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CHAPTER 1

Unoriented Bordism

1. Steenrod’s Question

Let M be a closed, smooth n-manifold. Then Hn(M ;F2) contains a fun-

damental class [M ] which is characterized by the fact that it restricts to the

non-zero element in

Hn(M,M \ {x};F2) ∼= Hn(Rn,Rn \ {0};F2) ∼= F2

for each x ∈M .

N.E. Steenrod asked the following question. Given a space X and a homol-

ogy class α ∈ Hn(X;F2) can α be represented by a singular manifold (M, f)?

That is, is there a closed n-manifold M and a continuous map f : M → X

such that f∗[M ] = α?

An oriented manifold carries a fundamental integral homology class and

we may ask the analogous question in this case as well. We will only discuss

the first question and for the rest of this section all homology groups are taken

with F2 coefficients unless otherwise indicated.

Let us first investigate when a singular manifold (M, f) represents the zero

homology class. Suppose that our manifold M is the boundary of an (n+ 1)-

manifold W and that f extends to a map F : W → X. Then the left arrow in

the commutative diagram

Hn+1(W,M) Hn+1(X,X)

Hn(M) Hn(X)

wF∗

u∂ u∂
wf∗

sends the fundamental class of W to the fundamental class of M , and since

Hn+1(X,X) = 0, we have f∗[M ] = 0.

1



2 1. UNORIENTED BORDISM

Definition 1.1. We say that a closed manifold M is null-bordant if

there exists a manifold W whose boundary is M . A singular manifold (M, f)

is null-bordant if there exists an F : W → X extending f as above.

Note that two singular manifolds (M, f) and (N, g) determine the same

class in Hn(X) if (f, g) : M qN → X is null-bordant. When this is so we will

say that (M, f) and (N, g) are bordant.

The concept of bordism was first introduced by R. Thom in [24]. Bordism

is an equivalence relation. The only non-trivial point to check is transitivity,

which requires some knowledge of differential topology.

Definition 1.2. We define the unoriented bordism group of X, de-

noted Nn(X), to be the set of all isomorphism classes of singular n-manifolds

M → X modulo bordism. (There are no set-theoretic problems, as any n-

manifold can be embedded in RN for large enough N .) This is an abelian group

under disjoint union, and since everything has order two, it is an F2-vector

space.

In fact, Nn is a covariant functor from topological spaces to vector spaces.

Given k : X → Y one defines Nn(k) : Nn(X) → Nn(Y ) by Nn(k)(M, f) =

(M,kf). It is not difficult to check that the bordism relation is preserved

under composition.

Moreover, there are product maps Nm(X) ⊗ Nn(Y ) → Nm+n(X × Y )

sending (M, f,X) ⊗ (N, g, Y ) to (M × N, f × g,X × Y ). Again, one must

check that this is well-defined. An interesting special case occurs when X and

Y consist of a single point. Then we find that N∗(∗) is a graded-commutative

F2-algebra. It is denoted N∗ and is called the bordism ring.

Notice that we have a well-defined map Nn(X) → Hn(X) which sends

f : M → X to f∗[M ]. With these definitions, Steenrod’s question can be

phrased, is this map surjective?

Similarly, we can play the same game with oriented manifolds. In this

case we get the oriented bordism group Ωn(X), when we define M to be

bordant to N if there is a W with ∂W = M − N . (Here M − N denotes

the disjoint union of M and N with the orientation of N reversed.) Now the

second question becomes, is the map Ωn(X)→ Hn(X;Z) surjective?
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In the next few sections we develop the machinery we need to attack these

problems.

2. Thom Spaces and Stable Normal Bundles

Let M be an n-manifold and consider an embedding i of M in Rn+k.

(Putting k = n would suffice, but we will see below that it is better to let k

be arbitrary.) Such an embedding defines a k-plane bundle ν over M , called

the normal bundle, by requiring that the sequence

0 −→ τM
i∗−→ i∗τRn+k −→ ν −→ 0

be exact. Equivalently, one could put a metric on the tangent bundle τRn+k

and define E(ν) to be those vectors in the restriction i∗τRn+k which are or-

thogonal to τM .

A word on notation may be in order. When we refer to a vector bundle

as a whole, we denote it by a symbol such as ξ. The total space, base space,

and projection map will be denoted E(ξ), B(ξ) and πξ, with the ξ omitted

when the context makes it clear.1 As usual, f ∗ξ is the pullback of the bundle

ξ by a map f : X → B(ξ). A good reference on vector bundles is Milnor and

Stasheff [15].

The normal bundle ν depends on the choice of embedding. An embedding

i into Rn+k can always be extending to an embedding i′ into Rn+m for m > k

by composing it with the usual embedding of Rn+k into Rn+m. These two

embeddings are easy to compare. We find that ν ′ = ν + (m− k), where

(m− k) denotes the trivial rank m− k bundle over M .

To compare arbitrary embeddings, we need the following two theorems,

whose proofs may be found in the books of Hirsch [5] and Lang [9].

Theorem 2.1. Given an embedding i of M in Rn+k with normal bundle

ν, there is an embedding of E(ν) onto an open set in R
n+k extending the

1An exception to this rule occurs when one of the spaces already has a name. For
example, the base space of the tangent bundle τM of a manifold M is of course M , and the
total space is usually written TM .
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embedding of M :

E(ν)

M R
n+k .

c\\\\]
u

y
0-section

y wi

This can be pictured as a tubular neighborhood of M in Rn+k.

Theorem 2.2. Suppose i and j are embeddings of M into Rn+k and Rn+l

respectively, with extensions to embeddings of E(νi) and E(νj). Then for m

large enough, the composite embeddings of E(νi) and E(νj) into Rn+m are

isotopic. Roughly speaking, this means that they are homotopic through em-

beddings.

Therefore, νi+(m− k) and νj +(m− l) are isomorphic. In other words,

νi and νj are stably isomorphic. So any manifold has a well-defined stable

normal bundle.

Maps from spheres are always interesting to topologists, and since the one-

point compactification of Rn+k is Sn+k one is led to study compactifications.

Compactification is a contravariant functor in the sense that if U ↪→ S is an

open inclusion, we get a pointed map S+ → U+, where S is a locally compact

Hausdorff space and + denotes the one-point compactification. Note that we

use the convention that the basepoint of S+ is the point at infinity, and if S

is compact, then S+ is S with a disjoint basepoint.

Applying this to the above, we get a pointed map

Sn+k = Rn+k
+ −→ E(ν)+ =: Th ν.(2.1)

In general, given a vector bundle ξ over a compact space X, E(ξ)+ is called

the Thom space of ξ and is denoted Th ξ. There is an alternate definition,

which gives the same answer for compact X, but works in general. Choose

a metric on ξ and consider D(ξ), the closed disk bundle, and S(ξ), the unit

sphere bundle. Define Th ξ to be D(ξ)/S(ξ).

The Thom construction is a covariant functor. A bundle map ξ → η

which is an injective on each fibre gives rise to a map Th ξ → Th η in the

obvious way. Also, for locally compact spaces, (S×T )+ = S+∧T+. Therefore
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Th(ξ×η) = Th ξ∧Th η, where ξ×η denotes the bundle Eξ×Eη → Bξ×Bη.

There is a homeomorphism Th(ξ × η) = Th ξ ∧ Th η even when Bξ and Bη

are not compact.

3. The Pontrjagin–Thom Construction

An Invariant of a Singular Manifold. The classifying space BO(k)

carries a k-plane bundle ξk and for any k-plane bundle ξ over a paracompact

space X, there exists a map η : X → BO(k), unique up to homotopy, such that

η∗ξk ∼= ξ. Because of this direct correspondence, the map η will be denoted

by ξ as well.

Let (M, f) be a singular n-manifold in X and fix an embedding i : M ↪→
R
n+k. For the normal bundle ν we get a map ν : M → BO(k). That ν∗ξk is

isomorphic to ν is equivalent to saying that ν : M → BO(k) is covered by a

bundle map ν which is an isomorphism on each fibre:

E(ν) E(ξk)

M BO(k) .

wν

u u
wν

Now we may form the following bundle map:

E(ν) E(ξk)×X = E(ξk × 0)

M BO(k)×X .

w(ν,fπ)

u u
w(ν,f)

Here 0 denotes the rank 0 bundle over X. The Thom construction is functorial,

so we get an induced map

Th ν −→ Th(ξk × 0).

Combining this with the map from the sphere (2.1) gives us a map

Sn+k −→ Th ν −→ Th ξk ∧X+,

where we have used the fact that Th 0 = X+. (The quotient D(0)/S(0) is by

definition X with a disjoint basepoint.)
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The Thom space Th ξk will occur so often that we will denote it MO(k).

The fruit of our labor is thus the homotopy class in

πn+k(MO(k) ∧X+)

defined by the above map. How does this homotopy class depend on the

choices we’ve made along the way?

To determine this we examine the effect of stabilization. Extend our em-

bedding i to an embedding i′ into Rn+k+1. We claim that the following diagram

commutes

Sn+k+1 Th(1 + ν) MO(k + 1) ∧X+

ΣSn+k Σ Th ν ΣMO(k) ∧X+ ,

w wu
∼=

w

u
∼=

w

u
α∧1

where the top line comes from i′ and the bottom line is the suspension of the

maps from i. The leftmost vertical arrow is clear, and the middle vertical

arrow comes from the fact that

Th(nX + ξ) ∼= Th(n∗ × ξ) ∼= Sn ∧ Th ξ,

where we distinguish between the trivial bundles over X and ∗ by subscripts.

The map α is induced by the bundle map that classifies 1 + ξk:

E(1 + ξk) E(ξk+1)

BO(k) BO(k + 1) .

w

u u
w

The moral of all of this is that a singular manifold (M, f) determines an

element of

MOn(X) := lim-------→
k

πn+k(MO(k) ∧X+),

where the maps in the colimit are induced by the suspension homomorphism

and the α ∧ 1’s.
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The Dependence on the Bordism Class. To obtain a natural homo-

morphism Nn(X) → MOn(X) we also have to explain why the equivalence

relation is respected by our construction. That is, we must determine what

happens if our singular manifold is null-bordant.

Suppose F : W → X restricts to f on ∂W = M . A theorem from differen-

tial topology says that any embedding of M in Sn+k can be extended to a ‘nice’

embedding of W in Dn+k+1 such that ∂W is precisely W ∩Sn+k. By ‘nice’ we

mean that W is not tangent to Sn+k at any point x ∈ ∂W : TxW 6⊆ TxS
n+k.

Then any tubular neighbourhood ν of M in the sphere is the intersection with

Sn+k of a tubular neighbourhood ν̃ of W in the disk [5]. Thus applying the

above construction to Th ν̃ we get a commutative diagram

Sn+k Th ν MO(k) ∧X+

Dn+k+1 Th ν̃

y

u

w
y

u

w

w
[[

[[
[]

and have verified that the upper row is nullhomotopic.

The Inverse Homomorphism. Next we sketch the construction of a

two-sided inverse to the map Nn(X) → MOn(X). First observe that the

classifying space BO(k) can be approximated by the Grassmann manifolds

Grk(R
n+k). Grk(R

n+k) is the space of all k-dimensional subspaces of Rn+k

and comes equipped with a canonical bundle ξk,n with total space

E(ξk,n) = {(V, x) : x ∈ V } ⊂ Grk(R
n+k)× Rn+k.

Classifying ξk,n we obtain maps Grk(R
n+k)→ BO(k) for all n ∈ N. Actually,

BO(k) can be considered as the union of all these Grk(R
n+k) under the natural

inclusions Grk(R
n+k) ↪→ Grk(R

n+1+k) and E(ξk) as the union of the E(ξk,n).

We also have the notion of transversality, the topological version of ‘general

position’. Let

U ×X V V

U X

wf̄

u
ḡ

u
g

wf
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be a pullback diagram where U , V and X are smooth manifolds without

boundary and f and g are differentiable maps. When does U ×X V carry the

structure of a manifold?

Definition 3.1. f and g are said to be transverse if for every (u, v) in

U ×X V

f∗Tu(U) + g∗Tv(V ) = TxX,

where x = f(u) = g(v).

If in particular the sum of the dimensions of U and V is lower than the

dimension of X, transversality cannot hold unless the images of f and g are

disjoint. In case of complementary dimensions the images must meet in a 0-

dimensional manifold. The following can be found in any book on differential

topology.

Theorem 3.2. (i) If f and g are transverse, then U ×X V is a subman-

ifold of U × V of codimension dimX.

(ii) For any smooth f and g there is a map f1 ‘near’ f which is transverse

to g. Nearby maps are homotopic.

(iii) If f and g are transverse, and g is an embedding with normal bundle ν,

then ḡ is an embedding of U ×X V in U with normal bundle f̄ ∗ν.

Let us now be given a map g : Sn+k →MO(k)∧X+. Its composition with

the projection

MO(k) ∧X+ =
MO(k)×X
∗ ×X

pr1−→MO(k) = Th ξk

compresses to some Th ξk,n ⊂ Th ξk, since Sn+k is compact. Though the space

Th ξk,n has a singularity at the basepoint, the complement of the basepoint

is a manifold. Since the zero section Gk(R
n+k) ↪→ Th ξk,n stays far from the

singularity the above theorem applies. Thus we can deform pr1g to a transverse

map g1. The pullback diagram

M Grk(R
n+k)

Sn+k Th ξk,n

wḡ1

y

u
y
u

wg1
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defines a manifold M . The restriction of pr2 g to M makes sense and gives an

element in Nn(X).

Note that the normal bundle of M ⊂ Sn+k is classified by ḡ1. The reader

may check that we have indeed defined an inverse homomorphism.

4. Spectra

In these notes we take a cavalier approach to spectra. An excellent and

much more thorough exposition of the category of spectra can be found in

Part III of [2].

Definition 4.1. A spectrum is a sequence of pointed spaces Xk for k ∈
Z together with maps

ΣXk −→ Xk+1.

Why do we care about spectra? In section 3 we were forced to look at the

spaces MO(k) and the maps αk : ΣMO(k)→MO(k + 1), and we defined

MOn(X) := lim-------→
k

πn+k(MO(k) ∧X+)

(for k < 0 take MO(k) = ∗). However this is only the first example of a

spectrum.

Let X be a pointed space. The suspension spectrum Σ∞X has kth space

ΣkX and structure maps Σ(ΣkX)
id→ Σk+1X. We denote the suspension spec-

trum Σ∞S0 of the zero-sphere by S and sometimes write X for Σ∞X. Another

example arises from an abelian group G. The Eilenberg–Mac Lane complexes

K(G, n) are characterized up to homotopy equivalence by the property

πi(K(G, n)) =

{
G i = n

0 i 6= n
.

These spaces represent singular cohomology with coefficients in G. That is,

H̄n(X;G) ∼= [X,K(G, n)]

for all pointed CW-spaces X. Let HG denote the spectrum with HGn :=

K(G, n) and connecting maps ΣK(G, n)→ K(G, n+ 1) given by the image of
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the identity map of K(G, n) in

[K(G, n), K(G, n)] = H̄n(K(G, n);G)

∼= H̄n+1(ΣK(G, n);G) = [ΣK(G, n), K(G, n+ 1)].

Theorem 4.2 (G.W. Whitehead). If E is spectrum, then on pointed

spaces the functor

X 7−→ lim-------→
k

πn+k(Ek ∧X) =: ĒnX

is a reduced generalized homology theory. That is, for every map f : A → X

we have a long exact sequence

· · · −→ Ēk(A)
f∗−→ Ēk(X) −→ Ēk(Cf )

∂−→ Ēk−1(A) −→ · · · .

By Cf we mean the cofibre X ∪f CA of the map f . If f is a CW-inclusion

or more generally a cofibration then Cf is homotopy equivalent to the quotient

X/A. The boundary map above is simply the map induced by the map Cf →
ΣA that collapses X to a point composed with the natural map Ēk(ΣA) →
Ēk−1(A). As an aside, note that this last map is an isomorphism. This follows,

for example, from using the long exact sequence coming from the inclusion of

A into CA.

Thus N∗(−) is a homology theory and we can use many tools known from

singular homology. As an exercise the reader may check the exactness property

directly from the definition of N∗(X).

The Eilenberg–Mac Lane spectrum HG gives us a homology theory

HG∗(−) with coefficients

HGn(∗) = HGn(S0) = lim-------→
k

πn+k(K(G, k) ∧ S0) =

{
G n = 0

0 n 6= 0
.

By the uniqueness theorem this is ordinary homology with coefficients in G:

H̄n(X;G) ∼= πn+k(K(G, k) ∧X) for k > n.

Thus all difficulties in computing the homotopy groups of a space X are re-

moved by smashing X with an Eilenberg–Mac Lane complex.
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We may extend the definition of the homology of a space to spectra by

defining

HnE := lim-------→
k

H̄n+kEk,

where the colimit is taken over

H̄n+k(Ek) ∼= H̄n+k+1(ΣEk) −→ H̄n+k+1(Ek+1).

In fact spectra form a category. We don’t want to go into a discussion

of the morphisms, but suffice it to say that they should be thought of as

stable homotopy classes of maps. This category also has a smash product,

and its definition takes some care. The important point is that HnE is equal

to πn(HZ ∧ E), where the latter is defined to be [Sn, HZ ∧ E]. This leads to

the general definition

FnE = [Sn, F ∧ E]

for any two spectra E and F .2 We also define

F nE = [E, Sn ∧ F ].

The spectrum MO has some additional structure. For example, we have

maps

MO(m) ∧MO(n) −→MO(m+ n)

induced from the classifying map

E(ξm)× E(ξn) E(ξm+n)

BO(m)×BO(n) BO(m+ n) .

w

u u
w

2We adopt the rule of thumb that symbols should not be interchanged when unnecessary.
Hence F∗E is π∗(F ∧ E) and not π∗(E ∧ F ).
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These fit together to give a map MO ∧ MO → MO. We also have maps

Sn →MO(n) such that

ΣSn ΣMO(n)

Sn+1 MO(n+ 1)

w

u
αn

w
commutes. These are simply the maps induced from the inclusion of the fibre

R
n → E(ξn). This gives a map from the sphere spectrum S to MO.

If we were willing to take the time to define the smash product of spectra,

we would find that this product has the sphere spectrum as a unit and could

make the following definition.

Definition 4.3. A ring spectrum is a spectrum E and maps of spectra

η : S → E and µ : E ∧ E → E such that

S ∧ E E ∧ E E ∧ S

E

wη∧1

'''')∼= u µ
[[[[̂ ∼=

u
1∧η

commutes. When appropriate we speak of an associative or commutative

ring spectrum.

When E is an associative ring spectrum, π∗E has a natural ring structure.

The above maps make MO into an associative, commutative ring spectrum

and

N∗ −→ π∗(MO)

is a ring homomorphism. See Adams’ book for more details.

5. The Thom Isomorphism

Suppose ξ is an n-plane bundle over a paracompact space X. Choose a

metric on ξ and consider the disk bundle D(ξ) and the sphere bundle S(ξ).

Recall that the Thom space Th ξ is defined to be D(ξ)/S(ξ). Therefore,

H̄∗(Th ξ) ∼= H∗(D(ξ), S(ξ)).
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There is a relative form of Serre’s spectral sequence with E2 term H∗(X; R̃∗)

converging to H∗(D(ξ), S(ξ);R), where R is a ring and R̃k is the local coeffi-

cient system with value above the point x ∈ X given by

Hk(D(ξ)x, S(ξ)x;R) ∼= Hk(Dn, Sn−1;R) ∼=

{
R k = n

0 k 6= n
.

Since the coefficients are non-zero only in one dimension, the spectral sequence

collapses and we have that

Hq(X; R̃n) ∼= H̄q+n(Th ξ;R).

Now, if R = F2 the local system is canonically trivialized, but in general it

may not be trivial at all. If it is trivial, then a choice of trivialization is called

an R-orientation of ξ. Such a trivialization gives for each x an isomorphism

R ∼= Hn(D(ξ)x, S(ξ)x;R)(5.1)

which depends continuously on x. An orientation gives us an isomorphism

H∗(X;R) ∼= H̄∗+n(Th ξ;R), the so-called Thom isomorphism.

We can say more. Using the fact that the spectral sequence is a spectral

sequence of modules over H∗X (we omit the coefficients now for brevity) we

see that the Thom isomorphism is an isomorphism of H∗X-modules, where

the H∗X-module structure on H∗(Th ξ) is defined in the following way. From

the pullback diagram

E(ξ) E(0)× E(ξ)

X X ×X

w

u u
w∆

we get an induced map Th ξ → X+ ∧ Th ξ, which in cohomology gives

H̄∗(Th ξ)←− H∗X ⊗ H̄∗(Th ξ).

We denote the image of x⊗ y by x · y.

So we have that H̄∗(Th ξ) is free of rank 1 as an H∗X-module. We denote

the generator by u and call this the Thom class. It is determined by the choice

of R-orientation, which, as mentioned above, is no choice at all when R = F2.

The Thom class is characterized by the fact that for any x, its restriction to
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D(ξ)x/S(ξ)x is the distinguished generator of Hn(D(ξ)x/S(ξ)x) given by the

orientation. That is, it is the image of 1 under the isomorphism (5.1).

Note 5.1. If ξ and η are oriented vector bundles with Thom classes uξ

and uη, then ξ × η is naturally oriented and has corresponding Thom class

uξ×η = uξ ∧ uη under the identification Th(ξ × η) ∼= Th ξ ∧ Th η.

The Thom isomorphism says that H̄∗(Th ξ) ∼= H̄∗(ΣnX+) as H∗X-

modules. Thus we can think of Th ξ as a ‘twisted suspension’ of X+. When ξ

is trivial, Th ξ is in fact the suspension of X+. When ξ is simply R-orientable

this might not be the case, but the twisting is mild enough that singular coho-

mology groups cannot distinguish between the two spaces. If we are able to use

other means to distinguish between Th ξ and Σn(X+) we will have detected

the non-triviality of the bundle. We will use Steenrod operations to do this.

For a slightly different approach to the topics in this section, see Milnor

and Stasheff [15].

6. Steenrod Operations

In this section our coefficient ring will always be F2.

Theorem 6.1. There is a unique family of natural transformations of

functors from the category Top of spaces and continuous maps to the cate-

gory Ab of abelian groups

Sqkn : Hn(X) −→ Hn+k(X) (n ≥ 0, k ≥ 0)

such that

(i) The 0th square is the identity: Sq0
n = id.

(ii) The nth square is the cup square on classes of dimension n: Sqnn x = x2.

(iii) The ‘Cartan formula’ holds: for x ∈ HmX and y ∈ HnX

Sqkm+n(x ^ y) =
∑
i+j=k

(Sqim x) ^ (Sqjn y).

A construction of the squares may be found in Appendix A. From the

above axioms we can deduce several consequences.
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Proposition 6.2 (External Cartan formula). For x ∈ H̄mX and y ∈
H̄nY we have

Sqkm+n(x ∧ y) =
∑

(Sqim x) ∧ (Sqjn y)

in H̄m+n+k(X ∧ Y ).

To prove this, first prove the analogous result for the cartesian product in

unreduced cohomology, by considering (x × 1) ^ (1 × y). Then use that the

natural map H∗(X ∧ Y )→ H∗(X × Y ) is monic.

As an example of the proposition, take Y = S1 and y = σ ∈ H̄1(S1) the

generator. Then we have

Sqkm+1(x ∧ σ) = (Sqkm x) ∧ σ.

That is, the diagram

H̄mX H̄m+kX

H̄m+1(ΣX) H̄m+k+1(ΣX)

wSqkm

u
∼= u

∼=

wSqkm+1

commutes. This property of the squares is referred to as stability. Because

of stability, one usually omits the bottom subscript on the squares.

Another fact that follows from the axioms is that Sqk x = 0 for k > dimx.

We leave this as an exercise. [I don’t know how to prove this from the axioms;

Spanier includes this as one of the axioms. So does Whitehead, with the

Cartan formula replaced by the assumption of stability. JDC]

Note that if we write Sqx = x + Sq1 x + Sq2 x + · · · (a finite sum) the

Cartan formula takes the form Sq(x ^ y) = Sqx ^ Sq y. Also, we have that

Sq 1 = 1, so Sq is in fact a ring homomorphism.

7. Stiefel-Whitney Classes

Continuing to work with coefficient ring F2, we have that any rank n vector

bundle ξ has a canonical Thom class u in H̄n(Th ξ). Since H̄∗(Th ξ) is freely

generated by u, we have that Sqk u = wk(ξ)·u for a unique class wk(ξ) ∈ HkX.

We call wk(ξ) the kth Stiefel-Whitney class of ξ. It is easy to see that if

f : Y → X, then wk(f
∗ξ) = f ∗wk(ξ), since everything in sight is natural.
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This is what it means to have a characteristic class. In particular, we may

consider the Stiefel-Whitney classes of the canonical bundle ξn over BO(n).

By naturality, these wk(ξn) ∈ Hk(BO(n)) determine the characteristic class

wk entirely.

Note that wk(ξ) = 0 for k > rank(ξ), since Sqk u = 0 for k > dimu =

rank ξ.

Example 7.1. In order to study the canonical bundle λ over BO(1) =

RP∞, we consider the canonical bundle λn over finite-dimensional real pro-

jective space RPn. We have a natural embedding RPn−1 ↪→ RPn and with

respect to this embedding λn−1 is the restriction of λn.

What is the normal bundle ν of this embedding? Given a line L in Rn, a

nearby line in Rn+1 in the direction of the new coordinate is determined by

giving a linear map L→ R. Therefore

ν ∼= Hom(λn−1,1) = λ∗n−1

canonically, and by choosing a metric on λn−1 we have that λ∗n−1
∼= λn−1. (For

details and a picture, see Milnor and Stasheff.) These ‘nearby’ lines contain

everything in RPn except the ‘line at infinity’ L∞. So RPn \{L∞} = E(ν).

Thus

Thλn−1
∼= Th ν = E(ν)+

∼= RPn .

To summarize, the Thom space of the canonical bundle over RPn−1 is RPn.

This allows us to inductively compute the cohomology of RPn. Given

that H∗(RPn−1) = F2[x]/(xn), we know that H̄∗(RPn) is free of rank 1 over

F2[x]/(xn) and so

H̄∗(RPn) =< u, xu, x2u, . . . , xn−1u > .

But under the inclusion RPn−1 ↪→ RPn, u restricts to x. Therefore H∗(RPn) =

F2[u]/(un+1). Since the cohomology in dimension k only depends on the (k+1)-

skeleton, we get that H∗(RP∞) = F2[u].

As a final conclusion, notice that u2 = Sq1 u = w1(λ) · u and so w1(λ) = u.

The following proposition follows directly from the Cartan formula and an

earlier remark about the Thom class of a product bundle.



7. STIEFEL-WHITNEY CLASSES 17

Proposition 7.2 (Whitney Sum Formula). Define w(ξ) = 1 + w1(ξ) +

· · ·+ wn(ξ). Then

w(ξ × η) = w(ξ)× w(η).

This implies that w(ξ⊕η) = w(ξ) ·w(η). The bundle ξ⊕η is the Whitney

sum of ξ and η and is defined to be the pullback of ξ × η along the diagonal

∆ : X → X ×X.

Example 7.3. Consider the bundle ξ = λ×
(n)
· · · ×λ over (RP∞)n. We

know that H∗((RP∞)n) = F2[x1, . . . , xn] with each xi of dimension 1, and

w(ξ) =
n∏
i=1

(1 + xi) =
n∑
k=0

σk(x1, . . . , xn),

where σk is the kth elementary symmetric function.

By the naturality of the Stiefel-Whitney classes,

F2[w1, . . . , wn] H∗(BO(n))

F2[x1, . . . , xn] H∗((RP∞)n)

wβ

u u

commutes, where in the top-left corner the wk are formal symbols, the map β

sends wk to wk(ξn), the map on the left-hand side sends wk to σk(x1, . . . , xn),

and the right-hand map is induced from the classifying map for ξ. Since the

symmetric polynomials are algebraically independent, the left-hand map is

injective. Therefore, the map β is injective.

Theorem 7.4. β is an isomorphism.

One proof of surjectivity constructs a CW-structure for BO(n) such that

the number of cells in dimension l is equal to the rank of the polynomial

algebra F2[w1, . . . , wn] in dimension l. See Milnor and Stasheff for details.

Example 7.5. The stable tangent bundle τ of RPn−1 has a description in

terms of the canonical line bundle. Suppose we are given a line L in Rn. A

tangent vector in TLRPn−1 can be pictured as an infinitesimal movement along

a normal vector v ∈ Rn at a non-zero point x ∈ L; for non-zero λ ∈ R, λv at
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λx represents the same tangent vector. Thus there is a natural isomorphism

from the tangent space TLRPn−1 to Hom(L,L⊥). This implies that

nλ ∼= nλ∗ = Hom(λ,n) = Hom(λ, λ⊥ ⊕ λ)

∼= Hom(λ, λ⊥)⊕ Hom(λ, λ) ∼= τ ⊕ 1.

For the last equation observe that Hom(λ, λ) has a nowhere vanishing cross

section given by the identity of λ. Since a trivial bundle is the pullback under

a constant map, naturality tells us that w(n) = 1. It follows that

w(τ) = w(τ ⊕ 1) = w(nλ) = w(λ)n = (1 + x)n =
n−1∑
k=0

(
n

k

)
xk,

with x the non-trivial element in H1(RPn−1).

The following application illustrates the usefulness of characteristic classes.

Since we will not refer to it later, the reader may skip to the next section.

Given an m-dimensional manifold M we may ask how many everywhere

linearly independent vector fields exist on M . That is, we are looking for

a trivial subbundle of the tangent bundle τ of maximal dimension. Now a

subbundle in τ furnishes a decomposition τ = k ⊕ k⊥. Thus the Stiefel-

Whitney classes

w(τ) = w(k)w(k⊥) = w(k⊥)

have to vanish in dimensions greater than m − k. Therefore, in the case of

RPn−1 we are interested in the binomial coefficients(
n

k

)
≡

1 mod 2 if k ⊆ n

0 mod 2 otherwise
.

Here k ⊆ n means that whenever the lth binary digit of k is 1, then so is the

lth digit of n. Let ν(n) be the largest power of 2 in n. Then

n− 2ν(n) = max{k < n :

(
n

k

)
≡ 1 mod 2}

is a lower bound for the codimension of any trivial subbundle in τ . Thus we

are led to the following conclusion.
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Proposition 7.6. There are at most 2ν(n) − 1 independent vector fields

on RPn−1.

Corollary 7.7. If RPn−1 is parallelizable, i.e., has a trivial tangent bun-

dle, then n is a power of 2.

In fact F. Adams has shown that RP1, RP3 and RP7 are the only paral-

lelizable real projective spaces.

Exercise 7.8. Show that RPn−1 does not immerse in codimension 2d −
n−1, where 2d is the smallest power of 2 with 2d ≥ n. In particular RP2l does

not immerse in R2l+1−2.

An old result of Whitney says that every smooth manifold of dimension

greater than 1 can be immersed in R2n−1. Thus his result is optimal in a

certain sense.

Exercise 7.9. Let n =
∑k

i=1 2ei . Then RP2e1 ×RP2e2 × · · · × RP2ek does

not immerse in R2n−α(n)−1, where α(n) denotes the sum of the bits ei.

Whitney conjectured that any n-dimensional manifold can be immersed in

R
2n−α(n).

8. The Euler Class

Definition 8.1. The Euler class e ∈ Hn(X;R) of an R-oriented vector

bundle ξ over X is the characteristic class obtained as the image of the Thom

class u ∈ H̄n(Th ξ;R) under the projection

Th ξ
π←− Dξ ' X,

or, if you like, under the zero section

Th ξ
s←− X.

Lemma 8.2. If ξ has a nowhere vanishing section then e(ξ) = 0.

Proof. Let σ be a normalized nowhere vanishing section. Then as t runs

from 0 to 1 the maps tσ provide a homotopy between the zero section s and

σ itself. But as a map to Th ξ, σ is constant, so s is nullhomotopic.

Thus in contrast to the Stiefel-Whitney classes the Euler class is unstable.
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Lemma 8.3. The equality e(ξ) = wn(ξ) holds for R = F2.

Proof. The diagonal X
∆−→ X ×X is covered by two bundle maps

ξ 0× ξ

ξ × ξ

w[[[[]∆

y

u

which are homotopic to each other through vector bundle maps; a homotopy

is given by ht(v) := (tv, v). Applying the Thom space construction we obtain

a homotopy commutative diagram

Th ξ Th 0 ∧ Th ξ

Th ξ ∧ Th ξ

w''''') u
s∧1

such that in cohomology u ∧ u is mapped to e · u = u2 ∈ H2n(Th ξ). On the

other hand we have u2 = Sqn u = wn(ξ) ·u and the lemma follows by the Thom

isomorphism.

Since s∗ : H̄∗(Th ξ) → H̄∗X is an H∗X-module homomorphism we see

that im s∗ = H∗X · e. This implies that

H̄∗MO(n) ∼= H∗BO(n) · wn(ξ),

since H∗BO(n) is a polynomial algebra on the Stiefel-Whitney classes (7.4).

Moreover, the isomorphism respects the squares. Thus to understand

H̄∗MO(n) as a module over the Steenrod algebra we just have to focus our

attention on the element wn(ξ).

9. The Steenrod Algebra

In Section 6 we introduced certain natural transformations

Sqi : Hn(X;F2) −→ Hn+i(X;F2).

These generate the algebra of stable operations, which we want to investigate

now.
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Lemma 9.1 (Yoneda). Let F : C → Set be any contravariant functor and

let K ∈ C. Then the map

Nat( [−, K ], F ) −→ F (K)

θ 7−→ θK(idK)

is a bijection.

The proof is easy and left as an exercise. It follows that

Nat(Hk, Hn) ∼= Hn(Kk) = [Kk, Kn],

where Kk is short for the Eilenberg–Mac Lane space K(F2, k). Since the

squares are not only natural transformations but homomorphisms, we would

like to know which cohomology classes correspond to additive natural trans-

formations.

The addition in Hk corresponds to a product Kk × Kk
µ−→ Kk; if

y, z ∈ H∗X are represented by ŷ, ẑ : X → Kk respectively, then ŷ + z is

the composite

X
∆−→ X ×X ŷ×ẑ−→ Kk ×Kk

µ−→ Kk.

Thus the additivity of the operation represented by x ∈ HnKk is equivalent

to the commutativity of

Kk ×Kk Kk

Kn ×Kn Kn .

wµ

ux̂×x̂ u x̂
wµ

If ψ : H∗Kk → H∗(Kk ×Kk) ∼= H∗Kk ⊗H∗Kk is the map induced by µ, then

the composite x̂µ represents ψx. On the other hand, since

Kk ×Kk
∆−→ (Kk ×Kk)× (Kk ×Kk)

pr1×pr2−−−−→ Kk ×Kk

is the identity and 1⊗x and x⊗1 are represented by the appropriate projection

followed by x̂, one sees that the composite µ(x̂× x̂) represents 1⊗ x+ x⊗ 1.

Therefore, the commutativity of the square is equivalent to requiring that

ψx = 1⊗ x+ x⊗ 1. Now we have proved the following result.



22 1. UNORIENTED BORDISM

Proposition 9.2. Additive natural transformations Hk → Hn are in one-

to-one correspondence with the primitive elements

PHn(Kk) := {x ∈ HnKk : ψx = x⊗ 1 + 1⊗ x}.

Note that in low dimensions everything is primitive; since the multiplica-

tion µ has a two sided unit, we always have

ψx = 1⊗ x + x⊗ 1 + other terms in
⊕
p+q=n

H̄pKk ⊗ H̄qKk.

But H̄ iKk = 0 for i < k and so there are no other possible terms in ψx if

n < 2k.

The change of the behaviour in this dimension also becomes apparent by

looking at the spectral sequence of the path space fibration

Kk−1 ' ΩKk (Kk, ∗)(I,0)

Kk .

y w

u

Since the total space is contractible, all transgressions

dq : Hq−1Kk−1
∼= E0,q−1

q −→ Eq,0
q
∼= HqKk

are isomorphisms for q < 2k. Note that an inverse to these is given by

HqKk
∼= [Kk, Kq ]

Ω−→ [Kk−1, Kq−1 ] ∼= Hq−1Kk−1.

Therefore, an element in the inverse limit

An := lim←-------
q

Hq+nKq

can be considered as a stable cohomology operation that shifts dimensions

by n. Stable cohomology operations are additive and we have just seen the

following.

Proposition 9.3. An ∼= Hq+nKq for q ≥ n.

The sum A :=
⊕

n≥0An forms a graded algebra, the so called Steenrod

algebra. For the following we refer to the book of Mosher and Tangora [16].
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Theorem 9.4. The squares Sqi generate A. More precisely, a basis for A
is given by

{Sqi1 Sqi2 · · · Sqik : ij−1 ≥ 2ij, k ≥ 0}.

Sequences (i1, i2, . . . , ik) with ij−1 ≥ 2ij are called admissible.

The relations among the squares are called the Adem relations (see [22]).

Let us ignore the relations for a minute and think about the free, associative

F2-algebra T generated by Sq0, Sq1, Sq2, . . . modulo Sq0 = 1, with | Sqi | = i.

Note that there is a natural surjection T → A sending Sqi to itself. With the

Cartan formula in mind we can write down an algebra map

T ψ−→ T ⊗ T Sqk 7−→
∑
i+j=k

Sqi⊗ Sqj .

Lemma 9.5. ψ extends to a map ψ : A → A ⊗ A. That is, the Adem

relations are respected by ψ.

Proof. Unfortunately the map φ : A → H∗(Kn×Kn) sending θ to θ(ιn×
ιn) is not an algebra map. However, it fits into the diagram

T T ⊗ T

A A⊗A

H∗(Kn ×Kn) H∗Kn ⊗ H∗Kn

wψ

uu uu

uφ
wψ

u
u
∼=

whose commutativity is equivalent to the iterated Cartan formula

SqI(ιn × ιn) =
∑

J+K=I

SqJ ιn × SqK ιn.

Here SqI denotes the product Sqi1 Sqi2 · · · Sqik for a multiindex I = (i1,

i2, . . . , ik). To finish the argument observe that A ⊗ A → H∗Kn ⊗ H∗Kn

is an isomorphism in degree lower than n.

The ‘comultiplication’ ψ makes A into a ‘Hopf algebra’. Before continuing

our study of the Steenrod algebra, we learn a bit about Hopf algebras.
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10. Hopf Algebras

If we describe algebras in terms of commutative diagrams, the definition

looks as follows. Let k be a field. A graded vector space A over k together

with maps

A⊗ A µ−→ A
η←− k

is an algebra if the multiplication µ is associative and η is a unit. That is, if

the diagrams

A⊗ A⊗ A A⊗ 1 k ⊗ A A⊗ A A⊗ k

A⊗ A A A

wµ⊗1

u
1⊗µ

u
µ

wη⊗1

'''''')1 u
µ

[[[[[[̂ 1

u
1⊗η

wµ

are commutative.

Definition 10.1. A graded vector space C over k together with maps

C ⊗ C ψ←− C
ε−→ k

is a coalgebra if the same diagrams commute with all arrows reversed. ψ is

the comultiplication or diagonal map, and ε is the counit or augmenta-

tion. (Unless otherwise stated, maps of graded objects preserve degree. Hence

ε(c) = 0 for c of non-zero degree, since k is graded with the trivial gradation:

k in degree 0, 0 in other degrees.)

Example 10.2. H∗X becomes a coalgebra by

ψ : H∗(X; k)
∆∗−→ H∗(X ×X; k)

∼=−→ H∗(X; k)⊗H∗(X; k)

ε : H∗(X; k) −→ H∗(∗; k) = k.

In fact C = H∗X is even cocommutative, i.e., the diagram

C ⊗ C

C C ⊗ C
u
T

�
�
���ψ

w
ψ

commutes. Here T denotes the switch map T (x ⊗ y) = (−1)|x| |y|y ⊗ x. We

say C is connected if ε : C → k is an isomorphism in degrees 0 and below.
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For example, H∗X is connected iff X is path connected. In this case we write

1 ∈ C0 for the unique element with ε(1) = 1. We will also use the notation

ψx =
n∑
i=1

x′i ⊗ x′′i =
∑

x′ ⊗ x′′

following the Einstein convention halfway. The elements x′ ⊗ x′′ are not

uniquely determined. But since

C

C ⊗ k C ⊗ C k ⊗ C

[[[[̂
1

u ψ
'''')1

u
1⊗ε wε⊗1

is commutative, or in other words∑
x′ ⊗ ε x′′ = x⊗ 1, 1⊗ x =

∑
ε x′ ⊗ x′′,

we may write ∑
x′ ⊗ x′′ = 1⊗ x + x⊗ 1 +

∑
|x′|,|x′′|>0

x′ ⊗ x′′

in the connected case. As before an element x ∈ C is primitive if ψx =

1⊗ x + x⊗ 1.

The maps

A⊗A ψ←− A ε−→ k

with ε(Sq0) = 1 define a cocommutative coalgebra structure on A. But more

is true: ψ is also an algebra map.

Definition 10.3. A Hopf algebra is a vector space A with maps µ, η,

ψ and ε such that (A, µ, η) is an algebra, (A,ψ, ε) is a coalgebra, and ψ and

ε are algebra maps. (Drawing the diagrams shows that the last condition is

equivalent to saying that µ and η are coalgebra maps. Thus the definition is

symmetric.)

We want to develop some general facts about Hopf algebras. The reader

will find a more thorough treatment in the article of Milnor and Moore [14].
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Let A be a Hopf algebra and let M and N be A-modules (this uses only the

algebra structure of A). Then M ⊗k N is an A-module with diagonal action

A⊗ (M ⊗N) M ⊗N

(A⊗ A)⊗ (M ⊗N) A⊗M ⊗ A⊗N ,

wθM⊗N

u
ψ⊗1

w1⊗T⊗1

u
θM⊗θN

or, if you like,

a (x⊗ y) :=
∑

(−1)|a
′′| |x|a′x⊗ a′′y.

For instance, this structure turns H∗X ⊗ H∗Y into an A-module and the

product

H∗X ⊗H∗Y ×−→ H∗(X × Y )

into an A-module map. Moreover H∗X is an A-module algebra, i.e., an

A-module and an algebra such that the algebra structure maps are A-module

maps.

An A-module coalgebra is defined similarly, and for use in Section 12 we

prove the following result.

Proposition 10.4 (Milnor-Moore). Let k be a field, let A be a connected

Hopf algebra over k, and let M be a connected A-module coalgebra. Assume

that i : A→M : a 7→ a · 1 is monic. Then M is a free A-module.

Proof. Let M̄ = M/IM , where I = ker(ε : A → k) is the augmentation

ideal, and let π : M → M̄ be the projection. Choose a k-linear splitting

σ : M̄ →M , so we have πσ = 1M̄ . Let e = σπ : M →M ; it is an idempotent

and (1− e)M = IM . Define φ : A⊗ M̄ →M to be the composite

A⊗ M̄ 1⊗σ−→ A⊗M action−−−→M.

A ⊗ M̄ is a free A-module, and we claim that φ is an A-linear isomorphism.

(Unless otherwise adorned, all tensor products are over the field.) Note that

the action of A on A⊗ M̄ is defined using the coproduct in A, but that in this

case it amounts to acting by multiplication on the left factor. One can easily
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check that φ is A-linear and that the following equations

σ(x) = φ(1⊗ x)

e(m) = φ(1⊗ πm)

hold for x ∈ M̄ and m ∈M .

Now we prove surjectivity of φ by induction on the degree of an element

m in M . Assume that φ hits every element of M of degree less than n, and

let m ∈Mn. Then

m = em+ (1− e)m

= φ(1⊗ πm) +
∑

aimi for ai ∈ I,mi ∈M, |mi| < n

= φ(1⊗ πm) + φ(
∑

aiyi),

where yi is chosen so that mi = φ(yi), and we have used the A-linearity of φ.

Therefore, φ is surjective.

Next we prove that φ is monic by showing that the composite γ

A⊗ M̄ φ−→M
ψ−→M ⊗M 1⊗π−→M ⊗ M̄

is monic. First notice that γ sends 1⊗ x to

σx⊗ π1 + · · ·+ 1⊗ πσx = σx⊗ 1 + · · ·+ 1⊗ x,

where we denote π1 by 1. Since each of the maps making up γ is A-linear, so

is γ. Thus a⊗ x maps to

aσx⊗ 1 + · · ·+ ia⊗ x.

Filter M̄ by degree: (FjM̄)n = M̄n if n ≤ j and 0 otherwise. Since γ is

filtration preserving, it induces a map A⊗Fj/Fj−1 →M ⊗Fj/Fj−1. From the

above description of γ, it is clear that the induced map is simply i⊗ 1 which
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is injective. Working by induction on j one can use the diagram

0 0

A⊗ Fj−1 M ⊗ Fj−1

A⊗ Fj M ⊗ Fj

A⊗ Fj/Fj−1 M ⊗ Fj/Fj−1

0 0

u u
v

u

v w
v

u

uu

w

uu

u

v wi⊗1

u

to prove the inductive step.

11. Return of the Steenrod Algebra

In this section we explore A using its representation on H∗RP∞ = F2[x].

We calculate

Sqxn = (Sqx)n = xn(1 + x)n,

and thus

Sqi xn =

(
n

i

)
xn+i.

Since the Frobenius map is linear modulo 2 we have that

Sq(x2n) = (x+ x2)2n = x2n + x2n+1

.

That is, the only non-zero squares on x2n are Sq0 x2n = x2n and Sq2n x2n =

x2n+1
. Thus we obtain an interesting A-submodule

Ax =< x, x2, x4, x8, . . . >,

which is sometimes denoted F (1). We also may look at the bigger representa-

tion H∗((RP∞)n) = F2[x1, x2, . . . , xn], |xi| = 1, and at the orbit of the Euler

class x1x2 · · ·xn.
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Lemma 11.1. A acts freely on x1x2 · · ·xn up to degree n. That is, the map

Aq −→ Hn+q((RP∞)n)

θ 7−→ θ(x1x2 · · ·xn)

is monic for q ≤ n.

Proof. We want to show that the admissible squares act independently

in dimensions q ≤ n. To calculate their action on the Euler class we may

use the Cartan formula. However, the large sums force us to isolate a certain

summand.

Therefore, let us order the monomials xi11 x
i2
2 · · ·xinn of a fixed degree left-

lexicographically. We say that xi11 · · ·xinn < xj11 · · ·xjnn if and only if i1 = j1,

. . . , ik−1 = jk−1 and ik < jk for some k. Given an admissible monomial

SqI = Sqi1 Sqi2 · · · Sqik we see from

Sqr(x1x2 · · ·xn) =
∑

s1+···+sn=r

Sqs1 x1 Sqs2 x2 · · · Sqsn xn

= x2
1 · · ·x2

r xr+1 · · ·xn + smaller terms

that the largest term in SqI(x1 · · ·xn) is

x2k

1 · · ·x2k

ek
x2k−1

ek+1 · · ·x2k−1

ek+ek−1
x2k−2

ek+ek−1+1 · · ·xn.

Here the indices (e1, e2, . . . , ek) are defined by

es :=

{
is − 2is+1 for 0 < s < k

ik for s = k
.

We are now able to recover I from the largest term of SqI(x1 · · ·xn) because

the sequences (e1, e2, . . . , ek) with ei ≥ 0 are in one-to-one correspondence

with admissible sequences (i1, i2, . . . , ik).

We can also use our representation to construct linear functionals on A.

Let ξi be the element of the dual Hopf algebra A∗ := HomF2(A,F2) whose

value on θ ∈ A = A∗ is the coefficient of x2i in θx. Thus

θx =
∞∑
i=0

〈 θ, ξi 〉x2i .

Note that ξi has degree 2i − 1.

A∗ is commutative as an algebra and has a very beautiful structure.
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Theorem 11.2 (Milnor). The natural map F2[ξ1, ξ2, . . . ]
β−→ A∗ is an iso-

morphism.

Proof. Consider H∗((RP∞)n) = F2[x1, . . . , xn] and recall that A acts

faithfully on x1 · · ·xn through dimension n in A. Let’s calculate the action of

an arbitrary θ ∈ A on this element.

θ(x1 · · ·xn) =
∑

θ(1)x1 · · · θ(n)xn

=
∑ ∑

i1,... ,in

〈 θ(1), ξi1 〉x2i1
1 · · · 〈 θ(n), ξin 〉x2in

n

=
∑ ∑

i1,... ,in

〈 θ(1) ⊗ · · · ⊗ θ(n), ξi1 ⊗ · · · ⊗ ξin 〉x2i1
1 · · ·x2in

n

=
∑
i1,... ,in

〈 θ, ξi1 · · · ξin 〉x2i1
1 · · ·x2in

n .

The last equality holds because the multiplication in A∗ is the dual of the

diagonal map in A∗. (We are using a variation of the notation introduced

earlier to write the iterated coproduct of θ as
∑
θ(1) ⊗ · · · ⊗ θ(n).) Now we

prove that β is surjective. If it is not, there exists a non-zero θ ∈ A such that

〈 θ, ξi1 · · · ξin 〉 = 0 for all monomials in the ξ’s. The calculation then shows

that θ(x1 · · ·xn) = 0. But A acts faithfully in low dimensions, so by choosing

n large enough we get a contradiction. Therefore β is surjective.

To show that β is injective, we count dimensions in each degree. Recall

that we have a bijection between admissible sequences I = (i1, . . . , in) and

sequences E = (e1, . . . , en) with each ei non-negative. One can check that if I

and E correspond under this bijection, then SqI and ξE have the same degree.

Thus A∗ and F2[ξ1, . . . , ξn] have the same dimension in each degree.

So far the dual Steenrod algebra A∗ seems simpler than A. One may

wonder whether the complications are hidden in the diagonal map. Let’s

calculate it. But first, a lemma.

Lemma 11.3. For θ ∈ A homogeneous of degree 2n(2k − 1),

θx2n = 〈 θ, ξ2n

k 〉x2n+k

,

where x is the generator of H∗(RP∞).
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Proof. Consider ∆ : RP∞ → (RP∞)2n ; to simplify the notation, we let

r = 2n. Then

θxr = θ(∆∗(x1 · · ·xr))

= ∆∗(θ(x1 · · ·xr))

= ∆∗
∑
I

〈 θ, ξi1 · · · ξir 〉x2i1
1 · · ·x2ir

r

=
∑
I

〈 θ, ξi1 · · · ξir 〉x2n+k

.

Now let ξ = ξ1 + ξ2 + · · · . Then ξr =
∑

I ξi1 · · · ξir . But we are working over

a field of characteristic two, and r = 2n, so ξr = ξr1 + ξr2 + · · · . Thus∑
I

〈 θ, ξi1 · · · ξir 〉x2n+k

=
∑
i

〈 θ, ξri 〉x2n+k

= 〈 θ, ξrk 〉x2n+k

as required.

With this we may calculate the diagonal map on A∗. Let θ and φ be

homogeneous elements of A. We will calculate θφx in two ways. For this to

have a chance of being non-zero, it is necessary that |θφ| = 2n − 1 for some n

and that |φ| = 2j − 1 for some j. Hence |θ| = 2j(2i− 1), where i = n− j. Now

(θφ)x = 〈 θφ, ξn 〉x2n

and (using the lemma)

θ(φx) = θ〈φ, ξj 〉x2j

= 〈 θ, ξ2j

i 〉〈φ, ξj 〉x2n

= 〈 θ ⊗ φ, ξ2j

i ⊗ ξj 〉x2n .

So we conclude that

〈 θ ⊗ φ, ψξn 〉 = 〈 θφ, ξn 〉 = 〈 θ ⊗ φ, ξ2j

i ⊗ ξj 〉

if |θ| = 2j(2i − 1) and |φ| = 2j − 1 for some i, j with i + j = n; it is zero

otherwise. Therefore,

ψξn =
∑
i+j=n

ξ2j

i ⊗ ξj,

where ξ0 = 1. For example, ψξ1 = 1⊗ξ1+ξ1⊗1 and ψξ2 = 1⊗ξ2+ξ2
1⊗ξ1+ξ2⊗1.
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12. The Answer to the Question

In this section we finally are able to answer the question that motivated

this chapter. The answer will appear as Theorem 12.5.

Theorem 12.1. The Steenrod algebra A acts freely through degree n on

the Thom class of MO(n).

Proof. We have

H∗MO(n)
s∗−→ H∗BO(n)

f∗−→ H∗((RP∞)n)

u 7−→ e 7−→ x1 · · ·xn ,

where s is the zero section and f is the map that classifies the bundle λ×· · ·×λ.

These maps respect the action of the Steenrod algebra, and in the last section

we showed that this action is free on x1 · · ·xn, so it must be free on u.

The Thom class u in Hn(MO(n)) provides us with a map MO(n) →
K(F2, n). These piece together to give a map MO → H of spectra which

represents a class u in H0MO. The next corollary follows directly from the

above theorem and motivates the subsequent theorem.

Corollary 12.2. A acts freely on the Thom class in H0MO.

Theorem 12.3. In fact, H∗MO is free as an A-module.

Proof. Recall that MO is a ring spectrum, and therefore H∗MO is a

coalgebra. Since the map H∗MO → H∗(MO ∧MO) comes from a map of

spectra, it commutes with the Steenrod operations, and one can show that the

isomorphism H∗(MO ∧MO) ∼= H∗MO ⊗H∗MO does so as well. Therefore

the coproduct on H∗MO is an A-module map. The counit is also induced by

a map of spectra, so H∗MO is what is called an A-module coalgebra. The

theorem now follows from the proposition of Milnor and Moore (10.4).

Pick generators {vα} for H∗MO as a free A-module, and denote the degree

of vα by |α|. So we have maps

vα : MO −→ Σ|α|H

which induce a map

v : MO −→
∏
α

Σ|α|H =
∨
α

Σ|α|H.(12.1)
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The theorem just proved says that v is an isomorphism in mod 2 singular

cohomology. More is true.

Theorem 12.4. v is a weak homotopy equivalence, and so MO is a graded

Eilenberg–Mac Lane spectrum.

Proof. The difficulty here is that we only have mod 2 information at this

point. We remedy this in the following way. To each abelian group G there is

a (−1)-connected spectrum M with trivial singular homology in all dimensions

except zero, in which it is G. For example, M is the sphere spectrum when

G = Z, and M is the suspension spectrum of Sn−1∪pk en suitably desuspended

when G = Z/pk. For a general abelian group G we pick a free resolution

0 −→ R −→ F −→ G −→ 0

and, after choosing bases for R and F , we can write down a map ∨S f−→ ∨S
whose effect in 0-dimensional homology is simply the map R→ F . The cofibre

of f is then the spectrum M and is called the Moore spectrum for the group

G.

In fact, M is unique up to homotopy equivalence so it makes sense to

define the (stable) homotopy groups of X with coefficients in G to be the M

homology of X:

πn(X;G) := [Sn,M ∧X].

This coincides with the usual stable homotopy groups when the group is the

integers. More generally, if E is a spectrum we denote by EG the spectrum

E ∧M where M is a Moore space for the group G. Then SG = S ∧M = M ,

so we use the notation SG from now on.

Because πn(−;G) is a homology theory, it satisfies the usual properties.

Moreover, we get a long exact sequence

· · · −→ πn(X;Z/pk−1) −→ πn(X;Z/pk) −→ πn(X;Z/p) −→ · · ·

from the obvious short exact coefficient sequence. This implies that if a map

f : X → Y of spectra is an isomorphism in mod p homotopy, then it is an

isomorphism in mod pk homotopy for all k, and therefore is an isomorphism

in Z/p∞ homotopy, where Z/p∞ = lim-------→Z/p
k. Moreover, there is also a White-

head theorem. If f is an isomorphism in mod p homology and X and Y are
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connected spectra, then f is an isomorphism in mod p homotopy. Combining

the above, we see that v is an isomorphism in Z/2∞ homotopy.

Now recall that π∗(MO) ∼= N∗ and that 2 kills N∗. The long exact se-

quence coming from the short exact sequence Z → Z → Z/p implies that

π∗(MO;Z/p) is trivial for p 6= 2. Also, π∗(MO;Q) = π∗(MO)⊗Q = 0. Sim-

ilarly, π∗(∨Σ|α|H;G) = 0 for G = Z/p, p 6= 2, and for G = Q. So the short

exact sequence

0 −→ Z −→ Q −→
⊕
p

Z/p∞ −→ 0

gives rise to a long exact sequence that implies that v is an isomorphism in

integral homotopy. This is what we were trying to prove.

Consider now the diagram

N∗(X) MO∗(X)

H∗(X) ,

w∼=

'''') u
u∗

where the top arrow is the geometrically defined isomorphism we studied many

sections ago, the diagonal arrow is the map sending a singular manifold (M, f)

to f∗[M ], and the vertical arrow is induced by the Thom class u : MO → H.

For the moment we assume that this triangle commutes. Steenrod wondered

whether the diagonal arrow is surjective, and this is equivalent to the sur-

jectivity of the vertical arrow. We can assume that u is among the chosen

generators vα of H∗MO. Then the decomposition (12.1) shows that we have

a map H → MO such that the composite H −→ MO
u−→ H is the identity

and hence that u∗ is surjective.

All that remains to be shown is the commutativity of the above triangle.

Starting with a singular manifold (M, f) in NnX, its image in HnX under

the roundabout route is represented by the top composite in the following

diagram, while its image under the direct route (i.e., f∗[M ]) is represented by
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the bottom composite.

Th ν MO(k) ∧X+

Sn+k Kk ∧M Kk ∧X+

w 



�u∧1

AAA
AAC

w
[M ]

w
1∧f

(The unlabelled maps come from the Pontrjagin–Thom construction in Sec-

tion 3.) We need to show that this commutes. Using the fact that H∗Y ∼=
Hom(H∗Y,F2) we see that it suffices to check the commutativity in cohomol-

ogy. In particular, we just need to apply Hn+k. This results in the following

diagram, in which we’ve included a few more arrows.

Hn+k Th ν Hn+k(MO(k) ∧X+)

Hn+kSn+k HnM Hn(BO(k)×X) Hn+k(Kk ∧X+)

Hn+k(Kk ∧M)

[[[[[[[[̂

uu

∼=

u
〈 [M ],−〉

u

∼=

u
'''''''''''''''*

''
''

''
''*

''
''

''
''*

To see that the regions in this diagram commute is labour that we leave to the

reader.

We can finally state the following:

Theorem 12.5. For each homology class α ∈ Hn(X;F2) there is a closed

n-manifold M and a continuous map f : M → X such that f∗[M ] = α.

13. Further Comments on the Eilenberg–Mac Lane Spectrum

We have shown that MO is a graded Eilenberg–Mac Lane spectrum; it

follows that there is an isomorphism H∗MO ∼= H∗
∨

Σ|α|H ∼= A∗ ⊗ π∗MO.

Since H∗MO = F2[x1, x2, . . . : |xi| = i] and A∗ = F2[ξ1, ξ2, . . . : |ξi| = 2i − 1]

it appears that the unoriented bordism ring looks like

N∗ = π∗MO = F2[x2, x4, x5, x6, x8, . . . ] = F2[xn : n 6= 2i − 1].
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This is actually true but we will omit the proof here.

Instead, we can ask if the mod 2 Eilenberg–Mac Lane spectrum H is itself

a Thom spectrum. That is, we are looking for a stable vector bundle ξ : X →
BO such that Th ξ ∼= H. Here we associate to a stable bundle ξ a spectrum

Th ξ defined in the following way. Any cover of X by finite subcomplexes Xα

gives a system of vector bundles compatible with the inclusions

Xα BO(nα)

Xβ BO(nβ)

X BO

y

u

wξα

y

u
y

u

wξβ

y

u
wξ

E(ξα)⊕ (nβ − nα) E(ξβ)

Xα Xβ .
u

w

u
y w

Let us desuspend each Th ξα as a spectrum so that its Thom class lies in

dimension 0. Then form the colimit of the spectra Σ−nα Th ξα (using the maps

induced from the right-hand diagram above) to obtain a spectrum Th ξ. Th ξ

is independent of the cellular structure on X.

Note 13.1. Given a spectrum E, we can desuspend each space En as

a spectrum. We claim that the colimit of Σ−nEn (using the obvious maps

induced from the structure maps) is simply E. Using this fact one can show

that the Thom spectrum of the stable vector bundle represented by the identity

map BO → BO is the Thom spectrum MO. This is good.

A Thom spectrum even obtains a ring structure Th ξ ∧ Th ξ → Th ξ if

X → BO is a map of H-spaces. Now, if H were in fact a Thom spectrum Th ξ

as a ring spectrum, then we would have algebra isomorphisms

H∗X ∼= H∗Th ξ ∼= A∗ ∼= F2[x1, x3, x7, . . . ].

Therefore, we should try to find an H-space with the above homology. A

possible candidate is the following.

Recall that BO is an infinite loop space

BO = X0 ' ΩX1 ' Ω2X2 ' Ω3X3 · · · .
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(Bott periodicity says that Ω8BO ' BO × Z, and so we may take for X8 the

space BO〈9〉 obtained from BO by killing πi for 1 ≤ i ≤ 8. For information

on killing homotopy groups, see [16].) Let S1 → BO(1) ↪→ BO = Ω2X2 be

the generator of π1BO = F2. Applying Ω2 to its adjoint we obtain a map

Ω2S3 −→ Ω2X2 = BO.

To calculate the homology of Ω2S3 we first look at the Serre spectral sequence

for the fibration PS3 → S3 with fibre ΩS3. Observe that the homology of the

fibre acts on the whole spectral sequence and the differentials are linear over

H∗ΩS
3. With this we immediately verify that

H∗ΩS
3 = F2[x2], x2 = d3[S3].

Now the Serre spectral sequence of PΩS3 → ΩS3 has E2 term⊗
F2[x2i−1]⊗ E[x2i

2 ]

and d2i+1
maps the exterior algebra generator x2i

2 to x2i+1−1. This is a fun

calculation and we highly recommend it to the reader.

So Ω2S3 is an H-space with the correct homology. We assert without proof

that it is in fact the space we were searching for. For details the reader may

have a look at [17].

Theorem 13.2 (Mahowald). The Thom spectrum of Ω2S3 → BO is the

mod 2 Eilenberg–Mac Lane spectrum H.

This may be used to give another proof that MO is a graded Eilenberg–

Mac Lane spectrum since we obtain a ring spectrum map H →MO.
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CHAPTER 2

Complex Cobordism

1. Various Bordisms

We generalize the bordism relation to any fibration π : B → BO.

Definition 1.1. A π-structure on a closed manifold M is a homotopy

class of lifts ν̃ of a map ν classifying its stable normal bundle:

B

M BO .
u

wν
�
�
���ν̃

This is independent of the choice of ν in its homotopy class in the following

sense. Given a homotopy h from ν0 to ν1, there is a one-to-one correspondence

between structures (M, ν̃0) over ν0 and (M, ν̃1) over ν1: the homotopy h can

be lifted

M × 0 B

M × I BO

y

u

wν̃0

u
π

�
�
�
���

H

wh

to get a π-structure ν̃1 = H|M×1 over ν1.

Let {Gn} be a sequence of topological groups together with maps Gn →
Gn+1 and orthonormal representations Gn → On such that

Gn Gn+1

On On+1

w

u u
w

39
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commutes, where On → On+1 is the standard inclusion. After applying the

functor B we obtain an example of a fibration over BO:

BGn BGn+1 BG

BOn BOn+1 BO .

w

u u

w

u
π

w w
A π-structure is called a G-structure in this case and we say that M is

a G-manifold. Good references on classifying spaces are Milnor [12] and

Segal [21].

Note that an SO-structure on a manifold can be regarded as an orientation

of its normal bundle. We can expand this example by successively killing

homotopy groups. Recall that the homotopy groups of O are as follows

i 0 1 2 3 4 5 6 7

πiO F2 F2 0 Z 0 0 0 Z

and that πiBO = πi−1O for positive i while π0BO = 0. More precisely, the

fibrations

BO〈8〉

B Spin = BO〈4〉 K(Z, 4)

BSO = BO〈2〉 K(F2, 2)

BO K(F2, 1)

u

u

w

u

w

w
give an interesting tower of G-structures and corresponding Thom spectra

MO〈8〉 →M Spin→MSO →MO.

Further examples of bordisms are
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Un ↪→ O2n Complex Bordism

Spn ↪→ O4n Symplectic Bordism

Σn ↪→ On Symmetric Bordism

Brn → Σn ↪→ On Braid Bordism

Theorem 1.2. There is a map B(Br) → Ω2S3 which is an isomorphism

in homology. (However, it is not a homotopy equivalence.) Here Br = ∪Brn.

Hence, using the theorem of Mahowald we can represent every mod 2

homology class by a manifold whose normal bundle has a reduction to the

braid group.

We may focus our attention on fibrations π : BG → BO. In fact this is

hardly any restriction since a result of Milnor says that every connected space

X is weakly homotopy equivalent to B(ΩX).

Definition 1.3. A G-manifold (M, ν̃) is null-bordant if there is a man-

ifold W embedded in R
n+k × R+ such that the following holds: ∂W =

W ∩ (Rn+k × 0), W meets Rn+k transversely with M ∼= ∂W , and the clas-

sifying map of the normal bundle of W lifts as in the following diagram:

M BG

W BO .

wν̃

y

u u
w

�
�
���N

We also may define a negative to (M, ν̃): The product M × I embeds in

R
n+k × R+ as above. A G-structure on W = M × I is obtained by using

that BG → BO is a fibration and simply choosing a lift N . The negative

G-structure is now

M
i1
↪→M × I N−→ BG.

Obviously this represents an inverse under the addition which is the disjoint

union of G-manifolds. We denote the G-bordism group by ΩG
∗ . The diligent

reader may also define the group of singular G-manifolds ΩG
∗ (X) for a topo-

logical space X and prove the following theorem along the lines of Chapter 1.

Theorem 1.4 (Thom).

ΩG
∗ (X)

∼=−→MG∗(X) = π∗(MG ∧X+).
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We are especially interested in the case G = U , which gives “almost almost

complex manifolds”.

2. Complex Oriented Cohomology Theories

We want to expand the notion of orientation to generalized cohomology

theories. Therefore, first consider S1 ⊂ C with its orientation given by [S1] ∈
H1(S1). Then [S1] ∧ · · · ∧ [S1] defines an orientation [Sn] ∈ Hn(Sn) for Sn.

We may also construct a canonical generator σn ∈ Ēn(Sn) = [Sn, E ∧ Sn]

for any ring spectrum E. We simply have to suspend the unit η : S → E

n times. Next look at the tautological line bundle λ over CPn−1 given by

E(λ) = {(l, v) : v ∈ l} ⊂ CPn−1×Cn. The total space of its dual λ∗ is

canonically homeomorphic to CPn − {∗} in such a way that

CPn−1

CPn ∼= Thλ∗

CP1 ∼= S2

$�
�

���

[[[[]s

u

y

u

y
i

commutes. Here s denotes the zero section and i the fibre inclusion. So the

evident Thom class

u(λ∗) ∈ H̄2(Thλ∗) = [ Thλ∗,CP∞ ]

evaluated on [CP1] has a positive sign. Equivalently we can consider the Euler

class

< e(λ∗), [CP1] >= 1.

Now since for line bundles e(α⊗β) = e(α)+e(β), we get
〈
e(λ), [CP1]

〉
= −1.

In the stable case this means that

BU(1) MU(1) E ∧ S2

CP1 S2

ws

∼=
wu

u

y
wdeg(−1) [[

[[[]
σ2
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commutes.

Definition 2.1. Let E be commutative and associative ring spectrum. An

E-orientation of an oriented vector bundle ξ is a class u ∈ Ēn(Th ξ) which

restricts to σn ∈ En(Sn) in each fibre:

Sn Th ξ

E ∧ Sn .

wi

[[[[]σn u
u

We also call u the Thom class, and its pullback e under the zero section is

called the Euler class. Note that even for a complex vector bundle an E-

orientation need not exist. We say a ring spectrum E is complex oriented

if there is an E-orientation for the canonical bundle over CP∞. In this case

all complex bundles are E-oriented by naturality and the splitting principle.

Our previous considerations can now be summarized in the diagram

CP1
CP∞

S2 E ∧ S2 .

y w

u
∼=

u
e

w−σ2

Example 2.2. A universal example of an oriented cohomology theory is

E = MU given by (MU)2n = MU(n) and (MU)2n+1 = ΣMU(n). The struc-

ture maps Σ(MU)2n+1 = Σ2MU(n) → MU(n + 1) = MU2n+2 are furnished

by the classifying maps ξn ⊕ 1 → ξn+1 after passing to Thom spaces. MU

is canonically complex oriented since a map Σ∞MU(1) → MU ∧ S2 can be

defined by MU(1)
1→MU2 using the desuspension theorem.

Complex oriented theories are calculable. The Atiyah-Hirzebruch spectral

sequence is a fundamental tool for computing a generalized cohomology theory

E. We have to assume that E satisfies the axiom of strong additivity, i.e.,

Ē∗(
∨
α∈I

Xα) ∼=
∏
α∈I

Ē∗Xα,
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which is fulfilled when E comes from a spectrum. If X is a CW-complex, its

skeleta Xi fit into cofibration sequences

· · · Xi−1 Xi Xi+1 · · ·

∨
Si

∨
Si+1 .

y w y w y w

u

y w

u

Thus there is an exact couple in cohomology E∗(−), i.e., a spectral sequence.

The E1 term consists of the cellular cochains with coefficients in E∗ and so

Es,t
2 = Hs(X,Et).

Unfortunately, the Atiyah-Hirzebruch spectral sequence doesn’t converge very

well because E∗ is typically non-trivial for infinitely many positive and negative

dimensions. If X is finite-dimensional it converges. (The above works for X a

bounded spectrum as well.)

Let us try to compute E∗CPn−1. For oriented E the element x ⊗ 1 ∈
H2(CPn−1) ⊗ E0 must survive to e(λ) ∈ E2(CPn−1). Thus all differentials

have to be zero and the spectral sequence collapses. We obtain a well-defined

homomorphism

E∗[x]/(xn)→ E∗(CPn−1)

sending x to the Euler class e(λ) ∈ Ē∗(CPn−1). (For this recall that any n-

fold product of classes α1, α2, . . . , αn ∈ Ē∗(X) vanishes if X can be covered

by n contractible open sets.) Now filter both sides by |x| = 2 and get an

isomorphism of graded rings.

To calculate E∗CP∞ we introduce the Milnor sequence. It applies to

any topological space X which is the direct limit of well-pointed spaces

X0
i−→ X1

i−→ X2
i−→ · · · .

If each Xn is a CW-subcomplex of Xn+1 we may replace X by the (pointed)

homotopy equivalent telescope T which is obtained by taking∐
n≥0

Xn × [n , n+ 1 ]
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and identifying (xn, n + 1) with (ixn, n + 1) and all (∗, t) to one point. T is

filtered by F0T = im(
∐

n≥0 Xn × {n} ↪→ T ) =
∨
nXn and F1T = T . Observe

that F0T ↪→ F1T is a cofibration. The quotient T/F0T is homeomorphic to∨
n≥0 ΣXn. Hence the filtration induces a long exact sequence in Ē∗∏

n

Ē∗(Xn) = Ē∗(
∨
n

Xn) Ē∗(
∨
n

ΣXn) =
∏
n

Ē∗−1(Xn)

Ē∗(T ) .

w
444447���
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A picture may convince the reader that the above map∏
n

Ē∗Xn −→
∏

Ē∗Xn

is given by 1− shift, i.e.,

(b0, b1, . . . ) 7−→ (b0 − i∗b1, b1 − i∗b2, . . . ).

Its kernel can be identified with lim←------- Ē
nXi and the cokernel is often denoted

by lim←-------
1 Ēn−1Xi. ĒnT is now part of the short exact sequence

0 −→ lim←-------
1Ēn−1(Xi) −→ Ēn(T ) −→ lim←------- Ē(Xi) −→ 0.

The calculation of lim←-------
1 An = coker(1− shift) for sequences

A0
j←− A1

j←− A2 · · ·

of abelian groups is a purely algebraic problem. We want to derive a criterion

for when it vanishes. Suppose the homomorphisms j are surjective. Then

every (b0, b1, . . . ) ∈
∏

iAi lies in the image of 1− shift, since the equation

(a0 − ja1, a1 − ja2, . . . ) = (b0, b1, b2, . . . )

can be solved inductively; so we have lim←-------
1 An = 0. This situation applies to

the case An = Ē∗(CPn−1) and we have the following result.

Theorem 2.3. E∗CP∞ = lim←-------E
∗
CPn = E∗[[ x ]].

This result needs some interpretation. For E = H the inverse limit is

polynomial in a given dimension. But most of the time E∗ = π−∗E is not
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bounded below. Hence a homogeneous element might have the form
∞∑
i=0

aix
i ∈ (E∗[[ x ]])n

with |ai|+ 2i = n for infinitely many ai in E∗.

We want to investigate the map CP∞ × CP∞
µ−→ CP∞ which classifies

the tensor product of line bundles. Or in other words it corresponds to the

addition map K(F2, 2) × K(F2, 2) → K(F2, 2). The Künneth isomorphism

doesn’t apply to E∗(CP∞ × CP∞). So again we are forced to go through the

Milnor sequence and obtain

E∗(CP∞ × CP∞) = E∗[[ x, y ]],

where x = e(λ), x = pr∗1x, y = pr∗2x. The ring homomorphism

E∗[[ x ]]
µ∗−→ E∗[[ x, y ]]

is completely determined by µ∗(x) =: FE(x, y). Naturality implies

e(α⊗ β) = FE(e(α), e(β))

for any line bundles α and β. FE(x, y) is what is called a formal group law.

3. Generalities on Formal Group Laws

Definition 3.1. A formal group law over a graded commutative ring

R is a homogeneous power series F (x, y) ∈ R[[ x, y ]] of degree two (where

|x| = |y| = 2) such that

F (0, y) = y, F (x, 0) = x,

F (x, F (y, z)) = F (F (x, y), z),

and

F (x, y) = F (y, x).

Example 3.2. (i) In the case E = H the Euler class is primitive for

dimension reasons. That is, e(α⊗ β) = e(α) + e(β). Thus we obtain the

additive formal group law Ga:

FH(x, y) = Ga(x, y) := x+ y.
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(ii) The coefficients of complex K-theory are Laurent series K∗ = Z[ v, v−1 ]

with v ∈ K−2 = π2(BU). A complex orientation is given by

e(α) =
1− [α]

v
∈ K2(X)

for line bundles α over X. Since

e(α⊗ β) =
1− αβ
v

=
(1− α) + (1− β)− (1− α)(1− β)

v
= e(α) + e(β)− ve(α)e(β)

we have the multiplicative formal group law Gm:

FK(x, y) = Gm(x, y) := x+ y + vxy.

Generally, a formal group law has the form

F (x, y) = x+ y +
∑
i,j>0

aijx
iyj,

where |aij| = 2− 2(i+ j).

Proposition 3.3. The functor

F : GCR −→ Set

which sends a graded commutative ring R to the set of formal group laws over

R is corepresentable. That is, there is a ring L and a formal group law G over

L such that any f.g.l. F over R can be obtained from G by applying a unique

ring homomorphism L→ R.

Proof. Simply define L to be Z[aij : i, j > 0] with aij in dimension

2− 2(i+ j) modulo the relations forced by the unit, associativity and commu-

tativity conditions, and take

G(x, y) = x+ y +
∑
i,j

aijx
iyj.

We will prove that the Lazard ring L has the following structure.

Theorem 3.4 (Lazard). L ∼= Z[x1, x2, . . . ], where |xi| = −2i.
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However, we will not have the opportunity to prove the following result.

See Section II.8 of the blue book [2] for a proof.

Theorem 3.5 (Quillen). The map L → MU∗ classifying FMU is an iso-

morphism. That is, FMU is the universal formal group law and MU∗ has a

description as a polynomial algebra.

F(R) is the class of objects in a category: We set

HomR(F,G) = {θ(x) ∈ (R[[ x ]])2 : θ(0) = 0 and θ(F (x, y)) = G(θ(x), θ(y))}.

Composition is the composition of power series. Observe that the coefficient

ai in

θ(x) = a0x+ a1x
2 + · · ·

has degree −2i and that a homomorphism is invertible iff a0 is a unit in R. We

speak of a strict isomorphism if a0 = 1. If F ∈ F(R) and θ(x) ∈ xR[[ x ]]×

is invertible and of degree two then

θF (x, y) := θF (θ−1(x), θ−1(y))

is a formal group law and θ : F → θF . Similarly, F θ(x, y) := θ−1F (θ(x), θ(y)).

Example 3.6. Over the ring R = Z[m1,m2, . . . ] with |mi| = −2i, the

formal group law Glog
a is universal for formal group laws which are strictly

isomorphic to the additive one, where

log(x) = x+m1x
2 +m2x

3 + · · · .

Given a formal group law we may ask when there is a strict isomorphism

ϕ : F → Ga, i.e., when ϕF (x, y) = ϕ(x) + ϕ(y) for some strictly invertible ϕ.

Differentiating this equation with respect to y we find

ϕ′(F (x, y))F2(x, y) = ϕ′(y)

and evaluating at y = 0 we obtain the condition ϕ′(x)F2(x, 0) = 1. This last

equation can be uniquely solved for ϕ

ϕ(x) =

∫ x

0

dt

F2(t, 0)
,

but the integral of polynomials involves denominators. That is, we have to

assume that S is a Q-algebra.
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Proposition 3.7. Over a Q-algebra any formal group law is uniquely

strictly isomorphic to the additive formal group law Ga. We denote the iso-

morphisms by logF and expF as in the following diagram:

F

logF−−→
←−−
expF

Ga

Since the ring homomorphism L→ R⊗Q classifying Glog
a factors through

L⊗Q we have

Corollary 3.8. L⊗Q
∼=−→ R⊗Q = Q[m1,m2, . . . ] .

Example 3.9. For the multiplicative formal group law F (x, y) = x+ y −
vxy we compute F2(x, 0) = 1− vx and find that

logF (x) =

∫ x

0

dt

1− vx
=
∞∑
i=1

vi−1xi

i
=

log(1− vx)

−v

and

expF (x) =
1− evx

v
.

So we know that L ⊗ Q = Q[m1,m2, . . . ] and that the canonical map

L→ L⊗Q classifies the formal group law with logarithm given by

log x =
∑

mix
i+1, m0 = 1,

i.e., the formal group law

Glog
a (x, y) = log−1(log x+ log y).

Now we make a construction that will be used in the proof of Lazard’s

theorem. For any abelian group A and positive integer n consider the graded

commutative ring Z⊕A[2− 2n], where the number in square brackets indicates

that A is to be placed in degree 2−2n. The product is given by (m, a)(n, b) =

(mn,mb+na), which is (honestly) commutative. We use rings of this form to

determine the structure of L using the fact that

F(Z⊕ A) = Rings(L,Z⊕ A).

There is a natural augmentation map L
ε−→ Z classifying the additive formal

group law over Z, and this map is an isomorphism in non-negative degrees.
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Let I = ker ε be the augmentation ideal, which is strictly negatively graded.

The ring Z ⊕ A has an obvious augmentation to Z. It is clear that any ring

homomorphism L→ Z⊕ A preserves the augmentations and hence induces a

map I → A. Since A2 = 0, the map factors through QL := I/I2:

I A[2− 2n]

I/I2 .

w'''') \\\]

So Rings(L,Z⊕ A[2− 2n]) ∼= Ab((I/I2)2−2n, A). In fact, the functor

Ab −→ AugRings

A 7−→ Z⊕ A[2− 2n]

has a left adjoint which sends an augmented ring R to the abelian group

QR2−2n.

For a ∈ A define θa(x) = x+ axn, a homogeneous power series of degree 2.

Then θ−1
a = θ−a and so

θaGa(x, y) = (x− axn + y − ayn) + a(x− axn + y − ayn)n

= x+ y + a[(x+ y)n − xn − yn]

is a formal group law over Z⊕A. It sometimes happens that [(x+y)n−xn−yn]

is divisible by an integer.

Lemma 3.10. gcd{
(
n
i

)
: 1 ≤ i ≤ n− 1} = εn, where

εn =

{
p if n = ps for p prime and s ≥ 1

1 otherwise
.

Proof. Left to the reader.

Let

Cn(x, y) =
1

εn
[(x+ y)n − xn − yn] ∈ Z[x, y]

and consider the formal group law x + y + aCn(x, y) over Z ⊕ A[2 − 2n].

(An easy calculation shows that this is indeed a f.g.l.) Let α be the map

A → F(Z ⊕ A[2 − 2n]) sending a to x + y + aCn(x, y); since Cn(x, y) is a

primitive polynomial, α is injective.
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Proposition 3.11 (Lazard). In fact, α is a natural bijection.

Before proving this, we show how it enables us to prove the structure

theorem of Lazard.

Proof. The proposition implies that Ab(QL2−2n, A) ∼= A as sets for any

abelian group A. The structure theorem for finitely generated abelian groups

then tells us that QL2−2n ∼= Z. For each n, choose an element xn−1 ∈ L2−2n

that projects to a generator of QL2−2n. This gives us a surjective ring homo-

morphism Z[x1, x2, . . . ]→ L and thus the map Q[x1, x2, . . . ]→ L⊗Q is also

surjective. In the commutative diagram

Z[x1, x2, . . . ] L

Q[x1, x2, . . . ] L⊗Q Q[m1,m2, . . . ]

ww

u u
ww

we have by a dimension count that the bottom arrow is an isomorphism, and

since Z[x1, x2, . . . ] is torsion free, the left map is injective. Therefore the top

map is an isomorphism.

Corollary 3.12. If R → S is a surjective graded ring homomorphism,

then F(R)→ F(S) is also surjective.

Proof. L is free commutative and so projective.

Now we proceed to prove the proposition.

Proof. Over Z⊕A[2− 2n] any formal group law has the form F (x, y) =

x+ y + P (x, y), where

P (x, y) =
∑
i+j=n

aix
iyj, a0 = an = 0.

The commutativity condition implies that

P (x, y) = P (y, x),

while associativity implies that

P (y, z) + P (x, y + z) = P (x, y) + P (x+ y, z).
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This last condition is in fact a cocycle condition in a chain complex that arises

quite naturally, and we denote the set of P satisfying the two conditions by

Z2,n
sym. So what we are trying to prove is that the map

A −→ Z2,n
sym

a 7−→ aCn(x, y)

is surjective.

Using the convention that sums are over non-negative i, j and k that sum

to n with additional constraints as indicated, the associativity condition can

be written∑
i=0

ajy
jzk +

∑
ai(j, k)xiyjzk =

∑
k=0

aix
iyj +

∑
(i, j)ai+jx

iyjzk,

where (j, k) =
(
j+k
j

)
. Looking at the coefficient of xym−1zn−m we find that(

n− 1

m− 1

)
a1 = mam

for 1 ≤ m ≤ n−1. We now exploit this relationship in a case by case analysis.

Case I: A = Z/p, p prime. If n = p, then we claim that P = a1Cp.

Indeed, consider P (x, y) − a1Cp(x, y) =
∑
a′ix

iyj, which satisfies the associa-

tivity condition. Any m with 1 ≤ m ≤ p− 1 is a unit in Z/p, and so we have

that a′m = 1
m

(
n−1
m−1

)
a′1 = 0, since a′1 = 0. Thus P = a1Cp.

If p | n but p < n, write n = kp. We use the following lemma, whose proof

is omitted.

Lemma 3.13. Cpk(x, y) = uCk(x
p, yp) mod p for some unit u. In fact,

u =

{
εk if k 6= ps

1 otherwise
.

In our relation above we take m = p and find that(
n− 1

p− 1

)
a1 = 0

and so a1 = 0, since
(
n−1
p−1

)
is a unit mod p. Thus, as above, am = 0 unless

p | m. So we can write P (x, y) = Q(xp, yp) for some Q which is again a cocycle.

Therefore, by induction and the lemma,

P (x, y) = Q(xp, yp) = aCk(x
p, yp) = au−1Cn(x, y).
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Note that we have made no use of the symmetry condition as of yet.

Now we take the remaining subcase, namely the case when p does not divide

n. Consider P − a1
εn
n
Cn. This expression was constructed to have leading

term zero, thus as before the only non-zero coefficients are the coefficients of

xp
k
yn−p

k
. So, by symmetry, all coefficients are zero.

Case II: A = Z/ps. This is done by induction on s using the diagram

0 pA A A/pA 0

0 Z2,n
sym(pA) Z2,n

sym(A) Z2,n
sym(A/pA) 0

w

u
∼=

w

u
α

w

u
∼=

w

w w w w
whose rows are easily seen to be exact.

Case III: A = Q. We get surjectivity here because all formal groups laws

are isomorphic to additive ones. (The Z summand doesn’t interfere.)

Case IV: A = Z. This follows from the rational case, since Cn is primitive.

Case V: A a finitely generated abelian group. This follows from the fact

that

B ⊕ C

Z2,n
sym(B)⊕ Z2,n

sym(C) Z2,n
sym(B ⊕ C)

44447
α⊕α �����α

w∼=

commutes.

Case VI: A arbitrary. Let P ∈ Z2,n
sym(A). Then P (x, y) =

∑
aix

iyj. Let

B be the subgroup of A generated by the ai. It is finitely generated and

P ∈ Z2,n
sym(B), so by the previous case P = bCn(x, y) for some b ∈ B ⊆ A.

The Lazard ring suffers from some defects: it is too big and has no specific

generators. Therefore we restrict our study to a smaller class of formal group

laws.

4. p-Typicality of Formal Group Laws

Let S be a graded ring and let

Γ(S) = {γ ∈ (S[[ x ]])2 : γ(x) ≡ x mod (x2)}
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be the group of formal power series (of degree 2) with leading term x. Γ(S)

acts on F(S) on the right by

(F, γ) 7−→ F γ,

where

F γ(x, y) := γ−1F (γ(x), γ(y)).

For a fixed commutative ring R let ΓR and FR be the restriction of these

functors to R-algebras; for example the action of ΓQ on FQ is simply transitive.

That is, F = G
logF
a for a unique power series logF .

In the more delicate case R = Z(p) we can ask for formal group laws with

a simple logarithm after rationalizing. Let us write Γ(p) = ΓZ(p)
, F(p) = FZ(p)

and γ̃(x) =
∑∞

j=0 apj−1x
pj if γ(x) =

∑∞
i=1 ai−1x

i ∈ Γ(p)(S).

Theorem 4.1 (Cartier). There is a unique natural transformation

ξ : F(p) −→ Γ(p)

with the following property: for any Q-algebra S and F in Γ(p)(S) we have

logF̃ = l̃ogF ,

where F̃ = F ξF .

Cartier’s result gives for every F ∈ F(p)(R) a power series ξF ∈ Γ(p)(R)

and over R⊗Q a commutative diagram

qF ξF = qF̃

qF Ga ,
u

qξF

[[[[]
l̃ogqF

wlogqF

where q is the canonical map R → R ⊗ Q. Since strict isomorphisms over Q

are unique, we are led to the identity

qξF = expqF l̃ogqF .

Example 4.2. It is easy to see that L ⊗ Z(p) carries a formal group law

G which is universal over Z(p)-algebras; G is simply the image of the standard

universal group law under the canonical map L → L ⊗ Z(p). Let us have a
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closer look at this case. The theorem asserts that expG l̃ogG, which seems to

lie in (L⊗Q)[[ x ]], in fact lies in (L⊗Z(p))[[x ]]. Therefore, we see that Cartier’s

theorem is an integrality statement, and so the uniqueness statement is clear.

(Here we are using the fact that q : L⊗ Z(p) → L⊗Q is monic.)

Example 4.3. In the case of the multiplicative formal group lawGm(x, y) =

x + y − xy over Q1 we know that expGm(x) = 1 − e−x and logGm(x) =

− ln(1− x) =
∑∞

i=1
xi

i
. Now we have just been saying that

ξGm(x) = 1− e−
∑ xp

j

pj

lies in Z(p)[[ x ]]. This is an observation which had already been made by

E. Artin and Hasse.

Exercise 4.4. Show that the natural transformation

F(p) −→ F(p)

F 7−→ F̃

is idempotent. In fact, ξF̃ (x) = x.

We postpone the proof of Cartier’s theorem to set up some machinery. Let

CF := TR[[T ]] = {γ(T ) ∈ R[[T ]] : γ(T ) = a0T + a1T
2 + · · · }

denote the curves on F with operation

(γ +F γ
′)(T ) := F (γ(T ), γ′(T )).

Lemma 4.5. (CF ,+F ) is an abelian group which is Hausdorff and complete

with respect to the T -adic filtration.

Proof. Clearly the 0 curve provides CF with a unit. But why do inverses

exist? Let us first look at the case γ(T ) = T and inductively construct ι(T ) ∈
CF such that F (T, ι(T )) = 0. Setting ι1(T ) = −T we may suppose ιn−1(T )

satisfies F (T, ιn−1(T )) = anT
n + · · · ≡ 0 (T n). We can estimate f +F g by

1We are developing the theory in the graded case, but everything goes through in the
ungraded case by replacing gradation arguments by filtration arguments. We will have
occasion to work in the ungraded world below when discussing the Honda formal group law.
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f +g modulo the ideal (Tm+n) whenever f ∈ (Tm) and g ∈ (T n). So we define

ιn(T ) to be ιn−1(T ) +F (−anT n). Then

T +F ιn(T ) = (T +F ιn−1(T )) +F (−anT n) ≡ anT
n +F (−an)T n

≡ anT
n − anT n = 0

completes the induction. Now since ιn ≡ ιn−1 mod (T n) they tend to a limiting

power series ι which is the required inverse to T . The inverse of an arbitrary

curve γ is given by ι(γ).

That CF is Hausdorff and complete is not hard to see.

Corollary 4.6. Any γ = a0T + a1T
2 + · · · ∈ CF has a unique formal

power expression

γ(T ) =
∞∑F

i=0

ciT
i+1.

Proof. Take c0 = a0 and suppose that

γn−1(T ) =
n−1∑F

i=0

ciT
i+1 ≡ γ(T ) mod (T n+1).

Then there is a unique choice of cn giving
n∑F

i=0

ciT
i+1 ≡ γ(T ) mod (T n+2).

Indeed, define cn to be the coefficient of T n+1 in

γ(T )−F γn−1(T ) = cnT
n+1 + · · · .

The group of curves CF enjoys three families of operators. The homothety

operator [a] is defined for any a in R and sends a curve γ(T ) to the curve

([a]γ)(T ) := γ(aT ).

For each positive integer n we have verschiebung and Frobenius operators

which are defined by

(vn γ)(T ) := γ(T n)
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and

(fn γ)(T ) :=
n−1∑F

i=0

γ(ζ iT 1/n)

respectively. The latter equation requires some interpretation. Let ζ be a

primitive nth root of unity and consider the power series
∑F

γ(ζ iS) over

R[ζ]; one can easily see using

xn − 1 =
n∏
i=1

(x− ξi)

that this in fact lies in R[[Sn ]] and thus serves to define
∑F

γ(ζ iT 1/n) by

replacing Sn with T .

For example, take F to be the additive formal group law over a ring R and

let γ(T ) =
∑∞

j=1 aj−1T
j. Then

(fn γ)(T ) =
∑
i

γ(ζ iT 1/n) =
∑
i,j

aj−1ζ
ijT j/n =

∑
j

aj−1

(∑
i

ζ ij
)
T j/n.

The inner sum in the last expression is n if n divides j and zero otherwise, so

(fn γ)(T ) =
∞∑
k=1

nank−1T
k.

In the next proposition we collect together some immediate properties of

our operators.

Proposition 4.7. The homothety, verschiebung and Frobenius operators

are continuous additive natural operators which satisfy the following relations:

[a][b] = [ba]

vm vn = vmn

[a] vn = vn[an]

fn[a] = [an] fn

fn vn = n (That is, fn vn γ(T ) = γ(T ) +F · · ·+F γ(T ).)

fn vm = vm fn when (m,n) = 1.
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Definition 4.8. A curve γ is called p-typical if fq γ = 0 for q prime and

different from the prime p. The set of such curves is denoted Cp
F ⊂ CF . We

say that F is p-typical if γ0 is p-typical, where γ0(T ) = T .

Example 4.9. Consider the additive formal group law over a Z(p)-algebra.

Then by the calculation above, a curve γ(T ) =
∑
aj−1T

j is p-typical iff aj−1 =

0 for j not a power of p. That is, we must have γ(T ) =
∑
apk−1T

pk = γ̃(T ).

Example 4.10. Now suppose F is a general formal group law which is a

twisted version of the additive group law, so that there is an isomorphism

θ : F −→ Ga.

(This happens, for example, for any formal group law over a rational algebra.)

Then the induced map

θ∗ : CF −→ CGa

which sends a curve γ(T ) to the composite θ(γ(T )) is also an isomorphism,

and takes γ0 to θ. It is trivial to check that composition with θ commutes with

the three types of operators, and therefore preserves p-typical curves. Thus F

is p-typical if and only if θ is p-typical in Ga, i.e., iff θ = θ̃.

To state the next proposition properly, we need a category that includes

as morphisms both ring homomorphisms and twisting by power series. The

objects will be all formal group laws, i.e., the disjoint union of F(R) over

all rings. The category structure is that generated by both the twisting mor-

phisms within each F(R) and ring homomorphisms. More specifically, the

morphisms from F ∈ F(R) to G ∈ F(S) are all pairs (θ, f) where f is a ring

homomorphism from R to S and θ is a morphism in F(S) from fF to G. That

is, θ(x) ∈ (S[[ x ]]) is such that θ(0) = 0 and θ(fF (x, y)) = G(θ(x), θ(y)). The

composite of (ψ, g) ◦ (θ, f) is easily seen to be (ψ(gθ), gf).

CF and Cp
F are functors on this category.

The following proposition will allow us to prove the theorem of Cartier.

Proposition 4.11. Restrict the functors CF and Cp
F to formal group laws

over Z(p)-algebras. Then there is a unique natural operator ε on CF with image

Cp
F such that if F = Ga then ε(γ) = γ̃. Moreover, this operator is additive,

continuous and idempotent.
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Before constructing ε we’ll show how we can use it to construct ξ for the

theorem. We simply take ξF to be εγ0. Naturality shows that (εγ0)(T ) has

leading term T and degree two. ξ inherits its naturality from ε, so all that

remains to be checked is that over a Q-algebra logF̃ = l̃ogF , where, as before,

F̃ denotes F ξF . Well, by naturality we have that

CF CF

CGa CGa

wεF

u
logF ∗

u
logF ∗

wεGa

commutes. Following γ0 along the two paths shows us that l̃ogF = logF (ξF ).

But by the uniqueness of the logarithm,

F̃ F

Ga

wξF

[[]
logF̃

��� logF

commutes, and so l̃ogF = logF̃ . In fact, this argument shows that G̃θ
a = Gθ̃

a,

even if we aren’t over a rational algebra.

In fact, F̃ is p-typical and F 7→ F̃ is a projection onto the subset of p-

typical formal group laws. To see that F̃ is p-typical note that the bijection

ξF ∗ : CF̃ −→ CF

restricts to a bijection Cp

F̃
→ Cp

F . Now ξF = εγ0 ∈ CF is p-typical, so γ0 ∈ CF̃
is, and so F̃ is.

Now we construct the idempotent ε. Let q be a prime different from p.

Motivated by the fact that ε must be killed by fq, we define eq, a natural

operator CF → CF , by

eq γ = γ −F
1

q
vq fq γ.

Note 4.12. Here we have made use of the Z(p)-module structure on CF

which is defined in the following way. For positive n ∈ Z define the power

series [n]F (T ) to be the n-fold sum T +F · · · +F T . That is, [n]F = nγ0

using the Z-module structure on CF coming from the fact that it is an abelian

group. For negative n, replace γ0(T ) with ι(T ). If q is a unit in Z(p), then
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[q]F (T ) = qT + · · · is an invertible power series; thus we may define [1/q]F (T )

to be its inverse. Because of the commutativity of our formal group law, F

is unchanged when twisted by these power series. Thus they induce maps

CF → CF , and this is how Z(p) acts on CF . (Don’t confuse [n]F with the

homothety operation [n].)

The following straightforward calculation shows that we are on the right

track:

fq eq = fq−F fq
1

q
vq fq

= fq−F
1

q
fq vq fq

= fq−F
1

q
q fq

= fq−F fq = 0.

Moreover, it is easy to show that eq γ ≡ γ mod xq, that eq er = er eq, and that

each eq is natural, idempotent, additive and continuous. Thus it makes sense

to define

ε :=
∏
q 6=p

eq,

and this has the desired properties.

The uniqueness of ε follows from an argument similar to that used to show

the uniqueness of ξ.

Exercise 4.13. Let F be a p-typical formal group law over a Z(p)-algebra.

Any curve can be uniquely represented as a formal sum γ(T ) =
∞∑F

i=1

ci−1T
i.

Show that γ(T ) is a p-typical curve if and only if ci−1 = 0 for i not a power of

p. Moreover, fp(
∑F

cpi−1T
pi) = p

∑F
cpi+1−1T

pi .

Exercise 4.14. Consider the operator CF → CF defined by sending a

curve γ(T ) =
∞∑F

i=1

ci−1T
i to the curve

∞∑F

k=0

cpk−1T
pk . Is this the operator ε?

If not, which hypothesis of the uniqueness statement fails to hold? Which of

the other properties of ε are shared by this operator?
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5. The Universal p-Typical Formal Group Law

A possible candidate for a universal p-typical object is the p-typicalization

G̃ = GξG of Lazard’s formal group law G over the Z(p)-algebra L(p) := L⊗Z(p).

However, it turns out that while for any p-typical F over S there always exists

a map L(p) → S sending G̃ to F , it may not be unique. So we instead consider

the factorization

L L(p)

L(p) Lp

wu

y

u
wwũ

u

y
i

of the homomorphism u : L → L(p) classifying G̃ through the canonical map

L ↪→ L(p) and through the Z(p)-subalgebra Lp generated by the coefficients of

G̃, i.e., generated by im(u). We claim that (Lp, G̃) is the universal p-typical

formal group law. To see this, suppose F ∈ Fp(S) is p-typical, v : L → S is

its classifying map, and ṽ : L(p) → S is the extension of v to L(p). From

ṽ G̃ = ṽ GξG = F ξF = F

we recognize that F is the pushforward of G̃ under ṽi from Lp. Any map

sending G̃ to F will fill in the dashed arrow of the diagram

L(p)

Lp S
uuũ
[[[]ṽ

w
and is thus unique. In particular we may take S to be Lp, F = G̃ and ṽ = ũ

and obtain the idempotency relation ũ2 = ũ (really ũiũ = ũ).

Next we want to show that Lp is a polynomial algebra. When dealing with

formal group laws we should think about everything in terms of the logarithm.

Let R = Z[m1,m2, . . . ]. We may use the power series

log(T ) =
∞∑
i=0

miT
i+1, m0 = 1

to define the formal group law Glog
a (x, y) = log−1(log(x) + log(y)). Recall that

the map φ : L → R classifying Glog
a was shown to be a rational isomorphism
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(3.8). Therefore, the induced map L(p) → R(p) which sends G to Glog
a is

injective. We find that the following diagram commutes

G L(p) Lp L(p) G̃

Glog
a

R(p) Rp R(p) Gl̃og
a = G̃log

a ,

{
u

wwũ

v

u
ϕ

u

y wi

v

u
ϕ

{
u

ww y w
Rp = Z(p)[mp−1,mp2−1, . . . ] and R(p) → Rp is the natural projection. The

center arrow is uniquely defined by requiring the diagram to be commutative,

and is necessarily monic. Observe that for any choice of generators L(p) =

Z(p)[x1, x2, . . . ] the xi map under ũ to decomposable elements unless i = pj−1,

since they are injectively sent under Qϕ : QL2−2i → QR2−2i to εi+1mi. On the

other hand the xpj−1 remain indecomposable. We have just proved

Proposition 5.1. Lp = Z(p)[ x̄p−1, x̄p2−1, . . . ], where x̄p−1 = ũxp−1.

Now we want to construct explicit generators for Lp. First observe that

the group of p-typical curves Cp
F is closed under the operations [p], vp and fp.

In particular, fp γ0 is in Cp
F if F is p-typical. Since any γ ∈ Cp

F has a unique

expansion

γ(T ) =
∞∑F

i=0

ci+1T
pi ,

the equation

fp γ0(T ) =
∞∑F

i=0

vi+1T
pi

defines elements vi in S (where F ∈ F(S)). We claim that in the universal

case these are generators for Lp. Let us abuse notation a little and write mi

for mpi−1 and log for l̃og. That is,

log(T ) =
∞∑
i=0

miT
pi , m0 = 1.
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Working over Rp we compute

log
∞∑Glog

a

i=0

vi+1T
pi =

∞∑
i=0

log(vi+1T
pi) =

∞∑
i,j=0

mjv
pj

i+1T
pi+j

=
∞∑
n=0

(
∑
i+j=n

mjv
pj

i+1)T p
n

and

log fp γ0(T ) = log(

p−1∑Glog
a

i=0

ζ iT 1/p) =

p−1∑
i=0

log(ζ iT 1/p)

=
∑
i,j

mjζ
ipjT p

j−1

=
∞∑
j=0

(

p−1∑
i=0

ζ ip
j

)mjT
pj−1

=
∞∑
j=1

pmjT
pj−1

=
∞∑
n=0

pmn+1T
pn .

Thus we have an inductive formula

pmn+1 =
∑
i+j=n

mjv
pj

i+1

for the vi in Rp.

Example 5.2. The first few instances of the formula are as follows:

pm1 = v1

pm2 = v2 +m1v1

pm3 = v3 +m1v
p
2 +m2v

p2

1 .

This shows pmn ≡ vn modulo decomposables in Rp. (The usual convention

is to set v0 = p.)

Proposition 5.3 (Hazewinkel). Lp = Z(p)[v1, v2, . . . ].

From this we see that any p-typical formal group law is determined by fp γ0.

In general it is hard to describe the formal sum
∑F

vi+1T
pi . An exception

occurs if it has only one summand, for example, if vn = 1 and vi = 0 for
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i 6= n. In this case Lp → Z(p) defines a formal group law over Z(p), the so

called Honda formal group law2 Fn. Here the inductive relation

pmk+1 = mk−n+1, m0 = 1, mi = 0 for i < 0

has the solution

mn =
1

p
, mkn = p−k, mi = 0 for n |6 i.

That is,

logFn(T ) =
∞∑
k=0

T p
nk

pk
.

Note that we could have just written down the power series
∑

T p
ni

pi
and

defined the Honda formal group law to be the formal group law with this

logarithm. This would work over a rational algebra, and the point of what we

have done is to show that this works over a Z(p)-algebra.

In addition to the Hazewinkel generators, there is another set of generators

for Lp that we will now introduce. Both have their advantages and disadvan-

tages.

Because fq is an additive operation, Cp
F is a subgroup of CF . Thus [p]F (T ),

the formal sum of γ0 taken p times, is p-typical if F is. If we apply this to be

the universal formal group law G̃ over Lp, then we can write

[p]G̃(T ) =
∑G̃

wiT
pi

for unique wi in Lp. It turns out that w1, w2, . . . serve as generators called

the Araki generators and that w0 = p. We prove this by calculating the

2We’re in ungraded territory again.
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logarithm of [p]G̃(T ) in two ways. On the one hand

log[p]G̃(T ) = log
∑G̃

j

wjT
pj

=
∑
j

logwjT
pj

=
∑
i,j

mi(wjT
pj)p

i

=
∑
k

( ∑
i+j=k

miw
pi

j

)
T p

k

,

and on the other hand

log[p]G̃(T ) = [p]Ga log(T )

= p log(T )

=
∑
k

pmkT
pk .

Therefore, pmk =
∑k

i=0 miw
pi

n−i. So p(1 − pp
k−1)mk = wk + decomposables.

This shows that the wk are generators.

Proposition 5.4 (Araki). Lp = Z(p)[w1, w2, . . . ].

Exercise 5.5. Show that vk ≡ wk mod p by showing that vp fp ≡ [p]G̃
mod p. (Here vk is a Hazewinkel generator and vp is a verschiebung operator.)

So a p-typical formal group law F is completely determined by its p-series

[p]F (T ), since this determines the wi. Over Fp we get that [p]Fn(T ) = T p
n

using the exercise.

6. Representing F(R)

We have been able to corepresent F(−) as a set-valued functor as

Hom(L,−), but this is only taking into account part of the picture. Consider

the action of Γ(R) on F(R) from the right, for example. Γ(−) is corepresented

by S, where S = Z[a1, a2, . . . ]. Since Γ(−) is naturally a group, S is a cogroup

in the category of commutative rings, i.e., it is a commutative Hopf algebra

over Z. In fact, L is a comodule-algebra over S, since the action of Γ on F is
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natural. We want to understand all of this better, and since Lp has nice gen-

erators, we will tackle this case. Unfortunately, the action of Γ on F doesn’t

restrict to Fp; in fact, Fp(R) ·Γ(R) = F(R). Instead we must consider Fp(R)

as a full subgroupoid of the groupoid F(R). The groupoid structure on F(R)

is obtained from the category structure on F(R) that was discussed earlier by

considering only strictly invertible morphisms, i.e., power series in Γ(R). This

structure arises from any set X endowed with the action of a group π in the

following way. We let the objects of the groupoid be the elements of X, and

we define

Mor(y, x) = {α ∈ π : y = xα}.

A groupoid that can be formed in this way is called split. When corepresenting

a split groupoid it suffices to corepresent the set, the group and the action,

as we did above for F(R). But Fp(R) is not split, and this is why we must

corepresent it as a groupoid.3

We corepresent the object set as Hom(Lp,−), of course. To give a mor-

phism F f → F we need to specify the target F and the power series f ; the

source is uniquely defined. But not any f in Γ(R) will do, for we need that F f

is p-typical as well. It is easy to check that F f is p-typical iff f is p-typical for

F , and we know that this holds iff f(T ) =
∑F

tiT
pi for some ti with t0 = 1

(all under the assumption that F is p-typical of course). Thus the set of all

morphisms in our groupoid is naturally equivalent to Hom(Lp[t1, t2, . . . ],−).

We denote the corepresenting ring by M .

Now we investigate how the structural properties of the groupoid translate

into conditions on the generators of Lp and the ti. Define

ηL : Lp −→M
3What does it mean to corepresent something other than a set-valued functor? If

the functor F takes values in a category whose objects are defined using only categorical
notions in Set, then a corepresenting object naturally acquires the structure of an object of
the opposite type in the domain category. For example, if F is group-valued or groupoid-
valued, then a corepresenting object will be a cogroup or cogroupoid object in the domain
category.
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to be the obvious inclusion. This corepresents the map that sends a morphism

to its target and also makes M into a left Lp-module. Define

ηR : Lp −→M

to be the map classifying G̃θ, where θ(T ) =
∑G̃

tiT
pi . This corepresents the

map that sends a morphism to its source and also makes M into a right Lp-

module. Composition is a map from Comp to Mor where Comp is the set of

composable pairs of morphisms and Mor is the set of all of morphisms. Comp

is defined by the pullback diagram

Comp Mor

Mor Obj .

w

u u
target

wsource

Because this is natural we get a map ψ from M to M ⊗Lp M , since M ⊗Lp M
is the pushout of M and M over ηL and ηR. The unit map Obj → Mor is

corepresented by the map ε : M → Lp sending ti to 0 for i ≥ 1. And the inverse

map Mor to Mor is corepresented by a map c : M → M . So M is almost a

Hopf algebra over L. Since M (and the other data) form a cogroupoid object

in the category of commutative rings, we might call M a Hopf algebroid.

We want to understand the source map ηR by considering its composite

with the embedding induced by the embedding of Lp in Rp:

Lp
ηR−→ Lp[ t1, t2, . . . ] ↪→ Rp[ t1, t2, . . . ].

We continue to use the notation Rp = Z(p)[m1,m2, . . . ]. Since the logarithm

is unique we have the equation logG̃ f = logG̃f = log ηR(G̃) = ηR(logG̃). Hence

it follows that

logG̃(f(T )) = log
∑G̃

j

tjT
P j =

∑
j

log(tjT
pj) =

∑
i,j

mit
pi

j T
pi+j

and

log(f(T )) = ηR log(T ) =
∑
k

ηR(mk)T
pk
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and we obtain a BP -formula.4

Proposition 6.1. ηR(mk) =
∑

i+j=k

mit
pi

j .

As an exercise the reader can express the image of the Hazewinkel generator

vk in terms of the ti.

We now derive a BP -formula due to Ravenel. As usual, G̃ denotes the

universal p-typical formal group law, which lies over the ring Lp. Recall that

the Araki generators are defined by

[p]G̃(T ) =
∑G̃

wiT
pi

and that we have maps

Lp
ηR−→ Lp[t1, t2, . . . ]

ηL←− Lp.

The map ηL is just the standard inclusion, and we denote ηLG̃ by G̃ as usual.

The map ηR is the unique map such that ηRG̃ = G̃θ, where θ(T ) =
∑G̃

tiT
pi .

Notice that

θ(ηR[p]G̃(T )) = θ([p]G̃θ(T )) = [p]G̃(θ(T )).

But

θ(ηR[p]G̃(T )) = θ(ηR
∑G̃

j

wjT
pj)

= θ(
∑G̃θ

j

ηR(wj)T
pj)

=
∑G̃

j

θ(ηR(wj)T
pj)

=
∑G̃

i,j

tiηR(wj)
piT p

i+j

4We will soon see the origins of this terminology
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and

[p]G̃(θ(T )) = [p]G̃(
∑G̃

j

tjT
pj)

=
∑G̃

j

[p]G̃(tjT
pj)

=
∑G̃

i,j

wit
pi

j T
pi+j .

This proves

Proposition 6.2.

∑G̃

i+j=k

tiηR(wj)
pi =

∑G̃

i+j=k

wit
pi

j .

Next we want to understand the composition map M
ψ−→ M ⊗L M . Let

f(T ) =
∑F

tiT
pi and g(T ) =

∑Gf

sjT
pj be p-typical curves. Then we have

that

fg(T ) = f
(∑Gf

sjT
pj
)

=
∑G

j

f(sjT
pj) =

∑G

i,j

tis
pi

j T
pi+j .

In terms of the tensor product we get

ψtk =
∑G

i+j=k

ti ⊗ tp
i

j (t0 = 1)

which should remind you of the antipode of the Milnor diagonal of Chapter 1.

7. Applications to Topology

We will use the above formulae to perform some calculations in E-homology

for a complex oriented theory E. Recall that E∗CP∞ = E∗[[ x ]] where x

denotes the Euler class of the tautological bundle λ. Therefore, we find that

E∗CP∞ = E∗〈 β0, β1, . . . 〉 and 〈xi, βj 〉 = δi,j.

The notation here means the free E∗-module on the β’s. (If you don’t know

how to prove this for yourself, wait until the end of the next page and try

again.) The βi produce elements (denoted again by βi) in E∗BU under the

inclusion CP∞ ↪→ BU . Observe that the last map is not a map of H-spaces.
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A short look at the Atiyah-Hirzebruch spectral sequence may convince you

that

E∗BU = E∗[ β1, β2, . . . ]

once you know this for singular homology. (See Switzer for the singular case.)

We also want to know the E-cohomology of X = BU . Since it has only

even-dimensional cells,

0 −→ E∗Xj−1 −→ E∗Xj −→ E∗(Xj/Xj−1) −→ 0

is short exact; since the cokernel is free, it is split exact, and thus the bottom

row of

E∗Xj−1 E∗Xj E∗(Xj/Xj−1)

HomE∗(E∗Xj−1, E∗) HomE∗(E∗Xj, E∗) Hom(E∗(Xj/Xj−1), E∗)
u u

u u

u
∼=

u u

is also short exact. This allows us to proceed by induction using the strong ad-

ditivity of E and the five-lemma to conclude that E∗(Xj) ∼= HomE∗(E∗Xj, E∗)

for each j. (This corresponds to the fact that the AH-spectral sequence col-

lapses). Now the Milnor sequence finally gives

E∗X = lim←-------E
∗Xj = Hom(lim-------→E∗Xj, E∗) = HomE∗(E∗(X), E∗)

E∗BU = H∗(BU ;E∗) = Z[c1.c2, . . . ]⊗̂E∗ = E∗[[ c1, c2, . . . ]].

where

< cm, βi1βi2 · · · βin >=

{
1 m = n, ij = 1

0 otherwise
.

In the case of E = MU the ci are called Conner and Floyd classes. We

can play the same game with MU replacing BU to see

E∗MU = E∗[ b1, b2, . . . ].

But we want to be more precise about what the bi’s are. Applying the Thom

construction to the inclusion CP∞ ↪→ BU we get a map Σ−2MU(1) → MU ,
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which is the MU -Euler class x ∈ MU2
CP∞ for the canonical bundle. In

E-homology we have

E∗(Σ
−2
CP∞) −→ E∗MU

βi 7−→ bi−1,

where b0 = 1. The isomorphism E∗MU
∼=−→ HomE∗(E∗MU,E∗) can be used

to define a map u : MU → E by demanding that 1 7→ 1 and bi1 · · · bin 7→ 0.

This u is called the universal Thom class of E.

A map of ring spectra MU → E gives rise to a map of E∗-algebras and

vice versa. Therefore, the universal Thom class u : MU → E is a map of ring

theories. Observe that the composition

Σ−2
CP∞

x−→MU
u−→ E

is the orientation xE of E. Hence, f : L ∼= MU∗
u∗−→ E∗ sends the universal

formal group law to the formal group law for xE.

We can ask what other orientations for E are possible. Recall that

y ∈ E2(CP∞) is a complex orientation if and only if y is sent to 0 under

E2(CP∞)→ E2(∗) and y is sent to the generator σ under E2(CP∞)→ E2S2.

Let y be f(x) =
∑∞

i=−1 aix
i+1 where ai ∈ E−2i. Then the first condition

says that a−1 = 0 and the second says that a0 = 1.

Proposition 7.1. The collection of complex orientations for E is in one-

to-one correspondence with the set of curves Γ(E∗) = {T + a1T
2 + · · · }.

If x(L) and y(L) denote the Euler classes of a line bundle L according

to the two orientations, the formal group law associated to y has the form

Fy = fFx:

y(L⊗ L′) = f(x(L⊗ L′)) = f(Fx(x(L), x(L′)))

= fFx(f
−1y(L), f−1y(L′)) = fFx(y(L), y(L′)).

8. Characteristic Numbers

Let M be an n-dimensional U -manifold with ν : M → BU the lifting.

Then M has a canonical orientation, so there is a well-defined class [M ] ∈
Hn(M ;Z). Any class c ∈ Hn(BU) gives a characteristic class by defining
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c(ν) := ν∗(c); we call 〈 c(ν), [M ] 〉 ∈ Z the characteristic number associated

to this characteristic class.

The map M 7→ 〈 c(ν), [M ] 〉 is well-defined on U -bordism classes. Indeed,

suppose M = ∂W as U -manifolds, so ν = νW i stably, where i is the inclusion

M ↪→ W . Then, under the boundary map ∂ : Hn+1(W,M) → Hn(M), the

orientation class [W ] is sent to [M ]. So

〈 c(ν), [M ] 〉 = 〈 ν∗(c), ∂[W ] 〉 = 〈 δν∗(c), [W ] 〉.

But δν∗(c) = δi∗ν∗(c) = 0, and thus we get a homomorphism

ΩU
n −→ Z

for each c. Moreover, the natural map ΩU
n → Hom(H∗(BU),Z) is simply the

Hurewicz map:

ΩU
n Hom(H∗(BU),Z)

Hn(BU)

πn(MU) Hn(MU) .

w

u
∼=

�����∼=

w
h

44446∼=

Exercise 8.1. Check that this diagram commutes.

We now calculate the image of the U -bordism class of CPn under the

Hurewicz map.5

Recall that H∗(CP∞) = Z[x], where x = e(λ) is the Euler class of the

canonical bundle. We saw in Section 2 that 〈x, [CP1] 〉 = −1. It is more

generally true that 〈xn, [CPn] 〉 = (−1)n. Now H∗(CP∞) is the free abelian

group on generators βn dual to xn, and thus βn = (−1)n[CPn].

We need to study the homology Thom isomorphism for λ. We had the

notation MU(1) for the Thom space of λ, and we point out here that the zero

section CP∞ → MU(1) is in fact a homotopy equivalence.6 We denote by βn
5Any almost complex manifold has a natural U -manifold structure; when we write CPn

we implicitly mean CPn with this natural structure.
6It is not hard to see by geometric arguments as in Section 1.7 that MU(1) is homeo-

morphic to CP∞; one might say that CP∞ is P (C∞) while MU(1) is P (C ⊕ C∞), where
P (V ) denotes the space of one-dimensional subspaces of V . However, the zero section is the
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the image of βn ∈ H∗(CP∞) under the zero section. The Thom isomorphism

comes from the diagonal embedding of λ in 0× λ. To study this we consider

the diagram of bundle maps

0 0× 0

λ 0× λ ,

w

u u
w

where the left-hand bundles are over CP∞, the right-hand bundles are over

CP∞ × CP∞, the vertical maps cover the identity, and the horizontal maps

cover the diagonal ∆ : CP∞ → CP∞×CP∞. By the functoriality of the Thom

construction, we get a diagram

CP∞+ (CP∞ × CP∞)+ CP∞+ ∧CP∞+

MU(1) CP∞+ ∧MU(1) .

w∆+

u
0-section

u
id⊗ 0-section

w
Looking at this diagram in reduced homology, we find that βn ∈ H̄2nMU(1)

gets sent to βn−1⊗β1 +· · ·+β0⊗βn in H∗CP∞⊗H̄∗MU(1). Here we have used

the fact that (H∗(CP∞),∆∗) is a coalgebra dual to the polynomial algebra Z[x].

Now the Thom isomorphism H̄∗MU(1)→ H∗−2CP∞ is obtained by composing

the map H̄∗MU(1)→ H∗CP∞⊗ H̄∗MU(1) with evaluation on the Thom class

u ∈ H2MU(1). Since the Thom class u pulls back to the Euler class x under

the zero section, u is dual to β1. Therefore, the Thom isomorphism is given

by

H̄2nMU(1) −→ H2n−2CP∞

βn 7−→ βn−1.

The inclusion CP∞ → BU defines classes βi inH∗BU , and we’ve mentioned

that H∗BU is polynomial on these classes with β0 = 1. (The ring structure

map induced by the inclusion of C∞ into the right summand of C ⊕ C∞ and thus doesn’t
induce a homeomorphism. But all one has to do is show that on π2, the only non-trivial
homotopy group, the induced map is an isomorphism, and this isn’t difficult. (There are
other ways to do this.)
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on H∗BU comes from the H-space structure on BU .) Just as the usual Thom

construction is functorial, so is the stable version. Thus we get a map

Σ−2MU(1) −→MU

and a commutative square

H∗(Σ
−2MU(1)) H∗MU

H∗CP∞ H∗BU .

w

u
∼= u

∼=

w
From this we see that bn ∈ H∗MU , which was defined in the last section

to be the image of βn+1 ∈ H∗(Σ
−2MU(1)), gets sent to βn ∈ H∗BU by the

Thom isomorphism. If we write β(T ) = β0 + β1T + · · · in (H∗BU)[T ], and

b(T ) = T + b1T
2 + · · · in (H∗MU)[T ], then β(T ) corresponds to b(T )/T under

the Thom isomorphism.

As in Section 7, the tangent bundle τ of CPn satisfies τ + 1 = (n + 1)λ∗.

Since the Whitney sum of the tangent bundle and the normal bundle of an

embedding is a trivial bundle, we have that the stable normal bundle ν may

be written as

ν = (n+ 1)(1− λ∗).

The map representing the stable bundle λ−1 over CP∞ is the inclusion CP∞ →
BU we’ve discussed above. By definition, its effect in homology is to send βn to

βn. Therefore, the map representing λ∗−1 sends βn to (−1)nβn; more concisely,

it sends β(T ) to β(−T ). Since the H-space structure on BU corresponds both

to the Whitney sum of bundles and to the ring structure on H∗BU , we have

that the map representing k(λ∗ − 1) sends β(T ) to β(−T )k. Thus the map

representing (n+1)(1−λ∗) sends β(T ) to β(−T )−(n+1). As ν is the restriction

of this bundle to CPn, we see that βn is sent by the map representing ν to the

coefficient of T n in β(−T )−(n+1), which we denote (β(−T )−(n+1))n.

The Pontrjagin-Thom construction gives us a stable map

S2n −→ Th ν −→MU

representing the element of π2n(MU) corresponding to the U -bordism class of

CPn. To find the Hurewicz image of this class, we apply homology and look
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at the image of the fundamental class [S2n]. The following diagram will allow

us to calculate this image:

H̄2nS
2n H̄2n Th ν H̄2nMU

H2nCPn H2nBU .

w w

u
∼=

u
∼=

w
We ask the reader to verify that the fundamental class of the 2n-sphere gets

mapped to the fundamental class of CPn in H2nCPn. Our previous work shows

that this then gets sent to ((b(T )/T )−(n+1))n in H2nMU . This can be written

(b(T )−(n+1))−1, but it can be put more nicely. If we write S = b(T ), then

T = m(S) = S +m1S
2 + · · · for some power series m. Therefore,

(b(T )−(n+1))−1 = res b(T )−(n+1)dT

= resS−(n+1)(1 + 2m1S + 3m2S
2 + · · · )dS

= (n+ 1)mn.

With b(T ) = exp(T ) and m(S) = log(S), we have a formula due to Miscenko:

log(T ) =
∑ h[CPn]

n+ 1
T n+1.

Now we do a calculation. Let E be a complex oriented ring spectrum with

Euler class x. Then E ∧ MU has two orientations defined in the following

way. Let ηL be the composite MU → E → E ∧MU and let ηR be the obvious

map MU → E ∧ MU ; these give orientations xL = ηL∗x and xR = ηR∗x.

We showed earlier that xR must be expressible as a power series in xL. The

question is, what is this power series?

To answer this question, we make use of the Boardman homomorphism

b : [X, Y ]→ [X,E∧Y ] which sends a map X → Y to the composite X → Y →
E ∧ Y . This is a generalization of the Hurewicz map as one sees by taking

X to be the sphere spectrum and E to be the integral Eilenberg-Mac Lane

spectrum. One may easily check that the diagram

[X, Y ] [X,E ∧ Y ]

HomE∗(E∗X,E∗Y )

wb

������E∗(−)

444447 α
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commutes, where α sends a map X → E ∧ Y to the composite

E∗X −→ E∗(E ∧ Y )
µ∧1−→ E∗Y.

Quite often, α is an isomorphism. In particular, if X = CP∞ and Y = MU ,

then this is true. (This follows from arguments similar to those we made in

section 7. See also [2, Part II, Lemma 4.2].) Specializing to this case, we get

MU∗CP∞ (E ∧MU)∗CP∞

HomE∗(E∗CP∞, E∗MU) .

whhhhhhhj
''''''*

∼=

To compare xL and xR we find the relation between their images under α.

Since x ∈ MU∗CP∞ is sent to xR by the Boardman homomorphism, α(xR)

sends βi ∈ E∗CP∞ to bi−1 ∈ E∗MU . (This is how bi was defined.) Now α(xnL)

is the composite along the top row and right edge of the diagram

E∗CP∞ E∗E E∗(E ∧MU)

E∗S E∗MU ,

wxn∗

''''')〈xn,−〉

w1∧1∧η

u
µ

u
µ∧1

wη

which is readily checked to commute. Under the pairing with cohomology, βi

goes to δi,n, and so α(xnL) is the map sending βi to δi,n. Thus we obtain the

following formula:

α(xR) =
∞∑
n=1

bn−1α(xnL).

Finally, since α is an isomorphism, this gives the answer to our question:

xR =
∞∑
n=1

bn−1x
n
L = exp(xL).

Note that this is a power series with coefficients lying in the homotopy of

E ∧MU , i.e., in E∗MU = E∗[b1, b2, b3, . . . ].

Example 8.2. We can take E to be HZ. Then HZ∧MU has two complex

orientations: xL : Σ−2MU(1) −→ MU
u−→ HZ −→ HZ ∧ MU gives the

additive formal group law MU∗ −→ HZ ∧MU∗ = Z[b1, b2, · · · ] and similarly

xR corresponds to the MU formal group law. We see that our notation was
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chosen well, since now G = Gm
a → Ga and m(T ) = b−1(T ) gives a logarithm.

Our investigation leads to the following result.

Proposition 8.3. The Hurewicz map L ∼= π∗MU −→ H∗MU is an em-

bedding. Therefore, integral cohomology characteristic numbers determine U-

manifolds up to bordism.

As a second example we choose E to be MU . Then the object MU∗MU

carries the universal strict isomorphism of formal group laws. It comes to us

with left and right units

MU∗
ηL−→MU∗MU

ηR←−MU∗

which turn MU∗MU into a two-sided module. Here ηL is induced by the

inclusion of the unit into the right factor and is used to make MU∗MU into

a right MU∗-module. Of course, ηR does things the other way. The switching

map

c : MU∗MU
∼=−→MU∗MU

sends the source of an isomorphism to its target and vice versa. Therefore,

MU∗MU is also free as a right MU∗-module. From this we see that the

coaction map

ψ : MU∗X = MU∗(S
0 ∧X) −→MU∗(MU ∧X)

∼=←−MU∗MU ⊗MU∗ MU∗X

is well-defined, since the last map7 is an isomorphism8 of left MU∗-modules.

An associative ring spectrum E is called flat if E∗E is flat as a right E∗-module.

It is under this assumption that we can define a coaction map.

Proposition 8.4. If E is a flat, commutative, associative ring spectrum

then (E∗, E∗E, ηL, ηR, ψ, ε, c) is a Hopf algebroid and E(−) is a functor from

the stable category to the category of E∗E-comodules.

The details are tedious but easily verified.
7By our rule of thumb, this map should multiply two adjacent factors. To produce a

map well-defined on the tensor product, it must combine the second and third factors.
8MU∗MU⊗MU∗MU∗− and MU∗(MU∧−) are homology theories (for the first, use that

MU∗MU is free and hence flat as a rightMU∗-module) and we have a natural transformation
from the first to the second which is an isomorphism on the coefficients.
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9. The Brown-Peterson Spectrum

We have seen that MU is universal for complex oriented ring theories.

That is, if E is another complex oriented ring spectrum with orientation xE

and formal group law F , there is a unique ring spectrum map MU −→ E

sending xMU to xE and classifying F over the coefficients.

Let us write MU(p) for the Z(p) localized spectrum MU ∧ S(Z(p)). The

p-typicalization ξG(x) ∈ MU∗(p)(CP∞) defines another orientation for MU(p).

Therefore, we obtain a ring spectrum map

MU −→MU(p)
e−→MU(p)

such that on CP∞, x 7→ ξ(x), and on a point, G 7→ ξG = e∗G. The map e is

idempotent up to homotopy, since on the coefficients we have

MU∗(p) MU∗(p) MU∗(p)

G ξG eξ∗G = ξG .

we∗ we∗

} w } w
We would like to look at the image of e, but unfortunately e is only idempotent

up to homotopy. Therefore, let e−1MU(p) be the telescope of

MU(p)
e−→MU(p)

e−→MU(p) −→ · · ·

and similarly define (1− e)−1MU(p). We obtain a splitting

MU(p)
∼= e−1MU(p) ∨ (1− e)−1MU(p).

The coefficient ring

π∗(e
−1MU(p)) = π∗(tel(e)) = lim-------→(π∗(MU(p))

e∗−→ π∗MU(p)
e∗−→ · · · ) = eMU(p)∗

is the p-typical Lazard ring Lp.

Definition 9.1. For each prime p, the Brown-Peterson spectrum BP

is defined to be e−1MU(p). (Honouring tradition, we omit the prime p from the

notation.)

BP is a complex oriented ring theory and carries the universal p-typical

formal group law. It comes with a ring spectrum map

BP −→ BP [x2i, i 6= (pj − 1)] ∼= MU(p).
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BP∗BP supports the universal strict isomorphism between p-typical formal

group laws. BP is also flat and thus defines a functor into the category of

BP∗BP -comodules.

10. The Adams Spectral Sequence

We are now able to develop an extremely useful tool for computations in

algebraic topology. Let E be an associative ring spectrum.

Definition 10.1. A map f : X → Y is an E-monomorphism if the

natural map X → E ∧ X factors through f . A spectrum I is said to be E-

injective if it is a retract of E ∧ Z for some Z.

Proposition 10.2. (i) f : X → Y is E-monic iff each map from X to an

E-injective I can be factored through f:

X I

Y .

w

uf �
���

(ii) I is E-injective iff for each E-monomorphism X → Y and each map

X → I there is extension making

X I

Y

w

u ��
��

commutative.

That is, each class determines the other. The proof of the proposition is

left as an exercise, but we mention that it only uses the fact that E ∧ − is a

triple (a.k.a. a monad).

Using the first part of the proposition, or working directly, one can show

that if X → Y is E-monic then E ∧X → E ∧ Y is split monic, and moreover

that the splitting map E ∧ Y → E ∧X can always be chosen to be a map of

(left) E-module spectra.

Next we observe that there are enough injectives: for each X there is an

E-injective I and an E-monomorphism X → I. We can simply take I to be

E ∧X. When a class of maps and a class of objects in a category determine
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each other as in the proposition, and when there are enough injectives, we say

that they form an injective class.

Definition 10.3. An E-Adams resolution of X is a diagram of cofibre

sequences

X ∼= X0 X1 X2 · · ·

I0 I1 I2 · · · ,

'''')i0

'''')i1

u u '''')i2

u

where the i′s are E-monic and the I ′s are E-injective.

The standard Adams resolution is

X = X0 X1 · · ·

E ∧X0 E ∧X1 · · · ,




�
i0




�
i1

u u

where Xk+1 is the desuspension of Cik , the mapping cone of ik. One can show

that Xk+1 = Ē∧k+1 ∧X, where Ē is the desuspension of the mapping cone of

the unit map S → E.

When we now apply a homology functor F∗ an exact couple is born, giving

a spectral sequence with E1 term

F∗(I
0) −→ F∗(I

1) −→ F∗(I
2) −→ · · · .

This is called the Adams spectral sequence9. We want it to converge to

F∗X, but this will not happen in general. However, if E = BP and π∗X is

a Z(p)-module which is bounded below then the spectral sequence converges

when F∗ = π∗. (See [2] for a proof.)

Exercise 10.4. Relate the notion of an Adams resolution to the notion of

an injective resolution. Then formulate and prove a uniqueness up to chain ho-

motopy result for Adams resolutions which implies that the spectral sequence

is independent of the choice of Adams resolution from the E2 term onwards.

We’re particularly interested in the Adams spectral sequence when the

exact functor being applied is π∗. In order to compute the E2 term in this

9The construction makes sense given an injective class in any triangulated category.
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case we assume that E is flat and commutative, so that E∗E is a Hopf algebroid

and E∗X is an E∗E-comodule (see Prop. 8.4).

Now we notice that if we apply E∗ to an E-Adams resolution of X we get

sequences

E∗X
s −→ E∗I

s −→ E∗ΣX
s+1

which are short exact since the first map is split monic as a left E∗-module

map. These short exact sequences can be spliced together to give a long exact

sequence

0 −→ E∗X −→ E∗I
0 −→ E∗ΣI

1 −→ E∗Σ
2I2 −→ · · · .

This leads to the development of some homological algebra. What we do

below is a special case of what is called relative homological algebra. Chapter

IX of Mac Lane’s book [10] covers the general setting, but we will keep things

simple.

Let W be a Hopf algebroid over a commutative ring L, and work in the

category of left comodules over W , i.e., left L-modules with a coaction M →
W ⊗L M which is coassociative and counital. We are simplifying things here

by ignoring the fact that in our application everything is graded and graded-

commutative.

Definition 10.5. A comodule map M → N is called a relative mono-

morphism if it is split monic as a map of left L-modules. A comodule I is

called a relative injective if it is a (comodule) retract of W ⊗L N for some

L-module N .

Exercise 10.6. Show that relative monomorphisms and relative injectives

form an injective class in the category of comodules. (Hint: The only fact you

need is that W⊗L− is right adjoint to the forgetful functor from W -comodules

to L-modules.)

Note that an E-monomorphism X → Y of spectra gives a relative mono-

morphism E∗X → E∗Y of E∗E-comodules, and that an E-injective spectrum

I produces a relative injective E∗E-comodule E∗I.

Definition 10.7. A short exact sequence M → N → P of comodules is

relative short exact if M → N is a relative monomorphism. A long exact
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sequence is a relative long exact sequence or a relative resolution if it is

formed by splicing together relative short exact sequences. A relative resolution

of relative injectives is called a relative injective resolution.

With this terminology we can say that the long exact sequence obtained

by applying E∗ to an E-Adams resolution is a relative injective resolution of

E∗E-comodules.

Note 10.8. A formal argument shows that relative (long or short) ex-

act sequences are those that go to exact sequences of abelian groups under

HomW (−, I) for all injectives I.

Definition 10.9. For comodules M and N we define Ext∗W (M,N) in

the usual way by replacing N by a relative injective resolution, applying

HomW (M,−), and taking the homology of the resulting complex.

The usual arguments show that the answer is independent of the choice of

resolution.

It turns out that HomW (L,M) has a natural interpretation which makes

it an interesting object to study. A element m of a comodule M is primitive

if ψm = 1⊗m in W ⊗LM . The following proposition is easy to check.

Proposition 10.10. Under the natural isomorphism HomL(L,M) ∼= M ,

the subgroup HomW (L,M) goes to the group of primitive elements in M .

Example 10.11. As an example we can take M to be L. The comodule

structure on L is given by

ψ : L
ηL−→ W

∼=←− W ⊗L L,

so the primitive elements are those that satisfy ηL(a) = ηR(a). This is not an

L-submodule of L unless ηL = ηR.

In the application we have L = E∗ and W = E∗E. In this case,

HomE∗E(E∗, E∗X) is a natural thing to study because the Hurewicz map

π∗X
h−→ E∗X = HomE∗(E∗, E∗X)

factors through HomE∗E(E∗, E∗X). We will now see that in some cases we can

identify π∗X with the primitives.



10. THE ADAMS SPECTRAL SEQUENCE 83

For the following lemma, we need the notion of a split fork in a category.

A diagram of the form

A
i−→ B

s

⇒
t
C

is called a fork if si = ti. If in addition there are maps

A
r←− B

h←− C

such that ri = 1, hs = 1 and ht = ir, then the diagram is called a split

fork. In a split fork the map i is automatically an equalizer of s and t. The

usefulness of split forks is that they are preserved under functors, and so F (i)

is an equalizer of F (s) and F (t) for any functor F .

Lemma 10.12. For an E-injective I, the natural map

π∗I −→ HomE∗E(E∗, E∗I)

is an isomorphism.

Proof. The map i : I → E ∧ I obtained by including the unit is an E-

monomorphism, so the E-injectivity of I implies that it has a retraction r.

Consider the diagram

I
i−→ E ∧ I ⇒ E ∧ E ∧ I,

where the parallel arrows are the two insertions of the unit map. This fork is

split by the maps r and 1 ∧ r. Therefore, applying π∗ produces an equalizer

diagram

π∗I −→ E∗I ⇒ E∗E ⊗E∗ E∗I

which identifies π∗I with the primitives of E∗I.

This allows us to describe the E2 term of the Adams spectral sequence.

Proposition 10.13. If E is flat and commutative, then the E2 term of

the E-Adams spectral sequence for π∗ is given by ExtsE∗E(E∗, E∗X).

The bar construction produces for a comodule M a standard complex

Ω∗(M) whose homology is Ext∗W (L,M). We construct Ω∗(M) by first con-

structing a relative injective resolution of M . To do this, we need to be able

to embed M in a relative injective via a relative monomorphism and compute
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the cokernel. Since ε ⊗ 1 splits ψ : M → W ⊗M as a module map, ψ is an

appropriate embedding. Consider

0 M W ⊗M Q 0

I ⊗M ,

w wψ w wu

v ��
�
��

where the comodule Q is defined to be the cokernel of ψ and I = ker(ε : W →
L) is the augmentation ideal of W , an L-bimodule. The map I⊗M → W ⊗M
is an inclusion since 0 → I → W → L → 0 is split as right modules. It isn’t

hard to see that the dashed map is an isomorphism of left L-modules. Pulling

back the comodule structure on Q we find that the coaction on I ⊗M is

I ⊗M ψ⊗1−1⊗ψ−−−−−−→ W ⊗ I ⊗M.

By this we really mean the composite

I ⊗M −→ W ⊗M ψ⊗1−1⊗ψ−−−−−−→ W ⊗W ⊗M

whose image actually lies in W ⊗ I ⊗M . Thus for any comodule M we have

a relative short exact sequence of comodules

0 −→M
ψ−→ W ⊗M σ−→ I ⊗M −→ 0,

where the coaction on I ⊗M is that given above, and the map σ sends w⊗m
to w⊗m− ε(w)ψ(m) ∈ I ⊗M . One can check directly that I ⊗M is actually

a comodule and that σ is a comodule map.

Piecing together such short exact sequences we obtain a relative injective

resolution of M :

0 M W ⊗M W ⊗ I ⊗M · · ·

I ⊗M I ⊗ I ⊗M · · ·

0 0 0 .

w wψ w''')σ
''')σ[[

[]
ψ

'''')
'''')[[

[[]

The map W ⊗M → W ⊗ I⊗M is just ψ⊗1−1⊗ψ since σ is 1⊗1−ψ(ε⊗1)

and (ψ ⊗ 1− 1⊗ ψ)ψ = 0. Similarly, the map W ⊗ I ⊗M → W ⊗ I ⊗ I ⊗M
is a three term alternating sum, and so on.
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It should be noted that if M = E∗X, L = E∗ and W = E∗E, then I = E∗Ē

and this resolution is the one obtained from the standard E-Adams resolution

of X by applying E-homology.

Now we must drop the initial M and apply HomW (L,−). To see what

happens, note that W ⊗ − is right adjoint to the forgetful functor from W -

comodules to left L-modules. That is,

HomL(M,N) ∼= HomW (M,W ⊗N),

where M is a comodule, N is a module, and ψ ⊗ 1 : W ⊗N → W ⊗W ⊗N
is the coaction on W ⊗N . The isomorphism sends a module map f : M → N

to M
ψ→ W ⊗ M

1⊗f→ W ⊗ N and a comodule map g : M → W ⊗ N to

M
g→ W ⊗N ε⊗1−→ L⊗N ∼= N . It is easy to check that this makes sense and

that these maps are inverses.

From the adjointness we find10 that

HomW (L,W ⊗ I⊗k ⊗M) ∼= HomL(L, I⊗k ⊗M) ∼= I⊗k ⊗M,

and therefore that ExtW (L,M) is the homology of the complex

0 −→M −→ I ⊗M −→ I ⊗ I ⊗M −→ · · · .

This complex is denoted Ω∗(M). Some consideration reveals that the

map I⊗k ⊗ M → I⊗(k+1) ⊗ M sends [a1| · · · |ak]m to [1|a1| · · · |ak]m −
[a′1|a′′1|a2| · · · |ak]m+ · · ·+(−1)k+1[a1| · · · |ak|m′]m′′. Here we must explain that

the notation [a1| · · · |ak]m refers to an element of W⊗k ⊗M and that we write

ψa as Σa′ ⊗ a′′ and then suppress the summation symbol. Note that Ω∗ is a

functor from W -comodules to chain complexes of abelian groups and is exact:

relative short exact sequences are sent to short exact sequences.

Exercise 10.14. Compute Ext0
MU∗MU(MU∗,MU∗).

Some of April 12, 1994 to be done by Dan.

BP∗ = Z(p)[ v1, v2, · · · ] acts on HsBP∗X = ExtsBP∗BP (BP∗, BP∗X). In the

following we want to invert the action of vi.
10Another way to see this is to show that the primitives in W ⊗M are precisely the

elements of the form 1⊗m for m in M .
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Lemma 10.15. Suppose M is a comodule over BP∗ and Ik+1
n M = 0. Then

vp
k

n : M −→ Σ−|vn|
pk

M

is a comodule map.

Proof. Ravenel’s formula gives

ηR(vn) = vn + r (r ∈ In)

ηR(vpn) = vpn + vp−1
n pr + · · ·+ rp

and inductively ηR(vn)p
k ≡ vp

k

n modulo Ik+1
n . This says that

vp
n

n : BP∗/I
k+1
n −→ Σ−| vn|p

k

BP∗/I
k+1
n

is a comodule map and the assertion follows after tensoring with M and using

BP∗/I
k+1
n ⊗BP∗ M = M .

In this case we write

v−1
n M = lim-------→(M

vp
k

n−→M
vp
k

n−→M
vp
k

n−→ · · · )

and obtain a unique comodule structure on v−1
n M such that M → v−1

n M is a

comodule map.

Example 10.16. We may take M = BP∗ to get an exact triangle

BP∗ BP∗/p
∞

p−1BP∗



� AAC .

Here the situation is analogous to Z(p) → Q→ Zp∞ .

Unfortunately the above lemma does not apply to its extension

BP∗/p
∞ BP∗/(p

∞, v∞1 )

v−1
1 BP∗/p

∞

���� 4446 .

We need a little lemma.

Lemma 10.17. Let M be the direct limit of comodules M(k) such that

Ik+1
n M(k) = 0 for all k. Then there is a unique comodule structure on v−1

n M

such that M → v−1
n M is a comodule map.
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Proof. The previous lemma shows that all maps in the following diagram

M(0) M(1) M(2) · · ·

M(0)

M(0)

M(0) M(1)

M(0)

M(0)

M(0) M(1)

u vn
w w

u

vpn

w

u

vp
2

n

u vn

u

u vn
w

u

vpnu vn

u

u

w

u
are comodule maps.

We want to take M(k) to be BP∗/p
k, BP∗/p

∞, vk1 , . . . . Then we can splice

the short exact sequences together into a complex

0→ p−1BP∗ → v−1
1 BP∗/p

∞ → v−1
2 BP∗/(p

∞, v∞1 )→ · · ·

which is called the chromatic resolution. (Observe that this sequence is

exact, except for the very first stage). The application of the exact functor Ω∗

gives rise to a double complex

0→ Ω∗p−1BP∗ → Ω∗v−1
1 BP∗/p

∞ → Ω∗v−1
2 BP∗/(p

∞, v∞1 )→ · · · .

We obtain two spectral sequences IE, IIE coming from the vertical and hori-

zontal filtration of the total complex respectively. According to our observa-

tion before, we have that IE = Ω∗BP∗ and IE∞ = IE2 = H∗BP∗. Hence the

spectral sequences converge to the E2-term of the Adams spectral sequence.

The other spectral sequence IIE is the chromatic spectral sequence with

E2 term H∗(v−1
s BP∗/(p

∞, v∞1 , · · · , v∞s−1)) and internal grading coming from

H∗BP . The chromatic spectral sequence is a first quadrant spectral sequence.

H∗(p−1BP∗) H∗(v−1
1 BP∗/p

∞) H∗(v−1
2 BP∗/(p

∞, v∞1 ))) · · ·
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The first column is given by

H∗(p−1BP∗) = ExtBP∗BP (BP∗, p
−1BP∗) = Extp−1BP∗BP (p−1BP∗, p

−1BP∗).

But the pair (p−1BP∗, p
−1BP∗BP ) corepresents the functor which takes a Q-

algebra into the set of strict isomorphisms between p-typical formal group

laws. Obviously the cobar complex of p−1BP∗ retracts to Q = p−1
Z(p)

p−1BP∗ p−1BP∗BP p−1BP∗BP ⊗p−1BP∗ p
−1BP∗BP · · ·

Q Q Q⊗Q Q · · ·

w
w

w
w

w
w

x

w
x

w
x

w
by classifying the additive formal group law. Hence, universality provides us

with a ring homomorphism p−1BP∗BP → p−1BP∗ when we write down the

logarithm of the p-localized universal p-typical formal group. This provides a

chain homotopy between the two complexes. That is, we have computed the

first column of the E2-term of the chromatic spectral sequence.

Proposition 10.18. Hk(p−1BP∗) =

{
0 k 6= 0

Q k = 0

We turn now to a technique for computing the other columns. Notice that

we have short exact sequences of comodule maps

v−1
s BP∗/(p,v∞1 ,... ,v∞s−1) v−1

s BP∗/(p∞,v∞1 ,... ,v∞s−1) v−1
s BP∗/(p∞,v∞1 ,... ,v∞s−1)

v−1
s BP∗/(p,v1,v∞2 ,... ,v∞s−1) v−1

s BP∗/(p,v∞1 ,... ,v∞s−1) v−1
s BP∗/(p,v∞1 ,... ,v∞s−1)

· · ·

v−1
s BP∗/Is v−1

s BP∗/(p,v1,... ,vs−2,v∞s−1) v−1
s BP∗/(p,v1,... ,vs−2,vs−1)

v w wwp

v w wwv1

v w wwvs−1

Each of these give rise to a long exact sequence in cohomology and to an

exact couple. The computation of H∗(v−1
s BP∗/(p

∞, · · · , v∞s−1)) is a long and

complicated process, controlled by “Bockstein spectral sequences”. It tells

you what lies between the column of the chromatic spectral sequence and

H∗(v−1
n BP∗/In), which is our next object of study.
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We use the ring map

BP∗ −→ K(n)∗ := Fp(v
±
n )

vi 7→

{
vn i = n, n > 0

0 i = 0

and focus on the Honda formal group law over K(n)∗. Now

Σ(n) := K(n)∗ ⊗BP∗ BP∗BP ⊗BP∗ K(n)∗

is a commutative Hopf algebra over the graded field K(n)∗, since ηR(vn) ≡
ηL(vn) mod In. We have that

Σ(n) = K(n)∗[t1, t2, · · · ]/ηR(vn+1), ηR(vn+2), . . . .

We can even be more precise. By using Ravenel’s formula we have vnt
pn

j = tiv
pj

n

in Σ(n) and these are the only relations.

Proposition 10.19. Σ(n) = K(n)∗[ t1, t2, · · · , tn]/(tp
n

j = vp
j−1

n tj).

Let us return to our map v−1
n BP∗/In → K(n)∗ which induces a map

H∗(v−1
n BP∗/In)→ ExtΣ(n)(K(n), K(n)). We mention without proof (we don’t

use this fact later) that this map is in fact an isomorphism. We also state

Theorem 10.20 (Morava). H t(v−1
n BP∗/In) = 0 for t > n2 provided p− 1

does not divide n.

Hence in the Bockstein spectral sequences we have

Es,t
1 = 0 if (p− 1) 6 | s, t > s2.

Let us try to calculate the second column of the chromatic spectral sequence.

The short exact sequence

v−1
1 BP∗/p v−1

1 BP∗/p
∞ v−1

1 BP∗/p
∞

w w/p 0

v w wwp

w w
gives rise to an long exact sequence in cohomology:

H0(v−1
1 BP∗/p)→ H0(v−1

1 BP∗/p
∞)

p→ H0(v−1
1 BP∗/p

∞)
δ→ H1(v−1

1 BP∗/p)→ · · · .
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Hence, we are interested in the primitives in v−1
1 BP∗/p

∞. Using the BP

formula ηR(v1) = v1 + pt1 we see

ηR(vp
ks

1 ) = vp
ks

1 + pk+1st1v
pks−1
1 mod (pk+2)

for p > 2. The prime 2 becomes a different story which we want to inves-

tigate later. It follows that vp
ks

1 /pk+1 is a cocycle. The homomorphism δ

maps vp
ks

1 /pk+1 to svp
ks−1

1 t1 since the first differential in the cobar resolution

of v−1
1 BP∗/p

∞ can be identified with ηR − ηL.

Now the first arrow in

Fp[ v
±
1 ] 〈t1〉 −→ H1(v−1

1 BP∗/p) −→ H1(Σ(1))

has to be a monomorphism, since there is no relation in the composite. Hence

we obtain a diagram

H0(v−1
1 BP∗/p) H0(v−1

1 BP∗/p∞) H0(v−1
1 BP∗/p∞) H1(v−1

1 BP∗/p)···

Fp[ v±1 ]

〈
v
pks
1
pk+1 :p6|s∈Z, k≥0

〉
⊕Zp∞ 〈same〉⊕Zp∞ Fp[ v±1 ]〈t1〉··· .

v w wp wu
∼=

v w

uv
wp w

u
v

u
v .

The following little argument reveals that we have calculated all of

H0(v−1
1 BP∗/p

∞).

Lemma 10.21. Let p : A → A and p : B → B be self maps of abelian

groups such that

A =
⋃

ker(pi), B =
⋃

ker(pi).

Assume f : A→ B commutes with p and that

ker(p) −→ ker(p) is an isomorphism

coker(p) −→ coker(p) is a monomorphism.

Then f is an isomorphism.
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Proof. A diagram chase in

ker(p) ker(p2) ker(p) ker(p)/p ker(p2) coker(p)

ker(p) ker(p2) ker(p) ker(p)/p ker(p2) coker(p)
u ∼=

v w
u f

wp

u ∼=
w

u f
y w

vu f
v w wp w y w

and

coker(p) coker(p2) coker(p) ker(p)/p kerA

coker(p) coker(p2) coker(p) ker(p)/pB

v
u f

u x
u f

u
p

u f uu f
u x

u u
p

u x
gives the inductive step.

The differential of the chromatic spectral sequence kills the elements with

v1 in the denominator

vp
ks

1

pk+1

d7−→

 0 if s > 0
1

pk+1v
pk(−s)
1

if s < 0
.

As a consequence we obtain

Corollary 10.22. For p > 2

H1,l(BP∗) =

{
Zpk+1 l = qpks, p 6 | s > 0, q = |v1| = 2(p− 1)

0 otherwise

generated by

αpks/k+1 = δ(
vp

ks
1

pk+1
)

where δ is the connecting homomorphism associated to

0 −→ BP∗ −→ p−1BP∗ −→ BP∗/p
∞ −→ 0

The case p = 2 is left as an exercise. Observe that the elements v2ks
1 /2k+1

are not primitive, but x = v2
1 − 4v−1

1 v2, x
2, x3, . . . are. Let us reward ourselves

with a geometrical application.
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11. The BP -Hopf Invariant

Let f : Sn → S0, n > 0 be a stable map. The induced homomorphism

BP∗f is zero, since there are no primitives of positive dimension in BP∗. Thus

we have a short exact sequence of comodules

0→ BP∗S
0 → BP∗Cf → BP∗S

n+1 → 0

which splits as a sequence of BP∗-modules. We can view it as an element in

Ext1,n+1
BP∗BP

(BP∗, BP∗) = H1,n+1BP∗ and obtain a homomorphism

h : πSn (S0) −→ H1,n+1BP∗

for n > 0 which is the BP -Hopf invariant. Use the embedding of short

exact sequences

0 BP∗ p−1BP∗ BP∗/p
∞ 0

0 BP∗ BP∗ BP∗/p
k+1 0

w w w w

w wpk+1

u
p−(k+1)

w

u

y
w

to compute the boundary of

vp
ks

1 ∈ H0(BP∗/p
k+1)←− H0(BP∗/p

k+1).

The last is induced by the cofibre sequence

S0 pk+1

−→ S0 −→ S0/pk+1 ∂−→ S1 −→ · · · .

Theorem 11.1 (J.F. Adams). There is a map between the Moore spaces

· · · −→ S2qpk/pk+1 Σqp
k

Φk−→ Sqp
k

/pk+1 Φk−→ S0/pk+1

inducing multiplication by vp
k

1 in BP∗-homology.

The composite

Sqp
ks → Sqp

ks/pk+1 Φsk−→ S0/pk+1 ∂−→ S1

gives an exciting homotopy class of spheres.
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Lemma 11.2 (Ravenel 2.3.4). Let X → Y → Z be a cofibre sequence which

is short exact in E∗ − homology. Then there is a map of spectral sequences

Es
r(Z,E)→ Es+1

r (ΣX,E)

which represents ∂ : Z → ΣX and is given at E2 by the obvious algebraic δ.

Corollary 11.3. There exist summands Z/pk+1 in πqpks−1 if p 6 | s > 0.

These classes are usually constructed using the J-homomorphism which is

discussed in [1]. It enters here in the construction of Φk. The cofibres are usu-

ally denoted by V (k). For example S
p−→ S −→ V (0) induces multiplication

by pn in homotopy. Furthermore we saw for p > 2 that

Σ2(p−1)V (0)
Φ(0)−→ V (0) −→ V (1)

give rise to classes αn. We mention the construction of other families of

Greek letters: For p > 2 there are βn with chromatic name
vn2
pv1

coming from

Σ2(p2−1)V (1) −→ V (2) and γn from Σ2(p3−1)V (2) −→ V (2) −→ V (3). It is still

unknown which classes survive and represent a homotopy class of spheres.

Part of April 21, 1994 to be done.

12. The MU-Cohomology of a Finite Complex

If X is a finite complex, is MU∗(X) finitely generated as a module over the

coefficient ring MU∗? This is the question that motivates the present section,

which is based on work of L. Smith and P. Conner.

Let R be a commutative ring.

Definition 12.1. An R-module is Noetherian if every submodule is fi-

nitely generated as an R-module. The ring R is said to be Noetherian if it

is Noetherian as a module over itself.

Note 12.2. If E is a cohomology theory and E∗ is a Noetherian ring, then

E∗X is a finitely generated E∗-module for finite X. Unfortunately, MU∗ is

not Noetherian.

We will make use of the following standard theorem.

Theorem 12.3 (Hilbert). If R is a Noetherian ring, then so is R[x].
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Definition 12.4. An R-module M is finitely presented if there exists

an exact sequence F1 → F0 → M → 0 with F0 and F1 finitely generated free

R-modules. We say that M is coherent if M is finitely generated and every

finitely generated submodule is finitely presented. The ring R is coherent if

it is coherent as a module over itself.

It isn’t hard to see that the direct sum of two Noetherian modules is Noe-

therian. This implies that every finitely generated module over a Noetherian

ring is coherent, and in particular that the Noetherian ring is itself coherent.

Lemma 12.5. If every finite subset of R is contained in a Noetherian sub-

ring S such that R is flat over S, then R is coherent.

Proof. Let I be a finitely generated submodule of R, that is, a finitely

generated ideal in R. We must show that I is finitely presented. The finite

set of generators lie in some Noetherian subring S such that R is flat over S;

let J be the ideal they generate in S. Since S is Noetherian, it is coherent and

there exists an exact sequence

F1 −→ F0 −→ J −→ 0,

where F1 and F0 are finitely generated free S-modules. That R is S-flat means

that the functor R⊗S − is exact, so

R⊗S F1 −→ R⊗S F0 −→ R⊗S J −→ 0

is an exact sequence. But the first two modules are finitely generated free

R-modules and the third is I, so this shows that I is finitely presented.

Example 12.6. If R is Noetherian, then any polynomial algebra over R

is coherent (even if uncountably generated). So, by the theorem of Quillen,

MU∗ is coherent. This uses Theorem 12.3.

Note 12.7. Every finitely generated submodule of a coherent module is

coherent.

Now we prove three lemmas regarding the short exact sequence

0 −→ N ′ −→ N −→ N ′′ −→ 0
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of R-modules, and deduce several corollaries. In the following, F , F ′, etc. will

denote free modules.

Lemma 12.8. If N is finitely generated and N ′′ is finitely presented, then

N ′ is finitely generated.

Proof. Consider the diagram

0 N ′ N N ′′ 0

0 K F N ′′ 0 .

w w w w

w

u
g

w

u
f

w w
The bottom row exists because N ′′ is finitely presented, the map f exists

because F is free, and the map g is the map induced by f on the kernels.

(Saying that N ′′ is finitely presented is equivalent to saying that there exists

an exact sequence like the bottom row with F finitely generated and free, and

K finitely generated.) Now a diagram chase (or the serpent lemma) tells us

that

K −→ N ′ −→ N/ im f −→ 0

is exact. Both K and N/ im f are finitely generated, and taking the image

and preimage of respective generating sets gives a finite set of generators for

N ′.

Corollary 12.9. If N is coherent and N ′′ finitely presented, then N ′ is

coherent.

Proof. Use the lemma and the note preceding it.

Lemma 12.10. If N ′ and N ′′ are finitely presented, then N is finitely pre-

sented.
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Proof. Consider the following diagram.

0 0 0

0 N ′ N N ′′ 0

0 F ′ F ′ ⊕ F ′′ F ′′ 0

0 K ′ K K ′′ 0

0 0 0 .

w

u

w

u

3

w

u

w

w1

u

w1

u

2

w1

u

w1

w5

u

w5

u

4

w5

u

w5

u u

4

u

The left and right columns are those showing N ′ and N ′′ finitely presented.

The dashed arrows (and the necessary objects) are added in the order indi-

cated. All of the squares commute and all horizontal or vertical composable

pairs are exact. ThusK is finitely generated, and soN is finitely presented.

Corollary 12.11. If N ′ and N ′′ are coherent, then so is N .

Proof. Let M be a finitely generated submodule of N , let M ′′ be the

image of M in N ′′, and let M ′ be the kernel of the surjection M →M ′′. Then

we have the following situation:

0 N ′ N N ′′ 0

0 M ′ M M ′′ 0 .

w w w w

w

u

y
w

u

y
w

u

y
w

Since M is finitely generated, so is M ′′, and since N ′′ is coherent, M ′′ is finitely

presented. By the first lemma of the series, M ′ is finitely generated and hence

finitely presented. Thus by the second lemma, M is finitely presented.

Corollary 12.12. If N ′ and N ′′ are coherent, then so is N ′ ⊕N ′′.
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Lemma 12.13. If N ′ is finitely generated and N is finitely presented, then

N ′′ is finitely presented.

In particular, a retract of a finitely presented module is finitely presented.

Proof. A diagram chase shows that the right column of the following

diagram, in which all modules and maps are the obvious ones, is exact:

0 0 0

0 N ′ N N ′′ 0

F ′ F F

K K ⊕ F ′

0 .

w

u

w

u

w

u

wu

w

u u

u u

u

Since K⊕F ′ is finitely generated, it is the target of a surjection from a finitely

generated free module, and we are done.

Corollary 12.14. If N ′ is finitely generated and N is coherent then N ′′

is coherent.

Proof. Let M ′′ be a finitely generated submodule of N ′′, let M be the

preimage of M ′′ in N , and let M ′ be the kernel of the surjection M →M ′′, so

we have the following diagram:

0 N ′ N N ′′ 0

0 M ′ M M ′′ 0 .

w w w w

w

u

w

u

y
w

u

y
w

A diagram chase shows that the induced map M ′ → N ′ is an isomorphism,

and thus M ′ is finitely generated. Therefore M is finitely generated, and hence

finitely presented. Now the lemma implies that M ′′ is finitely presented.
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Corollary 12.15. Coherent modules form an abelian category.

Now let’s focus our attention on the case when R is coherent. Then any

finitely generated free R-module is coherent by an earlier corollary. So if M is

finitely presented over R, then M is coherent.

Corollary 12.16. Over a coherent ring, a module M is coherent if and

only if it is finitely presented.

Now we can answer the question that introduced this section. It isn’t hard

to see that if we have an exact sequence

A −→ B −→ C −→ D −→ E

of modules over a ring R with A, B, D and E coherent, then C is coherent.

If X is a finite CW-complex with skeleta Xi, then we get for each i an exact

sequence

MU∗(Xi−1)→MU∗(Xi/Xi−1)→MU∗(Xi)→MU∗(Xi−1)→MU∗(Xi/Xi−1).

Since Xi/Xi−1 is a finite wedge of spheres and Xi = X for large i, we can work

inductively and conclude that MU∗(X) is coherent. In particular, it is finitely

generated.

We also have the following result of Quillen, for which we refer the reader

to [18].

Theorem 12.17. If X is a finite CW-complex, then MU∗(X) is generated

as an MU∗-module by elements of non-negative dimension.

13. The Landweber Filtration Theorem

The algebraic situation that we will investigate is the following. We have a

base ring R, over which we have a connected graded commutative Hopf algebra

S which is free as an R-module. In addition, there is an S-comodule A which is

also a connected graded commutative R-algebra such that the structure maps

R −→ A←− A⊗ A

are S-comodule maps. That is, A is an S-comodule algebra.
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We would like to determine something about the structure of an object M

which is an A-module and an S-comodule such that

A⊗M −→M

is an S-comodule map.

Example 13.1. Take R to be F2 and S to be the dual Steenrod algebra

A∗. If X → B is a map of finite complexes, then A = H∗B is an A∗-comodule

algebra and M = H∗X is an A∗-comodule and an H∗B-module. (The A∗-
comodule structures come from the fact that H∗Y = H∗(DY ), where DY is

the Spanier-Whitehead dual of Y .

A more interesting example, in which A is MU∗ and S is the Landweber-

Novikov algebra, will be discussed shortly.

If x ∈M is primitive (ψx = x⊗ 1) then the ideal Ann x := {a ∈ A : ax =

0} is an invariant ideal of A, i.e., a subcomodule of A. This is because the

map A→ Σ−|x|M sending a to ax is a comodule map, and Annx is the kernel.

Thus we have the following diagram of A-module S-comodules:

Σ|x|A/Annx M

Ax .

v w'''')∼= c[[
[[]

Now assume that M is a coherent A-module. As Ax is finitely generated,

it is also coherent. So M/Ax is also coherent. The trick now is to find a

primitive x so that Annx is a prime ideal.

Let I be maximal among annihilators of non-zero elements of M . Then

I is prime. For suppose that I = Annx and rs kills x but s doesn’t. Then

r is in Ann sx. But Ann sx contains and hence is equal to Annx = I. This

argument shows that if y is killed by I then I = Ann y.

Lemma 13.2. If I is an invariant ideal, then N := {x ∈ M : Ix = 0} is

a subcomodule.

Proof. Exercise.

The following is a difficult result of Landweber.
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Theorem 13.3. Assume that A and S are polynomial over R as algebras

and that M is finitely presented over A. Then all annihilator ideals of M are

invariant.

A bit of April 26, 1994 to be done by Dan.

April 28, 1994 to be done by Dan.

May 3, 1994 to be done by Dan.



CHAPTER 3

The Nilpotence Theorem

1. Statement of Nilpotence Theorems

The starting point for nilpotence theorems was Nishida’s theorem in 1973

asserting that any element in the ring πS∗ of positive dimension is nilpotent.

There are two faces to this theorem:

(i) For each α : Sq → S0, α∧n : Sqn → S0 is null for n large enough.

(ii) Each α : Sq → S0 gives the null class after iterating

Sqn → Sq(n−1) → Sq(n−2) → · · · → S0,

for n large enough.

Around 1976 Ravenel conjectured that the non-nilpotent self-maps of finite

spectra are detected by complex cobordism. This nilpotence conjecture will be

a consequence of the following result.

Theorem 1.1 (Devinatz, Hopkins, Smith). Let R be an associative ring

spectrum of finite type ( i.e., connective and with finitely generated homotopy).

Then the kernel of the Hurewicz map π∗R → MU∗R is a nilideal. That is,

every element is nilpotent.

Corollary 1.2. Let F be finite and let X be an arbitrary spectrum. In

addition, let f : F → X be such that the composition

F
f−→ X

η∧1−→MU ∧X

is nullhomotopic. Then f∧n : F∧n → X∧n is null for n large enough.

Proof. First we observe that we can assume X to be finite. Since also F

is finite, f induces

f̂ : S0 −→ F ∧DF f∧1−→ X ∧DF

101
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where DF is the Spanier-Whitehead dual of F . Both f and f̂ are ∧-nilpotent.

Moreover the null map F → X → MU ∧X gives the contractibility of S0 →
X ∧DF →MU ∧X ∧DF and vice versa. All in all we may assume F to be

S0 or better F to be Sn and X 0-connected.

Now form the ring spectrum R =
∨∞
n=0 X

∧n, where X∧0 = S0, analogous

to the tensor algebra. Since X∧n is highly connected, R is of finite type.

f ∈ πn(X) ↪→ πn(R) is ∧-nilpotent iff its image in πn(R) is so. But we know

that the Hurewicz image of f in MU∗R is zero, which places us in the situation

of our theorem.

Corollary 1.3. Let R be a ring spectrum with unit (not necessarily as-

sociative). Then for every α ∈ ker(π∗R→MU∗R) there exists an n such that

any bracket of α∧n is zero.

Proof. Apply Corollary 1 to the diagram

Snq R∧n

R .

wα∧n

[[[[]α∧n u
µ

Also, the following theorem is a consequence of the preceding one.

Theorem 1.4. Let

X0
f1−→ X1

f2−→ X2 −→ · · ·

be a direct system of spectra. Assume there are integers m and b such that each

Xn is at least (mn+ b)-connected. If MU∗fn = 0 for all n, then tel(f∗) ' ∗.

Example 1.5. Let f : F → Σ−qF be a self-map of a finite spectrum and

suppose that MU∗f = 0. Then the theorem gives

∗ ∼= [F, tel(Σ−nqF ) ] ∼= lim←-------[F,Σ
−nqF ] 3 [ 1 : F → F ],

so f is composition nilpotent.

Before turning to the proofs of the two theorems we state another appli-

cation which guarantees the existence of vn-self-maps. A proof can be found

in [8].
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Theorem 1.6 (Hopkins, Smith). Let X be finite p-torsion spectrum with

K(n− 1)∗X = 0. Then there exists v : X → Σ−qX such that

K(m)∗v =

{
0 m 6= n

isomorphism m = n
.

(So if K(n)∗X 6= 0 then v is not nilpotent and we refer to it as a vn-self-map.)

Moreover, let Y be another finite K(n−1)-acyclic spectrum and w : Y → Σ−rY

a vn-self-map. Then for every f : X → Y there exists i, j ≥ 0 with qi = rj

making the diagram

X Y

Σ−qiX Σ−ijY

uvi

wf

u w
j

wf

commute. In particular, there is a vn-self-map in the center of End(X). Fi-

nally if K(n)∗X 6= 0 it can be shown that

center End(X)/ nilpotents ∼= Fp[ v ].

2. An Outline of the Proof

In order to prove the main theorem we approximate the complex cobordism

spectrum MU by a sequence of ring spectra. Let X(n) be the Thom spectrum

of

ΩSU(n) −→ ΩSU
Bott∼= BU.

For example, X(1) = S0. The adjoint to

ΣCPn−1 SU(n)


z−1

1 0 · · · 0

0 1 · · · 0

· · ·
0 0 · · · 1

 (zπL + (1− πL))

S1 × CPn−1 (z, L)

wu

AAA
AAA

AAAC

AAAAC
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defines the left vertical arrow in the commutative diagram

CPn−1
CP∞

ΩSU(n) ΩSU = BU .

w

u u
w

It is not hard to see (for example using the Leray-Serre spectral sequence) that

H∗ΩSU(n) = Z[ β0, β1, · · · , βn−1]/(β0 = 1),

where H∗CPn−1 = 〈β0, β1, · · · 〉. From the Thom isomorphism we can conclude

that

H∗(X(n)) = Z[ b1, · · · , bn−1] ⊂ Z[ b1, b2, · · · ] ⊂ H∗MU.

Since now the inclusion X(n) → MU is 2(n − 1)-connected we see that the

Hurewicz map

π∗R MU∗R

X(n)∗R

w

u
ϕ

�
�
�
��

sends every element α ∈ ker(π∗R → MU∗R) to the zero element in X(n)∗R

for 2n > |α|. Thus it remains to show that if ϕn+1α is nilpotent, then so is

ϕnα.

Lemma 2.1. Let R and E be commutative, associative ring spectra and

α ∈ πnR. Then the Hurewicz image ϕ(α) ∈ E∗R is nilpotent iff the telescope

α−1R = tel(R
ᾱ−→ Σ−nR

Σ−nᾱ−→ Σ−2nR −→ · · · )

ᾱ : ΣnR ∼= R ∧ Sn 1∧α−→ R ∧R µ−→ R

is E∗-acyclic, i.e. E ∧ α−1R is contractible.
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Proof. We leave the proof as an exercise. The reader may use the diagram

E ∧R ∧R

ΣnmR ∼= Snm ∧R Rm ∧R ∼= S0 ∧Rm ∧R E ∧R

R ∼= S0 ∧R .

hhhhhhhhhj
1∧µ

hhhhhhhhjᾱm

wα∧m∧1
''''

''''')E∧αm∧1

u 1∧µ
m+1

wη∧µm+1

u
η∧µm∧1

''''
''''

')
η∧1

Note that X is contractible iff each localized spectrum X(p) is contractible

for all primes p. So we may assume that R is p-local (and of finite type).

However, we only deal with the case p = 2 for simplicity’s sake.

For the key step from X(n+1) to X(n) we define spectra Fk by the pullback

diagram of fibrations

ΩSU(n) ΩSU(n)

Fk ΩSU(n+ 1)

Jpk−1S
2n

ΩS2n+1 .

w

u u

u

w

u
y w

Here Jpk−1 denotes the 2n(pk − 1)-skeleton of ΩSn+1.

We are able to compute the singular homology of this diagram. Recall that

H∗ΩS
2n+1 = Z[ βn], bn is of degree 2n. H∗JlS

2n is the subgroup generated

by 1, bn, · · · , bkn (see Whitehead’s book for details.) The Leray-Serre spectral

sequence reads

H∗Fk = H∗(ΩSU(n))
〈

1, βn, · · · , βp
k−1
n

〉
.

Let Gk be the Thom spectrum of Fk → BU . Then again the Thom isomor-

phism gives

H∗Gk = H∗(X(n))
〈

1, bn, · · · , bp
k−1
n

〉
.
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We now outline our program for the proof of the key step. The last lemma said

that the nilpotence of ϕn+1(α) implies the contractibility of X(n+ 1)∧α−1R.

A vanishing line argument will show that GN ∧ α−1R is also contractible for

large enough N . The nilpotence cofibration lemma will let us conclude that

Gk+1 ∧ α−1R ' ∗ ⇒ Gk ∧ α−1R ' ∗.

Finally the lemma applied to ∗ ' G0 ∧ α−1R = X(n) ∧ α−1R furnishes the

nilpotence of ϕnα.

3. The Vanishing Line Lemma

We will study the X(n+ 1)-based Adams spectral sequence

E2(Gk ∧R,X(n+ 1))⇒ π∗(Gk ∧R).

By taking a power of α, assume that ϕn+1(α) = 0, i.e. α is in positive fil-

tration, say in Exts,tX(n+1)∗X(n+1)(X(n+ 1)∗, X(n+ 1)∗R), s > 0. Furthermore,

Er(R,X(n+1)) acts on Er(Gk∧R,X(n+1)) and multiplication by α increases

the filtration in E∗(Gk ∧R).

Lemma 3.1. E2(Gk ∧R,X(n+ 1)) has a vanishing line of slope tending to

0 as k →∞.

We postpone the proof for a while and show how the contractibility of

Gk ∧ α−1R for large k follows.

Let k be such that the slope of the vanishing line is less than s(t − 1)−1.

Therefore, β ∈ π∗(gk ∧ R) is transported into the vanishing area by a high
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power of α.

filtr.
degree α3β

α2β

αβ

β

Es,t2

t− s

��

��

AAA
AAA

AAA
AAA

AAA
AAA

AAA

��

w

u

This implies αmβ = 0 and what we wanted: Gk ∧ α−1R ' ∗.

Proof. (Sketch) Using the diagram of “orientations”

CPn X(n+ 1)

CP∞ MU

w
y

u
y

u
w

together with routine A-H spectral sequence arguments we can see that

X(n+ 1)∗CPn = X(n+ 1)∗[x ]/(xn+1)

X(n+ 1)∗CPn = X(n+ 1)∗ 〈β1, β2, · · · , βn〉

X(n+ 1)∗ΩSU(n+ 1) = X(n+ 1)∗[ β1, β2, · · · , βn]

X(n+ 1)∗X(n+ 1) = X(n+ 1)∗[ b1, b2, · · · , bn].

The Hopf algebroid X(n+1)∗X(n+1) agrees with MU∗MU in the range where

the bi are defined. The reader may verify that X(n+ 1)∗Fk is a submodule of

X(n + 1)∗X(n + 1) (e.g. by staring first at singular homology). It is the free

module over X(n+ 1)∗X(n+ 1) with basis {1, bn, · · · , bkn}. The vanishing line

follows now with standard means of homological algebra. See [4].
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4. The Nilpotent Cofibration Lemma

We have seen that

H∗Gk = H∗X(n)
〈

1, bn, · · · , bp
k−1
n

〉
.

Therefore, we can think of X(n + 1) as cellular complex with cells X(n) and

skeleta Gk. We will show:

Theorem 4.1. There is a map h and a cofibre sequence

ΣqGk
h−→ Gk −→ Gk+1, q = | b2k

n | − 1

such that h has contractible telescope.

Let us first see how this implies what we wanted, i.e. for any spectrum Z

Gk+1 ∧ Z ' ∗ ⇒ Gk ∧ Z ' ∗.

The following lemma will certainly be enough.

Lemma 4.2. If ΣqX
f−→ X −→ Cf is an cofibre sequence, then X ∧ Z is

contractible iff both tel(f) ∧ Z and Cf ∧ Z are so.

Proof. Let tel(f) ∧ Z and Cf ∧ Z be contractible and α : Sn → X ∧ Z a

map. The nullhomotopy of α in tel(f)∧Z compresses through some Σ−qnX∧Z.

Sn X ∧ Z tel(f) ∧ Z

Σ−q(n−1)−1Cf ∧ Z Σ−q(n−1)X ∧ Z Σ−qnX ∧ Z .

wα���������u

w

w w

u

y

Hence α is nullhomotopic in Σ−qnX ∧ Z and factors through a map to

Σ−q(n−1)−1Cf ∧ Z ' ∗. Now α is already nullhomotopic in Σ−q(n−1)X ∧ Z
and an induction completes the proof.

In order to prove the theorem we first give an alternative description of Fk

which reveals more structure.

The Hopf map induces a fibration

S2n −→ ΩS2n+1 h−→ ΩS4n+1.
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More generally there is a fibration

J2kS
2n −→ ΩS2n+1 hk−→ ΩS2k+1n+1.

The reader may check that

Fk := pullback(J2k−1S
2n −→ ΩS2n+1 ←− πΩSU(n+ 1))

can serve as the homotopy fibre of ΩSU(n + 1)
hkπ−→ ΩS2k+1n+1. We are led to

the following diagram

Fk Fk ∗

Fk+1 ΩSU(n+ 1) ΩS2k+2n+1

S2k+1n ΩS2k+1n+1 ΩS2k+2n+1 .

w

u

w

u u
w

u

whk+1π

u
w wh

Let E
π−→ S2m be a fibration with fibre F and let E

ξ−→ BU be continuous.

Then E is homotopy equivalent over S2m to

F ′ −→ E ′ = {(w, e)|w : I → S2m, w(1) = πe} ev0−→ S2m

and thus admits an obvious action

ΩS2m × F ′ F ′

PS2m × F ′ E ′ .

w

u u
w

Passing to Thom spectra it yields an action (ΩS2m)+ ∧ F ξ → F ξ, because

PS2m ' ∗. That is, we have expressed F ξ as module spectrum over the ring

spectrum (ΩS2n)+. It is well known that

Σ∞(ΩS2m)+ '
∞∨
j=0

S(2m−1)j

as ring spectra. We obtain operations

βj : S(2m−1)j ∧ F ξ −→ Ω(S2m)+ ∧ f ξ −→ F ξ.

It can be shown using the associativity of the action that βj = βj1 and Cβ1 '
Eξ.
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In our case we have an extension of the action of ΩS2n on F to an action

of Ω2Sn+1.

F F

E E ′ BU

S2m ΩS2m+1

w

u u

u

w

u

w

w
Recall H∗Ω

2S2m+1 = Fp[x0, x1, · · · ], |xi| = 2j+1m− 1.

Theorem 4.3 (Snaith). Stably, Ω2S2m+1 splits as
∨∞
k=0 Σ(2m−1)kDk where

H∗Σ
(2m−1)kDk = weight k summand in H∗Ω

2S2m+1.

H∗Dk is free over A through dim[k
2
].

Now we define h in the cofibre sequence

ΣqGk
h−→ Gk −→ Gk+1

to be the composite

Σ(2m−1)jF ξ −→ Σ(2m−1)jDj ∧ F −→ (Ω2S2m+1)+ ∧ F ξ −→ F ξ.

It remains to show that the telescope of h is contractible. But we know that hj

induces zero in H∗(−,Fp). Take α : Sq −→ F ξ. Then for j such that |j/2| > q

we factored βj1α through the Eilenberg–Mac Lane spectrum. Hence it is null.



APPENDIX A

A Construction of the Steenrod Squares

The following construction is important in that it easily generalizes in

several ways. See Steenrod-Epstein [22] for more information; in particular,

the first section of Chapter VII gives a good overview of the construction. The

details of this construction were taken from [11].

1. The Definition

Let X be a pointed space. This gives us a filtration Fk = FkX
n of Xn,

where Fk = {(x1, . . . , xn) : at least n − k points are the basepoint }. For

example, F0 = {(∗, . . . , ∗)}, F1 = X∨n, and Fn = Xn. Consider a subgroup π

of the symmetric group Σn on n letters acting on Xn (on the left) by permuting

the factors. To the group π corresponds a universal π-bundle

π Eπ

Bπ .

w

u

Here Eπ is a contractible CW-complex with a free (right) π-action and Bπ ∼=
Eπ/π. Since π is discrete, the bundle is in fact a covering space and Bπ is a

K(π, 1). Most important for us will be the case n = 2, π = Σ2 = Z/2; here

we can take Eπ = S∞ with the antipodal action, and Bπ = RP∞.

The Borel construction gives us a bundle

Xn Eπ ×π Xn

Bπ ,

w

u

where Eπ ×π Xn = (Eπ × Xn)/∼ and (eg, x) ∼ (e, gx). Because the action

of π on Xn preserves the filtration, we have a subbundle with total space

111
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Eπ ×π Fn−1. We define DπX to be the quotient Eπ×πXn

Eπ×πFn−1
. It is easy to check

that we have the following homeomorphisms

Eπ ×π Xn

Eπ ×π Fn−1

∼=
Eπ ×π X∧n

Eπ ×π {∗}
∼= Eπ+ ∧π X∧n,

where we’ve used that X∧n ∼= Xn/Fn−1. Thus DπX is the pointed homotopy

quotient of X∧n by π.

The following lemma is crucial for the construction.

Lemma A.1. Suppose H̄ iX = 0 for i < q and that H̄qX is finite-

dimensional, where we are taking coefficients in a field. Then

H̄ i(DπX) = 0 for i < nq

and

H̄nq(DπX) = ((HqX)⊗n)π.

The last expression denotes the π-invariant elements of the tensor product,

where π acts by permuting the factors with the usual convention that inter-

changing two items of odd degree introduces a sign.

Proof. Associated to the bundle Eπ×πXn and subbundle Eπ ×π Fn−1 is

a relative Serre spectral sequence converging to H∗(Eπ×πXn, Eπ×π Fn−1) =

H̄∗(DπX) with E2 term

H∗(Bπ; {H∗(Xn, Fn−1)}).

Coefficients are taken in a local system as Bπ is not simply connected. Now

H i(Xn, Fn−1) ∼= H̄ i(X∧n) ∼= ((H̄∗X)⊗n)i, so the coefficients are zero for i < nq.

Thus the E2 term is zero below the line at nq and so H̄(DπX) = 0 for i < nq.

Moreover,

H̄nq(DπX) ∼= H0(Bπ, {Hnq(Xn, Fn−1)}) ∼= (Hnq(Xn, Fn−1))π;

for the last isomorphism, see G.W. Whitehead [25, p. 275]. Now π acts on

Hnq(Xn, Fn−1) in two ways. The first is through its identification with the

fundamental group of the base; this is the action that gives us the structure of

a local system, and is the action that is meant in the last displayed expression

above. But π also acts on this cohomology group because it acts on the pair
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(Xn, Fn−1). We claim that these actions are one and the same, at least up to

an inverse.

How does the fundamental group of the base act on H∗(Xn, Fn−1)? Let

γ : (I, {0, 1}) → (Bπ, b) be a loop at b. Since the pullback of Eπ ×π Xn

along γ is trivial, γ is covered by a bundle map from the trivial bundle I×Xn

to Eπ ×π Xn which is a homeomorphism on each fibre. Since {0} × Xn is

canonically homeomorphic to {1} × Xn, we get a well-defined map from the

fibre above b to itself. The effect of this map in cohomology is independent of

the choice of representative of the homotopy class and of the choice of bundle

map.

Now we’ll prove that the actions are the same. Choose a point e ∈ Eπ

in the fibre above b, and let γ be as above. Since Eπ is a covering space,

there exists a unique lifting γ̄ : I → Eπ of γ such that γ̄(0) = e. This

lifting has the property that γ̄(1) = eg for some g ∈ π; in fact, this is how

the isomorphism between π and π1(Bπ) is defined. We judiciously define a

bundle map I × Xn → Eπ ×π Xn by (t, x) 7→ [γ̄(t), x]. Then we have that

(0, x) 7→ [γ̄(0), x] = [e, x] and that (1, x) 7→ [γ̄(1), x] = [eg, x] = [e, gx]. Thus

under the correspondence described above, x 7→ gx. (We have been sloppy

about inverses, but of course this does not matter for the situation at hand,

as the invariant elements are the same in either case.)

So we now know that H̄nq(DπX) ∼= (Hnq(Xn, Fn−1))π, where π acts

through its embedding in Σn. Now

Hnq(Xn, Fn−1) ∼= H̄nq(X∧n) ∼= (H̄qX)⊗n

and these isomorphisms are equivariant with respect to the Σn action. Hence,

H̄nq(DπX) ∼= ((H̄nqX)⊗n)π

as required.

As an application of the lemma, take X = K(F2, q) = K. The Hurewicz

theorem implies that H̄ iK = 0 for i < q and H̄qK = F2. Therefore, the lemma

says that H̄nq(DπX) is F2 as well, since the action on F2 is trivial.

The inclusion of the fibre

K∧n y wi
Eπ ×π K∧n = DπK
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induces the edge homomorphism in the spectral sequence, and so

H̄nqK∧n
i∗←− H̄nq(DπK) = F2

is an isomorphism. The non-zero element of H̄nqK∧n is ι∧nq , where ιq ∈ H̄qK

is the fundamental class.

Corollary A.2. There exists a unique class Pπιq ∈ H̄nq(DπK) such that

i∗Pπιq = ι∧nq .

Now consider an arbitrary class u ∈ H̄qX. Represent u by a map X wu
K.

Then

X∧n K∧n Knq

DπX DπK
u

i

wu∧n

u
i

wι∧nq

w
Dπu

�
�
�
��

Pπιq

commutes. Here Dπu is defined by

DπX DπK

Eπ+ ∧π X∧n Eπ+ ∧π K∧n ,

wDπu

w
1∧u∧n

which makes sense since both 1 and u∧n are π-equivariant. Note that the

top row of the larger diagram represents the class u∧n since (u∧n)∗(ι∧nq ) =

(u∗(ιq))
∧n = u∧n, so there exists a class Pπu ∈ H̄nq(DπX) such that i∗Pπu =

u∧n, namely (Dπu)∗Pπιq, which is represented by the composite Pπιq ◦ Dπu.

It is easy to check that Pπ is a natural transformation from H̄q(−) to the

composite functor H̄nqDπ(−) and that it is the unique such transformation

satisfying i∗Pπu = u∧n.

The diagonal map X w∆
X∧n is equivariant when we consider X as a

trivial π-space, so we have a map j defined by

Bπ+ ∧X DπX

Eπ+ ∧π X Eπ+ ∧π X∧n .

wj

w
1∧∆
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Now we fix n = 2 and π = Σ2 = Z/2, and write P for Pπ. Then Bπ = RP∞ and

H̄∗(Bπ+) = H∗Bπ = F2[x] with |x| = 1. Since H̄∗(Bπ+ ∧X) ∼= F2[x]⊗ H̄∗X,

we may write

j∗Pu =

q∑
i=−q

xq−i ⊗ Sqi u (|u| = q)

for unique classes Sqi u ∈ H̄q+iX, −q ≤ i ≤ q. These are the Steenrod

Squares. We will find that for i < 0 the squares are zero.

2. Properties of the Squares

Proposition A.3 (Naturality). Sqi is a natural transformation from

H̄q(−) to H̄q+i(−).

Proof. We clearly have that

Bπ+ ∧X Bπ+ ∧ Y

Eπ+ ∧π X∧2 Eπ+ ∧π Y ∧2

w1∧f

uj=1∧∆ u 1∧∆=j

w
1∧f∧2

commutes, and so j (1 ∧ f) = (1 ∧ f∧2) j = (Dπf) j. Therefore, for u ∈ HqY ,∑
xq−i ⊗ f ∗ Sqi u = (1 ∧ f)∗

∑
xq−i ⊗ Sqi u

= (1 ∧ f)∗j∗Pu

= j∗(Dπf)∗Pu

= j∗P (f ∗u) (by naturality of P )

=
∑

xq−i ⊗ Sqi f ∗u .

Proposition A.4. Sqi is zero for i < 0.

Proof. Use naturality and the fact that H̄ i(Kq) = 0 for i < q.

Proposition A.5. Sqq is the cup square on classes of dimension q.
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Proof. Consider the commutative square

Bπ+ ∧X DπX

X X∧2 ,

wj

u
k

w∆

u
i

where k is the inclusion of X as b ∧X with b a point in Bπ+ other than the

basepoint. Put another way, k is given by smashing a map S0 → Bπ+ with the

identity map. (The maps k and i can be chosen so that the diagram commutes

on the nose.) Examining the effect of induced maps on Pu ∈ H̄2q(DπX) and

noting that k = l1, where l : S0 → Bπ+ sends x to 0 and 1 to 1, we find that

Sqq u = u ^ u.

Consider the map δ defined by

Dπ(X ∧ Y ) = Eπ+ ∧π (X ∧ Y )∧2 δ−→ Eπ+ ∧π X∧2 ∧ Eπ+ ∧π Y ∧2

[e ∧ ((x1 ∧ y1) ∧ (x2 ∧ y2))] 7→ [e ∧ (x1 ∧ x2)] ∧ [e ∧ (y1 ∧ y2)] .

endeqnarray∗Itisstraightforwardtocheckthat

(X ∧ Y )∧2 Dπ(X ∧ Y ) Bπ+ ∧ (X ∧ Y )

X∧2 ∧ Y ∧2 DπX ∧DπY Bπ+ ∧X ∧Bπ+ ∧ Y

wi

u T u δ u ∆̃
u

j

wi∧i u
j∧j

commutes, where T and ∆̃ are the obvious maps. We will use the left hand

square in the proof of the following lemma, and the right hand square in the

proof of the corollary.

Lemma A.6. δ∗(Pu ∧ Pv) = P (u ∧ v) for u ∈ H̄pX and v ∈ H̄qY .

The philosophy here and in many proofs in this section is to use special

properties of the universal example to prove the result in that case, and then

use naturality to deduce the result in the general case.
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Proof. Consider first the case X = Kp, Y = Kq, u = ιp and v = ιq. Then

using the left-hand square of the above diagram we find that

i∗δ∗(Pιp ∧ Pιq) = T (i ∧ i)∗(Pιp ∧ Pιq)

= T (i∗Pιp ∧ i∗Pιq)

= T (ι∧2
p ∧ ι∧2

q )

= (ιp ∧ ιq)∧2 .

That i∗ is an isomorphism for this universal example gives the desired result

in this case.

The general case follows by naturality:

δ∗(Pu ∧ Pv) = δ∗((Dπu)∗Pιp ∧ (Dπv)∗Pιq)

= δ∗(Dπu ∧Dπv)∗(Pιp ∧ Pιq)

= Dπ(u ∧ v)∗δ∗(Pιp ∧ Pιq)

= Dπ(u ∧ v)∗P (ιp ∧ ιq)

= P (u ∧ v) .

Corollary A.7 (Cartan Formula). Sqk(u ∧ v) =
∑
i+j=k

Sqi u ∧ Sqj v.

Proof. We compute∑
k

xp+q−k ⊗ Sqk(u ∧ v) = j∗P (u ∧ v)

= j∗δ∗(Pu ∧ Pv) (by the lemma)

= ∆̃∗(j ∧ j)∗(Pu ∧ Pv)

= ∆̃∗[(
∑

xp−i ⊗ Sqi u) ∧ (
∑

xq−j ⊗ Sqj v)]

=

i,j∑
xp+q−(i+j) ⊗ Sqi u ∧ Sqj v ,

and compare coefficients. The third equality uses the right hand square in the

commutative diagram before the lemma.

The cup product form of the Cartan formula follows by pullback along the

diagonal map.
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Exercise A.8. Prove that Sq0 σ = σ, for σ the generator of H̄1(S1).

The exercise can be proved directly from the definition, but the proof is

not just a formality. Indeed, one expects it to be a little trickier than the

previous proofs in this section, since it is a property that does not hold for

variations of this construction in other settings.

Corollary A.9 (Stability). Sqi commutes with the suspension homo-

morphism H̄q(X)→ H̄q+1(ΣX).

Proof. This follows from the exercise and the Cartan formula. See Sec-

tion 6.

Corollary A.10. Sq0 : H̄q(X)→ H̄q(X) is the identity.

Proof. Sq0 σ = σ 6= 0, so Sq0 ι1 is non-zero by naturality. But H̄1(K1) ∼=
F2, so Sq0 ι1 = ι1. Thus, using naturality again, we see that the claim is true

for q = 1. The Cartan formula implies that Sq0(σ∧q) = σ∧q 6= 0. So in the

same way as above we see that the claim holds for arbitrary q.

Proposition A.11. Sqi is a homomorphism.

Proof. We saw in Section 9 of Chapter 1 that stable operations are ad-

ditive.
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References on Complex Cobordism

The original computation of the complex bordism ring was:

J.W. Milnor, On the cobordism ring Ω∗ and a complex analogue,

Amer. J. Math. 82 (1960) 505–521.

Quillen’s introduction of formal group laws occurs in

D.G. Quillen, On the formal group laws of unoriented and complex

cobordism theory, Bull. Amer. Math. Soc. 75 (1969) 1293–1298.

In this paper he outlines a computation of the complex cobordism ring, us-

ing Steenrod operations in cobordism theory. He also shows that unoriented

cobordism is mod 2 cohomology tensored with a certain polynomial algebra as

an algebra, by the same methods. Moreover he shows there how to split MU

localized at a prime. More complete accounts occur in:

D.G. Quillen, Elementary proofs of some results of cobordism the-

ory using Steenrod operations, Adv. in Math. 7 (1971) 29–56.

M. Karoubi,

Some of these results were also obtained by tom Dieck:

D. tom Dieck, Steenrod Operationen in Kobordismen-Theorien,

Math. Zeit. 107 (1968) 380–401.

The basic structural implications of the formal group machinery are de-

scribed in

P.S. Landweber, BP∗(BP ) and typical formal group laws, Osaka

J. Math. 12 (1975) 357–363

as well as in “Part II: Quillen’s work on formal groups and complex cobordism,”

in

J.F. Adams, Stable Homotopy and Generalized Homology, Chicago

Lectures in Mathematics, 1974.
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Miscenko’s theorem is in

Miscenko,

The original construction of BP and the splitting of MU is in

E.H. Brown and F.P. Peterson, A spectrum whose Zp cohomology

is the algebra of reduced pth powers, Topology 5 (1966) 149–154.

The first serious investigation of the MU -Adams spectral sequence occurs

in

S.P. Novikov, The methods of algebraic topology from the view-

point of cobordism theories, Math. USSR Izvestija 1 (1967) 827–

913.

This article contains a huge variety of other deep ideas as well.

A good basic reference for formal groups is

A. Frölich, Formal Groups, Springer Lecture Notes in Math. 74,

1968.

The notion of p-typicality was introduced in

P. Cartier, Modules associés à un groupe formel commutatif:

Courbes typiques, C. R. Acad. Sci. Paris, Sér. A 265 (1967)

129–132.

Other references on this material:

S. Araki, Typical Formal Groups in Complex Cobordism and K-

theory, Lecture Notes in Math., Kyoto Univ., Kinokuniya Book-

Store Co., n.d.

M. Lazard, Commutative Formal Groups, Springer Lecture

Notes in Math. 443, 1975.

The book

D.C. Ravenel, Complex Cobordism and Stable Homotopy Groups

of Spheres, Academic Press, 1986.

contains a useful appendix on formal groups, as well as a systematic devel-

opment of Adams spectral sequences. It also contains essentially verbatim

accounts of a number of basic papers on the chromatic approach to the BP

spectral sequence.
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The first paper to use the computational power of the explicit generators

for BP∗ was

H.R. Miller, D.C. Ravenel, and W.S. Wilson, Periodic phenomena

in the Adams-Novikov spectral sequence, Annals of Math. 106

(1977) 469–516.

The chromatic spectral sequence is developed there, and used for example to

compute the 2-line of the BP E2-term. An interesting interpretation of the

chromatic resolution is described in

D.C. Johnson, P.S. Landweber, and Z. Yosimura, Injective

BP∗BP -comodules and localizations of Brown-Peterson homol-

ogy, ???.

The localization theorem is proved in

H.R. Miller and D.C. Ravenel, Morava stabilizer algebras and the

localizaton of Novikov’s E2-term, Duke Math. J. 44 (1977) 433–

447.

Jack Morava has another approach which gives a slightly different theorem,

explained along with much further material in

J. Morava, Noetherian localizations of categories of cobordism co-

modules, Ann. of Math. 121 (1985) 1–39.

and again in

E. Devinatz,

The coherence of the complex bordism ring was explored in

L. Smith, On the finite generation of ΩU
∗ (X), J. Math. Mech. 18

(1969) 1017–1024.

The invariant prime ideal theorem is in

P.S. Landwber, Annihilator ideals and primitive elements in com-

plex bordism, Ill. J. Math. 17 (1973) 273–284.

The Landweber filtration is constructed in

P.S. Landweber, Associated prime ideals and Hopf algebras, J.

Pure and Appl. Math. 3 (1973) 43–58

and the exactness theorem is proved in
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P.S. Landweber, Homological properties of comodules over

MU∗(MU) and BP∗(BP ), Amer. J. Math. 98 (1976) 591–610.

The theory B(n) with coefficient ring B(n)∗ = Fp[v
±1
n , vn+1, . . . ] is intro-

duced and shown to be free over K(n) in

D.C. Johnson and W.S. Wilson, B operations and Morava’s ex-

traordinary K-theories, Math. Zeit 144 (1975) 55–75.

This is exploited to prove that the dimensions of K(n)∗(X) form a non-

decreasing sequence if X is a finite complex in

D.C. Ravenel, Localization with respect to certain periodic homol-

ogy theories, Amer. J. Math. 106 (1984) 351–414.

This paper contains a wealth of other ideas. It introduced the most important

examples of Landweber localization functors, and enunciated the “nilpotence”

and “telescope” conjectures.

Useful further information is derived in

D.C. Johnson and Z. Yosimura, Torsion in Brown-Peterson ho-

mology and Hurewicz homomorphisms, Osaka J. Math. 17 (1980)

117–136.

P.S. Landweber, New applications of commutative algebra to

Brown-Peterson homology, Algebraic Topology, Waterloo 1978,

Springer Lect. Notes in Math. 741 (1979) 449–460.

The Nilpotence Theorem is proven in

E. Devinatz, M.J. Hopkins, and J. Smith, Nilpotence and stable

homotopy theory, Annals of Math. 128 (1988) 207–242.

The Thick Subcategory Theorem and its first consequences are described in

M.J. Hopkins and J. Smith, Nilpotence and stable homotopy theory

II,

A beautiful summary of this development is given in

M.J. Hopkins, Global methods in homotopy theory, Homotopy

Theory, Proceedings of the Durham Symposium 1985, Lon. Math.

Soc. Lect. Note Series 117 (1987) 73–96.

Ravenel has also written an account of this work in
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D.C. Ravenel, Nilpotence and Periodicity in Stable Homotopy

Theory, Ann. of Math. Studies 128, 1992.
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