 1)/2 we thus find a class x of length strictly
smaller than 2k with the property that

∆(u4k + x) = u2
4j + o(k − 1).

We can get rid of the highest term by adding u2
4j+4:

∆(u4k + u2
4j+4 + x) = u2

4j + (∆u4j+4)2 + o(k − 1) = o(k − 1).

Now we have won since the remaining terms are of the form u4nu4m with degree
strictly smaller than k − 1. They can be removed in the same fashion as above:
Setting j = n+1 we see inductively that u4nu4m lies in the ∆-image of classes with
length strictly smaller than 2k.

Actually we have shown a bit more. Let Sr be the set of pairs (i, j) with
i+ j < k + r + 2. Then modulo 2 we can choose zk to be of the form

zk =
∑

(i,j)∈I0

u4iu4j = u4k + o2(2k)

for some I0 ⊂ S0. In the general situation it suffices to inductively construct sets
Is ⊂ Ss such that

z
(s)
k =

s∑
r=0

2r
∑

(i,j)∈Ir

u4iu4j

is invariant modulo 2s+1. Suppose that we have already found I0, . . . , Is−1. Then
∆z(s−1)

k is a sum of terms of the form 2tunum with n+m < 4k+4t+3. The lemma
5.8 below tells us that we may assume that n and m are multiples of 4. Since
the monomials in the generators u4i are linearly independent and ∆z(s−1)

k vanishes
modulo 2s we are left with terms of the form 2su4iu4j with i+ j < k+ s+1. These
can be removed with the method above. �

Lemma 5.7. Let R be a complete, local ring with maximal ideal m and a ∈ m be
given. Let vk =

∑
s≥0 n

(k)
s wk+s be a convergent series in R[w1, w2, . . .] with n(k)

0 ∈
R× and as | n(k)

s for all s, k. Then there are m(k)
t such that wk =

∑
s≥0m

(k)
s vk+s

and as divides m(k)
s for all s, t.

Proof. Suppose the elements m(k)
s are already constructed modulo mj and let

n
(k)
s = a l

(k)
s with as−1 | l(ks for all s > 0, k ≥ 0. Then we have modulo mj+1

n
(k)
0 wk = vk − a

∑
s>0

l(k)s wk+s = vk −
∑
r>0

(a
∑

s+t=r,s>0

l(k)s m
(k+s)
t )vk+r.

Since the coefficients m(k)
s are unique the claim follows. �

Lemma 5.8. Each un can be written as a convergent series of the form
∑
s asu4s

with 24s−n | as for 4s ≥ n.

Proof. We know from 3.9 and 4.15 that we can write un in the form
∑
j kjb2j

with 24j−n | kj for 4j ≥ n. Hence, the previous lemma gives with a = 16, vk = u4k

and wk = b2k
un =

∑
s

(
∑
j+t=s

kjm
(j)
t )u4s and 24t | m(j)

t .

�
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Note that the proof of the theorem created an algorithm which produces the
spherical classes zk. The first two ones can be chosen as follows modulo 2:

z3 = u12 + u2
8 + u8u4 + u8 + u4

z5 = u20 + u2
12 + u12u8 + u16u4 + u12u4 + u8u4 + u2

4

It is not possible to alter the class u4 by terms of strictly smaller l2-length in a
way that it becomes a spherical class. However, the sum u4 + u2

4 happens to be
invariant modulo 2. Hence u4 behaves in the same way as the class b which was
defined earlier. A closer relationship between the two classes is established in the
next section.

5.2. Some 2-adic analysis. In section 3 we constructed an E∞ map ϕ :
Tζ −→ MSpin and investigated its behavior in KO-theory. In Theorem A we
calculated the image of the θ-algebra generator b ∈ π0KO ∧ Tζ under the image of
ΦπJ∗ϕ∗ for all 1 6∈ J . The resulting continuous functions determine ϕ∗b since the
map

π0KO ∧MSpin
Φ(1∧πJ )∗−→

⊕
1 6∈J

T (Z×2 /± 1,Z2)

is an isomorphism. In the same section we also calculated the 2-adic functions
which correspond to the algebra generators u4k. In this section we compare the
2-adic functions and prove the

Theorem 5.9. ϕ∗b = u4 + o2(2).

A weaker statement is shown in the following

Lemma 5.10. Mod 4 the class ϕ∗b coincides with −u4.

Proof. With y = −2x+ x2 the formula of Theorem B reads

k
∑
n

Θ(un)(k)xn = (1 + y)(1−k)/2
(1 + y)k − 1

y
=

∑
s,t

(
(1− k)/2

s

)(
k

t+ 1

)
ys+t.

Moreover, observe that for all integers n =
∑
s αs2

s we have mod 16

3n = 1 + 2α0 + 8α1

as one easily verifies. Thus we obtain for k = 3n mod 4

Θ(u4)(k) = k−1
∑
s+t=2

(
(1− k)/2

s

)(
k

t+ 1

)
= −α0 + 2α1 = −n

The result now follows from Theorem A. �

It is clear that ϕ∗b is some convergent series in the u4k-monomials. One might
hope to get along with the indecomposable classes u4k itself. For this purpose, we
mention that the group of continuous functions has a simple basis which is given
by the binomial functions (compare Mahler [Sch84]p.149ff.) For all continuous
f : Z2 −→ Q2 there is a convergent series of the form

f(x) =
∞∑
n=0

an

(
x

n

)
.

Moreover, the null sequence an ∈ Q2 is unique. Another basis is given by the family
x 7→

(
2x
2n

)
since it coincides with the binomial basis modulo 2.

Proposition 5.11. Let f : Z×2 / ± 1 −→ Z2 be an even continuous function.
Then f admits an expansion of the form

f =
∞∑
n=0

anΘ(u4n)
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for some null sequence an ∈ Z2. Moreover, the expansion is unique.

Proof. The continuous function g(x) = f(2x− 1)(2x− 1) : Z2 −→ Q2 admits
an expansion

g(x) =
∑
m

am

(
2x
2m

)
=

∑
m

am(
(

2x− 1
2m

)
+

(
2x− 1
2m− 1

)
).

Hence, there is a null sequence a′m such that for all k ∈ Z×2

f(k) =
f(k) + f(−k)

2
=

∑
m

a′mk
−1(

(
k

m

)
−

(
−k
m

)
).

Moreover, for each m the function

ϕm(k) = k−1(
(
k

m

)
−

(
−k
m

)
)

can be expressed in terms of the Θ(u4n) with the help of Theorem B:

((1− x)− (1− x)−1)
∑
j

Θ(uj)(k)xj = k−1((1− x)k − (1− x)−k) =
∑
m

ϕm(k)xm.

Using 5.8 we hence constructed an expansion of f with a null sequence an ∈ Q2. Its
integrality and uniqueness follows from the bijectivity of the ABP-map (ΘJ)1 6∈J . �

The proof of the proposition provides an algorithm for the coefficients in the
expansion of the function associated to b. Note that we may write the latter in the
form

b(x) =
log(x)
log(3)

: Z×2 /± 1 −→ Z2.

Here, the 2-adic logarithm is given by the formula

log(1 + x) =
∞∑
n=1

(−1)n+1x
n

n
for |x| < 1.

It is elementary to check that the logarithm always is divisible by 4 and that log(3) =
4 modulo 8. Hence, the quotient log(x)/log(3) is well defined. By Theorem A it
coincides with b(x) since the 2-adic logarithm satisfies the usual properties. Before
carrying out the program of expanding b we observe

Lemma 5.12. l1(ϕs) ≤ [ s2 ]− 1 for all s ≥ 1.

Proof. It is easy to see with Theorem A that

ϕs = −2Θ(us−1)−
s−2∑
j=0

Θ(uj)

Hence the assertion follows from 3.9 and 5.8. �

Proof of 5.9. Let α be the linear operator which takes a continuous function
f on Z×2 to the even function

α(f) : Z×2 /± 1 −→ Z2; k 7→ k−1(f(k)− f(−k)).
Then we have for all k = 2x− 1 ∈ Z×2

log(k) = 2−1α(k log(k)) =
∑
n≥1

(−1)n+1 2n−1

n

n∑
s=0

(−1)n−s
(
n

s

)
(2α(xs+1)− α(xs)).

It is known that

xn =
∑
m≤n

amn

(
x

m

)
with amn = S(m,n)m!.
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Here, S(m,n) is the Stirling number of the second kind. Furthermore, the expansion(
2x
2m

)
=

∞∑
l=0

22l

(
m+ l

2l

)(
x

m+ l

)
shows with 5.7, Pascal’s equality and the lemma that

l1(α(
(
x

m

)
)) ≤ l1(α(

(
2x
2m

)
)) = l1(ϕ2m + ϕ2m−1) ≤ m− 1.

The number m! is divisible by 2m−σ(m). Here, σ(m) is the sum of the number of
digits in the 2-adic decomposition of m. This gives

l2(amnα(
(
x

m

)
)) ≤ 2−m+σ(m)(m− 1) ≤ 1

for all m. Since for n ≥ 5 the number 2n−1/n is divisible by 4 all summands in
the expansion have l2-length at most 1/4 or l1-length at most 2. Hence b is an
expression in terms with l2-length strictly smaller than 2 and terms with l1-length
at most 4. Thus the assertion follows from 5.10. �

6. The relations of spin bordism to real K-theory

6.1. The θ-algebra structure of π∗MSpin. A first consequence of the split-
ting formula is the

Corollary 6.1. Let f ∈ π0MSpin be the image of f ∈ π0Tζ . Then we have
an isomorphism of θ-algebras

π∗MSpin ∼= π∗KO ⊗ T{f, z3, z5, z7, . . .}.

Proof. This immediately follows from the main theorem and 2.18. �

Remark 6.2. The formula for the homotopy ring of spin bordism evokes the
hope that MSpin can be made into a KO-algebra spectrum. We have seen earlier
that MSpin splits into a sum of KOs and hence is a KO-module spectrum (in
contrary to the unlocalized MSpin [Sto94].) However, there does not exist any
map of ring spectra from KO to MSpin even in the K(1)-local world: any such
would give a self map of KO when composed with the Â-map π∅. The induced map
in KO-homology factorizes over the free ring π0KO ∧MSpin and thus coincides
with the augmentation

ε∗ : π0KO ∧KO −→ π0KO ⊂ π0KO ∧KO
by 3.4 and 3.10. Even rationally, there is no self ring map of KO which induces the
augmentation map in KO-homology.

6.2. The E∞ cellular structure of the Â-map. Note that the map of spec-
tra π∅ : MSpin −→ KO is the Atiyah-Bott-Shapiro orientation. It is denoted by
Â in the sequel. We assume that we have chosen the classes zk ∈ π0MSpin of the
splitting map in a way that Âzk ∈ π0KO ∼= Z2 is null. This is possible since the ad-
dition of constants does not change the l2-length of each zk. By 3.3 we may assume
that the null homotopy of ζ in MSpin has the following property: when restricted
to the cone Cζ and composed with Â the resulting E∞ map ϕ : Tζ −→ MSpin
gives the null homotopy ι : Cζ −→ KO up to homotopy. The induced E∞ map
Tζ −→ KO is denoted by the same letter.

Corollary 6.3. The composite of E∞-maps

MSpin ∼= Tζ ∧
∧
TS0 (ι,∗)−→ KO

coincides with the Â-map.
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The proof uses the

Lemma 6.4. A map from MSpin to KO is determined by its behavior in KO-
homology. That is, the map

KO(MSpin) −→ Homcts(π0KO ∧MSpin, π0KO ∧KO)

is injective.

Proof. Since the real and complex completed representation rings of each
group Spin(8k) coincide (compare [And64]) we have that KO(MSpin) ∼=
K(MSpin). Hence it suffices to prove the claim for complex K-theory. The pairing

π0(K ∧MSpin,Z2∞)⊗K(MSpin) −→ Z2∞

induces an isomorphism (compare 2.3 of [Bou99]) fromK(MSpin) to the Pontyagin
dual of the 2-profinite abelian group π0(K∧MSpin,Z2∞). This map factorizes over
Homcts(π0K ∧MSpin, π0K ∧K). �

Proof of 6.3: It is well known that Â is an H8
∞ map (see [BMMS86]

p.280ff) and hence induces a map of θ-algebras in KO-homology. When restricted
to Cζ ∨

∨
TS0 this map coincides with (ι, ∗) by our choices above. Thus the θ-

algebra generators b, z3, z5, . . . are identically mapped and the claim follows from
the lemma. �

The corollary 6.1 suggests how to obtain KO-theory by attaching E∞ cells to
MSpin.

Corollary 6.5. The diagram∧∞
i=1 TS

0 ∗ //

(f,z3,z5,...)

��

T∗

��
MSpin

Â // KO

is a homotopy pushout of K(1)-local E∞ ring spectra.

Proof. In [Hop98] it is shown that the right square of the diagram

TS0 ∧
∧
TS0 1∧∗ //

(f,(z3,z5,...))

��

TS0 ∧ T∗

f

��

∗ // T∗

��
MSpin // Tζ // KO

is a homotopy pushout. The splitting theorem gives the homotopy pushout property
of the left square and hence furnishes the result. �

6.3. Another additive splitting and the Conner-Floyd isomorphism.
We have seen earlier that MSpin additively splits into a sum of KO-theories. Using
the multiplicative splitting theorem we are now able to write down an additive
splitting which recovers more structure.

Corollary 6.6. In the category of K(1)-local spectra there is a natural iso-
morphism of π0MSpin-modules

π∗MSpin ∧X ∼= π∗KO ∧X ⊗ T{f, z3, z5, . . .}.
Here, the module structure of the right hand side is given by the isomorphism of
6.1.
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Proof. Choose a projection pr of the free T{f}-module T{b} onto the sum-
mand T{f}. Then the composite

π∗Tζ ∧X −→ π∗KO ∧ Tζ ∧X ∼= π∗KO ∧ Tζ ⊗π∗KO π∗KO ∧X
∼= π∗KO ∧X ⊗ T{b}

1⊗pr−→ π∗KO ∧X ⊗ T{f}
is a natural transformation between cohomology theories. Hence the result follows
from the splitting theorem. �

This result immediately implies the

Corollary 6.7. (Hopkins, Hovey [HH92])
In the category of K(1)-local spectra the natural map

π∗MSpin ∧X ⊗π∗MSpin π∗KO −→ π∗KO ∧X

induced by the Â-orientation is an isomorphism.

Remark 6.8. Hopkins and Hovey prove the general Conner-Floyd isomorphism
for MSpin and KO by localizing at each prime. The essential work is done at the
prime 2 since for odd primes the original method of Conner and Floyd applies. Let
β ∈ π8MSpin correspond to the Bott class of the first ko-summand in the ABP-
splitting. Then they show that β−1MSpin is K-local. Hence there is a natural
isomorphism

(MSpin ∧R)∗X ⊗(MSpin∧R)∗ (KO ∧R)∗
∼= (LKMSpin ∧R)∗X ⊗(LKMSpin∧R)∗ (KO ∧R)∗

for all ring spectra R. When setting R = SZ/2k we get with 6.6

(LKMSpin ∧ SZ/2k)∗X ⊗(LKMSpin∧SZ/2k)∗ (KO ∧ SZ/2k)∗
∼= π∗LK(1)MSpin ∧ SZ/2k ∧X ⊗π∗LK(1)MSpin∧SZ/2k π∗LK(1)KO ∧ SZ/2k

∼= π∗KO ∧ SZ/2k ∧X
The general statement now can be finished as in section 6 of [HH92].
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