ON UNIVERSALLY STABLE ELEMENTS

Ian J. Leary, Björn Schuster, and Nobuaki Yagita

Abstract. We show that certain subrings of the cohomology of a finite p-group P may be realised as the images of restriction from suitable virtually free groups. We deduce that the cohomology of P is a finite module for any such subring. Examples include the ring of 'universally stable elements' defined by Evens and Priddy, and rings of invariants such as the mod-2 Dickson algebras.

Let P be a finite p-group, and let C_u be the category whose objects are the subgroups of P, with morphisms all injective group homomorphisms. Let C be any subcategory of C_u such that P is an object of C, and such that for any object Q of C, the inclusion of Q in P is a morphism in C. Let $H^*(\cdot)$ stand for mod-p group cohomology, which may be viewed as a contravariant functor from C_u to \mathbf{F}_p -algebras. We shall study the limit I(P,C) of this functor:

$$I(P, \mathcal{C}) = \lim_{Q \in \mathcal{C}} H^*(Q).$$

Given our assumptions on \mathcal{C} , we may identify $I(P,\mathcal{C})$ with a subring of $H^*(P)$. In the final remarks we discuss generalizations of our results in which most of the conditions that we impose upon P, \mathcal{C} , and $H^*(\cdot)$ are weakened.

The classical case of this construction occurs in Cartan-Eilenberg's description of the image of the cohomology of a finite group in the cohomology of its Sylow subgroup as the 'stable elements' [2]. Let G be a finite group with P as its Sylow subgroup, and let C_G be the subcategory of C_u containing all the objects, but with morphisms only those homomorphisms Q to Q' induced by conjugation by some element of G. Then the image, $Im(Res_P^G)$, of $H^*(G)$ in $H^*(P)$ is equal to $I(P, C_G)$.

Rings of invariants also arise in this way. If C is a category whose only object is P, with morphisms a subgroup H of Aut(P), then I(P,C) is just the subring $H^*(P)^H$ of invariants under the action of H.

Another case considered already, which motivated our work, is the ring of universally stable elements defined by Evens-Priddy in [4]. Let C_s be the subcategory of C_u generated by all subcategories of the form C_G as defined above. Then $I(P, C_s)$ is the subring I(P) of $H^*(P)$ introduced in [4], consisting of those elements of $H^*(P)$ which are in the image of Res_P^G for every finite group G with Sylow subgroup P.

A fourth case of interest is $I(P, \mathcal{C}_u)$, which might be viewed as the elements of $H^*(P)$ which are 'even more stable' than the elements of $I(P, \mathcal{C}_s)$. It is easy to see that in general \mathcal{C}_s is strictly contained in \mathcal{C}_u . For example, the endomorphism monoid $\operatorname{Hom}_{\mathcal{C}_s}(P, P)$ of P is the subgroup of $\operatorname{Aut}(P)$ generated by elements of order coprime to p, whereas $\operatorname{Hom}_{\mathcal{C}_u}(P, P)$ is the whole of $\operatorname{Aut}(P)$. Our main result is the following theorem.

Theorem 1. Let P be a finite p-group, and let C be any subcategory of $C_u = C_u(P)$ satisfying the conditions stated in the first paragraph. Then there exists a discrete group Γ containing P as a subgroup such that:

- a) $\operatorname{Im}(\operatorname{Res}_{P}^{\Gamma})$ is equal to $I(P, \mathcal{C})$;
- b) $(\operatorname{Ker}(\operatorname{Res}_{P}^{\Gamma}))^{2}$ is trivial;
- c) Res_P induces an isomorphism from $H^*(\Gamma)/\sqrt{0}$ to $I(P,\mathcal{C})/\sqrt{0}$;
- d) Γ is virtually free. More precisely, Γ has a free normal subgroup of index dividing |P|!.

If Γ' is a free normal subgroup of Γ of finite index, then P maps injectively to the finite group Γ/Γ' , so by the Evens-Venkov theorem [5], $H^*(P)$ is a finite module for $H^*(\Gamma/\Gamma')$ and hence a fortiori for $H^*(\Gamma)$. Thus one obtains the following corollary.

Corollary 2. Let P and C be as in the statement of Theorem 1. Then $H^*(P)$ is a finite module for its subring I(P,C).

The case $C = C_s$ is Theorem A of [4]. Our result is stronger, since it applies to categories such as C_u itself, and our proof is more elementary. There is an even shorter proof of Corollary 2 however, which is to deduce it from the following simpler theorem.

Theorem 3. Let P be a finite p-group, and let G be the symmetric group on a set X bijective with P. Regard P as a subgroup of G via a Cayley embedding (or regular permutation representation). Then $\operatorname{Im}(\operatorname{Res}_P^G)$ is contained in $I(P, C_u)$.

To deduce Corollary 2 from Theorem 3, note that for any \mathcal{C} as above, one has

$$\operatorname{Im}(\operatorname{Res}_P^G) \subseteq I(P, \mathcal{C}_u) \subseteq I(P, \mathcal{C}) \subseteq H^*(P),$$

and $H^*(P)$ is a finite module for $\operatorname{Im}(\operatorname{Res}_P^G)$ by the Evens-Venkov theorem. Proof of Theorem 3. We deduce Theorem 3 from the following group-theoretic lemma.

Lemma 4. Let $Q \leq P \leq G$ be as in the statement of Theorem 3, and let ϕ be any injective homomorphism from Q to P. Then there exists $g \in G$ such that for all $q \in Q$, $\phi(q) = gqg^{-1}$.

Proof. Fix a bijection between P and the set X permuted by G. This fixes an embedding i_P of P in G. Let i_Q be the induced inclusion of Q in G. Write i_PX for X viewed as a

P-set. Thus ${}^{i_P}X$ is a free P-set of rank one. There are two ways to view X as a Q-set, either via i_Q or $i_P \circ \phi$. The Q-sets ${}^{i_Q}X$ and ${}^{i_P \circ \phi}X$ are both free of rank equal to the index, |P:Q|, of Q in P. Let g be an isomorphism of Q-sets between ${}^{i_Q}X$ and ${}^{i_P \circ \phi}X$. Then g is an element of G having the required property, because for each $x \in X$ and $q \in Q$, $g \cdot q \cdot x = \phi(q) \cdot g \cdot x$. \square

Returning now to the proof of Theorem 3, any morphism in C_u factors as the composite of an isomorphism followed by an inclusion. Thus it suffices to show that for ϕ as in Lemma 4, Res_Q^G and $\phi^* \circ \operatorname{Res}_P^G$ are equal. Writing c_g for the automorphism of G given by conjugation by g, we have shown that there exists g such that $c_g \circ i_Q = i_P \circ \phi$. But c_g^* is the identity map on $H^*(G)$, and hence $i_Q^* = \phi^* \circ i_P^*$ as required. \square

This completes the proofs of all of our statements except for Theorem 1. For the proof of Theorem 1 we recall the following theorem (see for example [3], I.7.4 or IV.1.6).

Theorem 5. Let Γ be a group that acts simplicially (i.e., without reversing any edges) on a tree with all stabilizer groups of order dividing a fixed integer M. Then there is a homomorphism from Γ to the symmetric group on M letters whose kernel, K, is torsion-free. Since K acts freely, simplicially on the tree, it follows that K is a free group.

In fact, the short direct proof of Theorem 3 is based on some of the ideas in the proof of Theorem 5 given in [3].

Proof of Theorem 1. The group Γ will be constructed as the fundamental group of a graph of groups (see [3], I.3, [6], I.5, or [1], VII.9 for the definitions and basic theorems). Let Q_1, \ldots, Q_M be the objects of \mathcal{C} , and let ϕ_1, \ldots, ϕ_N be the morphisms of \mathcal{C} . Define a function m so that the domain of ϕ_i is $Q_{m(i)}$. Now let Γ be the group generated by the elements of P and new elements t_1, \ldots, t_N subject to all relations that hold in P, together with the relations

$$t_i q t_i^{-1} = \phi_i(q),$$

for all $i \in \{1, ..., N\}$ and all $q \in Q_{m(i)}$. Thus Γ is the fundamental group of a graph of groups with one vertex and N edges. The vertex group is of course P and the ith edge group is $Q_{m(i)}$. The two maps from the ith edge group to the vertex group (corresponding to its initial and terminal ends) are the inclusion and ϕ_i .

The group Γ as defined above has the following properties (see any of the references listed above): P is a subgroup of Γ ; for each i, the homomorphism $\phi_i: Q_{m(i)} \to P$ is inner in Γ (i.e., is induced by conjugation by the element t_i); Γ acts simplicially on a tree T, with one orbit of vertices and N orbits of edges, with P being a vertex stabilizer and $Q_{m(i)}$ being the stabilizer of some edge in the ith orbit. The quotient T/Γ is the graph used in defining Γ .

Recall from [1], VII.7–VII.9 that for any Γ -CW-complex X, there is a spectral sequence, with $E_1^{p,q} = \bigoplus_{\sigma} H^q(\Gamma_{\sigma})$, where the sum is over a set of orbit representatives of p-cells in X. For coefficients in a ring with trivial Γ -action (such as the field of p elements), this is a spectral sequence of rings. When X is acyclic the spectral sequence converges to a filtration of $H^{p+q}(\Gamma)$. We apply this spectral sequence in the case when X = T. In this case

$$E_1^{0,q} \cong H^q(P), \quad E_1^{1,q} \cong \bigoplus_{i=1}^N H^q(Q_{m(i)}),$$

and $E_1^{p,q}=0$ for p>1. Under this isomorphism the differential $d_1:E_1^{0,q}\to E_1^{1,q}$ has ith coordinate $\operatorname{Res}_{Q_{m(i)}}^P-\phi_i^*$, and so $E_2^{0,*}$ is isomorphic to $I(P,\mathcal{C})$. The fact that $E_2^{p,q}=0$ for p>1 implies that the spectral sequence collapses at the E_2 -page. The edge homomorphism from $E_\infty^{0,*}$ to $H^*(P)$ may be identified with $\operatorname{Res}_P^\Gamma$ (consider the map of spectral sequences induced by the inclusion of the vertex set of the tree in the whole tree, viewed as a map of Γ -spaces), and so a) is proved. For b), note that since $E_2^{p,q}=0$ for p>1, elements of $E_2^{1,*}$ uniquely determine elements of $H^*(\Gamma)$, and the product of any two such elements is zero in $H^*(\Gamma)$. Since $\operatorname{Ker}(\operatorname{Res}_P^\Gamma)$ may be identified with $E_2^{1,*}$, b) follows, and c) follows immediately from b). Finally, d) follows from Theorem 5 stated above. \square

Remarks. 1) There are alternatives to using the equivariant cohomology spectral sequence in the proof of Theorem 1, but following a suggestion of the referee we decided to explain just one method in detail in the proof. Since the spectral sequence has only two non-zero rows it is essentially just a long exact sequence. This long exact sequence may be obtained by applying $H^*(\Gamma; \cdot)$ to the augmented chain complex for the tree T, modulo an application of the Eckmann-Shapiro lemma. We felt, however, that the ring structure of $H^*(\Gamma)$ is more easily understood in terms of the spectral sequence.

- 2) We believe that $I(P, \mathcal{C}_u)$ has some advantages over $I(P, \mathcal{C}_s)$. Both of these rings enjoy the finiteness property stated in Corollary 2. To compute $I(P, \mathcal{C}_s)$ one needs to know something about the p-local structure of all groups with Sylow subgroup P, whereas $I(P, \mathcal{C}_u)$ requires only knowledge of P.
- 3) On the other hand, $I(P, \mathcal{C}_u)$ does not retain much information concerning P. Let W(P) be the variety of all ring homomorphisms from $I(P, \mathcal{C}_u)$ to an algebraically closed field k of characteristic p. Then W(P) is determined up to homeomorphism by the p-rank of P: If P has p-rank n, then W(P) is homeomorphic to $k^n/GL_n(\mathbf{F}_p)$, and if E is an elementary abelian subgroup of P of rank n, then the induced map from W(E) to W(P) is an homeomorphism. These assertions concerning W(P) follow easily from Quillen's

theorem describing the variety of homomorphisms from $H^*(P)$ to k (see for example [5], chap. 9). Note that this the only place where we use Quillen's theorem.

- 4) The definitions and theorems that we state remain valid if P is any finite group. We restrict to the case when P is a p-group only because this is the case occurring naturally in the work of Cartan-Eilenberg and Evens-Priddy.
- 5) The reader may have noticed that Theorems 1 and 3 work perfectly well for cohomology with coefficients in any ring R (viewed as a trivial P-module). Corollary 2 is valid for cohomology with coefficients in any ring R for which the Evens-Venkov theorem holds (see [5], 7.4 for a general statement).
- 6) The easiest way to relax the restrictions on the category \mathcal{C} is to consider arbitrary finite categories with objects finite groups and morphisms injective group homomorphisms (it is unhelpful to view the groups as subgroups of a single group if the inclusion maps are not in the category). Define $I(\mathcal{C})$ to be the limit over this category and for any group Γ , define $\mathcal{D}(\Gamma)$ to be the category of finite subgroups of Γ , with morphisms inclusions and conjugation by elements of Γ . Then one obtains

Theorem 1'. Let \mathcal{C} be a connected finite category of finite groups and injective homomorphisms. Then there exists a discrete group Γ and a natural transformation from \mathcal{C} to $\mathcal{D}(\Gamma)$ such that Γ and the induced map from $H^*(\Gamma)$ to $I(\mathcal{C})$ satisfy properties a) to d) of Theorem 1.

Recall that a category is said to be connected if the equivalence relation on objects generated by 'there is a morphism from Q to Q'' has exactly one class. Note that there cannot be a direct analogue of Theorem 1 unless the category \mathcal{C} is connected, since the degree zero part of $I(\mathcal{C})$ is an \mathbf{F}_p vector space of dimension the number of components of \mathcal{C} , whereas $H^0(\Gamma) \cong \mathbf{F}_p$. The proof of Theorem 1' is very similar to the proof of Theorem 1, except that one creates a graph of groups with one vertex for every object of \mathcal{C} . The restriction to connected categories is not serious, since given any category \mathcal{C} as above, one may make a connected category \mathcal{C}^+ by adding a trivial group to \mathcal{C} as an initial object (i.e., add one new object, a trivial group, and one morphism from this object to every other object). The natural map from $I(\mathcal{C}^+)$ to $I(\mathcal{C})$ is an isomorphism, except in degree zero.

The analogue of Corollary 2 in this generality, for which \mathcal{C} need not be assumed to be connected, is:

Corollary 2'. Let C be a finite category of finite groups and injective homomorphisms. Then $\prod_{Q \in C} H^*(Q)$ is a finite module for I(C). 7) The following instance of Theorem 1 seems worthy of special note. Let P be an elementary abelian 2-group of rank n, let \mathcal{C} be the category whose only object is P and whose morphisms are the group $GL(n, \mathbf{F}_2)$. Then $H^*(B\Gamma)$ is a ring whose radical is invariant under the action of the Steenrod algebra, and $H^*(B\Gamma)/\sqrt{0}$ is isomorphic to the Dickson algebra $D_n = \mathbf{F}_2[x_1, \ldots, x_n]^{GL(n, \mathbf{F}_2)}$. On the other hand it is known that for $n \geq 6$, D_n itself cannot be the cohomology of any space [7].

Acknowledgements. This work was done when the authors met at the Centre de Recerca Matemàtica. The authors gratefully acknowledge the hospitality and support of the CRM. The first- and second-named authors were supported by E.C. Leibniz Fellowships, at the Max-Planck-Institut für Mathematik and at the CRM respectively.

References.

- [1] K. S. Brown, Cohomology of Groups, Graduate Texts in Mathematics 87, Springer-Verlag, Heidelberg (1982).
- [2] H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton (1955).
- [3] W. Dicks and M. J. Dunwoody, Groups acting on graphs, Cambridge Studies in Advanced Mathematics 17, Cambridge Univ. Press, Cambridge (1989).
- [4] L. Evens and S. Priddy, The ring of universally stable elements, Quart. J. Math. Oxford (2) **40** (1989), 399–407.
- [5] L. Evens, Cohomology of groups, Oxford Mathematical Monographs, Clarendon Press, New York (1991).
- [6] J.-P. Serre, Trees, Springer-Verlag, Heidelberg (1980).
- [7] L. Smith and R. M. Switzer, Realizability and non-realizability of the Dickson algebras as cohomology rings, Proc. Amer. Math. Soc. 89 (1983), 303–313.
- I. J. Leary, Max-Planck-Institut für Mathematik, 53225 Bonn, Germany.
 - From Jan. 1996: Faculty of Math. Studies, Univ. of Southampton, Southampton SO17 1BJ, England.
- B. Schuster, CRM, Institut d'Estudis Catalans, E-08193 Bellaterra (Barcelona), Spain.
 - From Jun. 1996: Fachbereich 7 Mathematik, Bergische Universität Wuppertal, Gaußstr. 20, 42097 Wuppertal, Germany.
- N. Yagita, Faculty of Education, Ibaraki University, Mito, Ibaraki, Japan.