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ABSTRACT

Imitating the classical g-expansion principle we use the elliptic character map to develop
the relation between elements in elliptic cohomology and their g-series in K-theory. We
show that, under certain exactness conditions, the integrality of elliptic objects is completely
controlled by their characters.

As an application, we obtain an interpretation of the cooperations in elliptic cohomology
as was conjectured by F. Clarke and K. Johnson. It enables us to give a description of the
elliptic based Adams-Novikov spectral sequence in terms of cyclic cohomology of modular
forms in several variables, and to set up a higher e-invariant with values in N. Katz’s ring
of divided congruences.

We show how the topological g-expansion principle can be used to equip elliptic coho-
mology with orientations which obey various Riemann-Roch formulas.
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INTRODUCTION

The most fundamental result about the relation between modular forms and their ¢-
expansions is known as the g-expansion principle. It captures the fact that the ring over
which a modular form is defined is determined by its g-expansion coefficients. Modular
forms have entered algebraic topology during the past decade by the construction of elliptic
cohomology [34][41][15], a complex oriented generalized cohomology theory attached to the
universal elliptic curve defined over the ring of modular forms. The point of this work is
to carry over the g-expansion principle into the topological framework and to develop the
relation between elliptic objects and their g-series in K-theory.

An algebraic technique due to P. Landweber [31] ensures the existence of a cohomology
theory corresponding to any elliptic curve which satisfies certain exactness criteria. For the
universal elliptic curves over the ring of modular forms these conditions are most easily
verified (1.2.1) by applying the classical g-expansion principle. We set up a character map
for these theories using the method of H. Miller [35]. The topological g-expansion principle
(1.2.4) then gives necessary and sufficient conditions on the elliptic homology and K-theory
of a space X for the integrality of a homology class to be controlled by its character. Its
cohomological version (1.3.2) provides a description of elements in elliptic cohomology in
terms of power series in virtual bundles over X which rationally behave in a modular fashion.
The assumptions are satisfied for all Landweber exact theories, many classifying spaces and
Thom spectra.

As a first application we identify the K-theory of elliptic cohomology (2.2.5) with Katz’s
universal ring of divided congruences [24][25][26]. It allows to transform topological results
into algebraic geometrical ones and vice versa (2.2.6) as was already indicated by F. Clarke
and K. Johnson [11]. We then prove their conjecture [11] on the structure of the cooperations
in elliptic cohomology (2.3.1). It can be viewed as the elliptic equivalent to a well known
result of Adams, Harris and Switzer [6] on the structure of the ring K,K. More generally,
we show that the homotopy ring of an n-fold smash product of the elliptic spectrum can
be interpreted as ring of integral modular forms (2.3.3) in n variables and that it admits a
multivariate g-expansion principle.

Our results enable us to compute the one-line of the elliptic based Adams-Novikov spectral
sequence (3.1.6). Moreover, we establish a symmetry relation (3.2.4) to interprete the
rich mathematical structure of the two-line as first cyclic cohomology of modular forms
in several variables with coefficients in Q/Z (3.2.5). An embedding (3.2.3) in a version
of Katz’s ring of didided congruences leads to the definition of the f-invariant, the higher
relative of the classical e-invariant. It associates to each even dimensional homotopy class
s between spheres an inhomogeneous sum of rational modular forms. In presence of a
certain congruence the f-invariant vanishes and s lies in third Adams-Novikov filtration.
Its relation to index theorems and to the n-invariant still represents work in progress and
will be given somewhere else.
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Finally, we show how the topological g-expansion principle can be used to equip elliptic
cohomology with orientations which obey various Riemann-Roch formulas (4.0.8). For
instance, the original Landweber-Ravenel-Stong elliptic cohomology admits an orientation
which leads to the Witten genus [48] of Spin manifolds with vanishing p; /2.

1. THE TOPOLOGICAL ¢g-EXPANSION PRINCIPLE

1.1. Rational Faithfulness. This section is meant to provide the algebraic context in
which the g-expansion principle is going to be developed. We start by looking at maps of
abelian groups whose rational behaviour characterizes their sources. We then ask under
which algebraic operations this property remains stable.

Definition 1.1.1. A morphism of abelian groups f : X — Y is rationally faithful if it
satisfies one and hence all of the following equivalent conditions

(i) the diagram

f
X Y

b e

XeQ—Y®Q

1S a cartesian square.

(ii) ker f is a rational vector space and coker f is torsionfree.

(iii) tors X —> tors Y is iso and cotors X — cotors Y is mono, where the ‘cotorsion’
cotors X of an abelian group X is X ® Q/7Z.

(iv) the sequence

laf f®@a_1
0 X ¢J) (X®Q)€BY( )

Y®Q

18 ezxact.

There are two faces to the source of a rational faithful map f. If Y is torsion free, the
elements of X are precisely the elements of its rationalization which lift under f @ Q to Y.
On the other hand if f ® Q is injective, we can describe the elements of X as the elements
of Y which rationally lift to X ® Q.

Example 1.1.2. Let N be a positive integer and R be a torsionfree ring which contains
1/N and a primitive N’th root of unity (. We denote by M) (R) the graded ring of
modular forms over R for the congruence subgroup

T (N) = {((1) ’;) mod N} C Sl,Z.



Let
o™ MRy — Z(9) @R
f o= flo) = f(Tate(d") jn(q)or Wean, Civd’)

be the g-expansion ring homomorphism for some choice of N-division point C}qu 0<4,5<
n — 1 and some weight k¥ € N (cf. appendix A). Then the classical g-expansion principle
(cf. A.1.3, A.2.3) can be stated by saying )\EI(N) is rationally faithful on its homogeneous

components.

Lemma 1.1.3. (i) Ewvery isomorphism of abelian groups is rationally faithful.

(ii) The composite of rationally faithful homomorphisms is rationally faithful.

(iii) If the composite X i) Y % Z is rationally faithful and g is mono or rationally
faithful then f is rationally faithful.

(iv) Let {fa : Xo — Yo} be an inverse system of rationally faithful morphisms s.t. the
sources X, are torsion free. Then lim X, — limY,, is rationally faithful.

(v) Let {fo : Xo — Yo} be a direct system of rationally faithful morphisms. Then
colim X, — colimY,, is rationally faithful. In particular, let M — N be a rationally
faithful R-module homomorphism between R-modules M, N and S be a multiplicative
set in R. Then M[S~1] — N[S~!] is rationally faithful.

(vi) Let X be a flat module over some ring R and f : M — N a rationally faithful
R-module map. Then fQr X : M Qr X — N Qg X is rationally faithful.

(vii) Let M be a module over a Noetherian ring R such that M is torsionfree as an abelian
group. Then the completion

c: M ®gr R[q] — MJq]
is mono and rationally faithful.

Proof. The first three claims are immediate from well known properties of cartesian squares.
To prove (iv) we use the second characterization of rational faithfulness in 1.1.1. Sources
X, and targets Y, are torsionfree. Hence, it is enough to show that the map induced in

cortorsion is mono. In the diagram

cotors (lim X,) —— cotors (limY,)

| |

lim(cotors X,) — lim(cotors Y,)

the bottom map is a monomorphism. If we know that the left vertical arrow is another
monomorphism, we are done. Let (z,)®1/N € (lim X,,) @ Q represent an arbitrary element
in its kernel. Then z, ® 1/N = z!, ® 1 for unique elements z!, € X,. The sequence (z’,)

defines an element in (lim X,) which agrees with (z,) ® 1/N in (lim X,) @ Q.



(v) is immediate from 1.1.1(iv) because exactness is preserved by direct limits.
The statement (vi) follows trivially from 1.1.1(iv) since

(M®Q) ®r X = (M ®r X) ® Q.

(vii) We first show the injectivity of the completion map for any (not necessarily torsionfree)
module N. Without loss of generality we may assume that N is finitely generated since
every module is the direct limit of its finitely generated submodules. Now the Artin-Rees
lemma applies [7] and states that the completion map for N is iso. It follows that the
completion map for M is monic. Also, for every prime p the completion map for M/p is
monic. It can be factorized in the form

M/p®r R[q] = (M ®r R[q])/p <8 (Mlq])/p — (M/p)[dq]

and so ¢/p is monic. Thus, Tor(coker ¢, Z/p) vanishes in the long exact sequence induced
by Tor( ,Z/p). That is, coker c is torsionfree and the assertion follows from 1.1.1(ii). O

1.2. The Elliptic Character in Homology. We are now able to give more examples of
rationally faithful homomorphisms. The universal elliptic curves give rise to formal groups

over the ring of modular forms

Mfl(l) d?f MEI(I)(Z[I/(S])

M) z MUY Z[N, ¢N])  for N > 2.
€
In appendix A we have chosen parameters such that the exponentials f in these charts take
the explicit form

f(z) = =2p(z,7)/p'(z,7) for N=1
&(z,7) ®(—2mi/N,T)
®(z — (2wi/N), 1)

Formal group laws are classified by Lazard’s universal ring. In algebraic toplogy this ring

for N > 2.

is presented by the complex cobordism ring QU due to the work of Quillen [4]. Hence, each
formal group law generates a genus, i.e. a ring homomorphism

MU, = QU — M™Y.

The genera induced by the exponentials f are known as Hirzebruch genera for levels N > 2
and coincide with the Landweber-Ravenel-Stong genus for N = 2 (cf. [18]).

Theorem 1.2.1. [34][15] There are complez oriented ring spectra E'*(N) s.t.
ErWx =y o MU X

are natural isomorphisms. EX'Y) is unique up to unique isomorphisms in the stable homo-
topy category.
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Level 2 elliptic cohomology was originally defined in [34] and [32]. The level 1 case is
treated in [9] and an alternative proof was given in [20]. See also [15] for the existence and
uniquenes statement of the corresponding ring spectra.

The existence of elliptic cohomology for higher levels can be shown as in [15] with the
help of results from algebraic geometry. We are able to give an elementary proof below
which only uses the g-expansion principle. In fact, it also shows that there is an elliptic
cohomology to any congruence subgroup I' C SlyZ for which a g-expansion principle is
available.

Recall that the coefficient ring of complex K-theory is the ring K, = Z[v*!] of finite
Laurent series in the Bott class v € KS2. It is convenient to define
KD _ { K.[1/6] N=1

def | K.[(n,1/N] N >2

Then for any choice of cusp and N > 2, the g-expansion induces a map

BRI = MY s 7(g) © Z[1/N, (n] C Z[1/N, ((9) = Ko™ ()

which we simply call )\g,;(N) again. The case N = 1 is treated similarly. That is, we use
the coefficient ring of K-theory to keep track of the grading. In the sequel it will not be

necessary to refer to the level again and we let I" be any of the congruence subgroups I'; (N).
Lemma 1.2.2. AL : EY — KI'((q)) is rationally faithful.

Proof. AL is the direct sum of rationally faithful maps. O

Proof of 1.2.1. We have to verify the Landweber exactness criterion [31] for the MU,-
modules M. Let p be a prime and uy the the coefficient of zP* in the [p]-series of the
formal group law. Then the regularity of sequence (p,u1,v2,...) is to be shown. First
up = p is not a zero divisor since M) is torsion free. Next, we claim that multiplication by
u1 is injective modulo p. For that we use the injectivity of the g-expansion map modulo p

EL[/p— K, (a)/p = (K% /p)(2)

which is an immediate consequence of the lemma as the cokernel of AL is torsionfree. Hence,
it is enough to verify that u; does not vanish identically modulo p. In A.2.6 we provide an
explicit strict isomorphism 6 between the formal group law ALFT of the universal elliptic
curve viewed over the ring of power series and the multiplicative formal group law Gm. Let
uj, denote the corresponding classes for Gym. Then we compute modulo p

O( X (ur)a?") = 0((plye . (7)) = [Plg,, (0(@)) = Tg uf(0(2))P

and a comparison between coeflicients gives

k

M(u) =uf =0 L,

In particular, u; is even invertible over the ring of power series. Finally, it is sufficient
to verify that uo is invertible modulo (p,u1). For that we may use the well known proof
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by contradiction due to J. Franke: Assume us is not invertible modulo (p,u;) and let m
be a maximal ideal containing p,u; and us. Then the elliptic curve over the residue field
k = MT /m has height greater than two which is impossible (cf. [46]). O

H. Miller [35] has shown how to make the g-expansion into a map of ring spectra and
we recall his work here. Let us be given graded formal group laws F' over a ring R and
F' over S, a ring homomorphism A\ : R — S and a strict isomorphism @ : F/ — \F.
Assume further that (R, F), (S, F') satisfy the Landweber exactness conditions. Then there
is a natural transformation A, s.t. on X = * we have A\, = A and, if L is a line bundle over
X and eg, eg are the corresponding Euler classes of L, then A\,(eg) = 0(eg). A is not a map
of MU,-modules. However, we may split A\, into two parts

A®1 )

id 0«
Rop MU.X 22 S @yp MUX “%) s @m MU,X

in which the first one is. The last two objects are entirely the same theory but with different
orientations. The isomorphism # guarantees that AF' is a Landweber formal group. In the
case of our ring homomorphims A" we give K ((g)) the multiplicative (Todd) orientation,
which is isomorphic to the Tate orientation by A.2.6. Note that K. (X)((¢)) is not repre-
sented by a spectrum. However, there is Landweber theory which agrees with KT (X)((q))
for finite spectra X and serves as intermediary in

EL(X) 28 KT (q) @xr KL(X) -5 KT (X)(q)

for arbitrary X. (It is a close relative of the function spectrum F(BS*, K') = KL,.) The
completed AL is the elliptic character. At the low risk of confusion we keep the old
notation AL.

We come now to the main result of this section, which we call the topological g-expansion
principle. It gives an equivalence between Landweber exactness criteria and the ¢g-expansion
principle.

Theorem 1.2.3. Let X be a spectrum. The elliptic character
X EL X — K[ X((q)

is rationally faithful if the following two conditions are satisfied
(i) EYX and KL X are torsionfree

(ii) for each prime p the multiplication by the Hasse invariant uy on EL X/p is monic.

Moreover, if X has the weak homotopy type of a countable CW -spectrum then the converse

statement holds.

Proof. Let the two conditions be satisfied. Then the map
N @l:EfX = Ef @pr EYX — KL ((q) ®pr EL X



12

is an inclusion by assumption (%) since it is rationally monic. Moreover, it remains injective

modulo p. To see this, note that by assumption (ii) we may as well replace EL X by
u; 'EL X = colim(EL X “5 BV X 25 )

€

and show that for any finite subspectrum Y C X the map
up'(AL ®1)/p: up 'ELY/p — K[ ((q) ®pr ELY/p
is an inclusion. Furthermore, if we write M (p) for the mod p Moore space and put Z =
Y A M(p), then by the universal coefficient theorem it suffices to verify the injectivity of
ul' (AN ®1):u B Z — K, () ®pr B, Z.
A theorem of P. Landweber [31] says that MU, Z is a finitely presented M U,M U-comodule
and admits a filtration of MU, MU-subcomodules
MU Z=FyDF ---DF;=0

so that for 0 < i < s, F;/F;11 is isomorphic to the comodule

MU*/(UO, Ug,- - 7un)'

Tensoring the filtration with the Landweber exact MU,-modules u; ' EL and K!'(¢)® BT Er
gives a filtration of source and target of ul_l()\£ ® 1). Moreover, the dummy version of the
elliptic character u7' (AL ® 1) respects this filtration as it is a map of left MU,-modules.
Hence, without loss of generality we may assume EL Z to be of the form EL /(ug,u, ... ,uy)
for some n. Then in the only non-trivial cases n = —1 and n = 0 the map in question is an
inclusion as a consequence of the g-expansion principle 1.2.2.

We now conclude that

X B X — K. (9)®pr B X =K, (q) ®pr E; ®mv. MU.X

(id,0)
= Kf ((Q)) QTate MU*X = K£ ((q)) OTodd MU*X

~  KI(q) ®xr KL (X).

is rationally faithful as follows: In the long exact sequence induced by Tor.(\l,Z/p) we
have

Tor (coker AL, Z /p) = 0

since A, /p is monic and K] ((¢) ®gr K| (X) is torsionfree. Thus, coker A} is torsionfree
and 1.1.1(iii) applies.
Finally, the composite with the completion

K, (9) ®xr K, (X) — K, (X)(q)

gives the elliptic character. The assertion now follows from 1.1.3(vii) after a localization at
g since K} is Noetherian and K! X is torsionfree.
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To show the converse, let X be of the weak homotopy type of a countable CW-spectrum
and Al be rationally faithful. Then the induced map in torsion is an isomorphism. Hence,
condition (4) is a consequence of the fact that tors EX X is countable (cf. [13]VII 3) whereas
each torsion element in K! X generates uncountably many torsion series in K. X ((g)). Fur-
thermore, Al is monic modulo p as its cokernel is torsionfree. Hence, mod p multiplication
by w1 is monic as it is invertible in the ring of power series (K! X/p)((q))- O

Corollary 1.2.4. The elliptic character
X EL X — K X(()
is rationally faithful if EX X is a flat EL -module.

Proof. Multiplication by p on E! and K! ((¢)) and by u; mod p on E! are monic and remain
so after tensoring with the flat module EL X over E!. Since K' is a direct summand in
K% ((q)) we also verified the absence of torsion in K. X so that 1.2.3 applies. O

Corollary 1.2.5. The elliptic character \. : E'F — KI'F((q)) is rationally faithful for
any Landweber theory F'.

This is a consequence of
Lemma 1.2.6. Let F and F' be Landweber exact theories. Then E.F is a flat E,-module.

Proof. The lemma is well known but for the reader’s convenience we repeat the argument.
Let M — N — O be an exact sequence of F,-modules and hence of MU,-modules. Then
tensoring with the flat M U,-module MU, MU yields an exact sequence

M vy, MUMU — N @uuy, MU.MU — O Qumuy, MU .MU

of MU, MU-comodules. The comodule structrure of each object comes from MU, MU. If
we tensor the exact sequence with F, from the right it still remains exact since

Tor}!V"MY(F,,0 @y, MU,MU) = 0.

To see the vanishing of Tor, one writes O ® pyy, MU, MU as direct limit of finitely presented
comodules as in [36] 2.11 and uses the Lanweber exactness of F. Finally, M @ pjy, MU, F =
M ®pg, E.F for any E,-module M. O

There are interesting universal examples which are not Landweber theories. Let
M String = MO (8) be the Thom spectrum of the 7-connected cover of BO. (The word
‘String’ in this context is due to H. Miller and will be explained later.)

Corollary 1.2.7. The elliptic character
M2 EY M String[1/2] — KL M String[1/2](q))

is rationally faithful.
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Proof. Let p > 5 be a prime. Ravenel and Hovey [21] have shown that the reduced powers
in the Steenrod algebra act freely on the Thom class in the mod p cohomology of M String.
This means M String is a wedge of BP’s when localized at p. In particular EL M String(p)
is a flat EL module and 1.2.4 applies.

3-locally M String A X splits into a wedge of BP’s where X is a finite spectrum with
cells in dimension 0,4 and 8 [21]. It suffices to prove that EL X is a free EL-module, for
then E! (M String A X) is just EX M String Qpgr ELl'X, and hence EL M String is flat. Let
Y be the bottom two cells. Then we have a long exact sequence

.. —E'S} LB L E'Y - E'S* — ENS' — .
and EL S is evenly graded. It follows that the sequence is actually short exact, and then
it has to split since EL S3 is free. Similarly, we have a long exact sequence

...— E'S" - EB'Y - E'X — E's® 5 E'sy — ..
and the same argument applies. So EL X is free, and we are done. O

1.3. The Elliptic Character in Cohomology. We now turn to the picture in cohomol-
ogy. For finte spectra the topological g-expansion principle gives criteria for the rational
faithfulness of the elliptic character by applying Spanier-Whitehead duality. However, we
are mainly interested in infinite spectra.

Definition 1.3.1. Let F,G be contravariant functors from a category D to abelian groups.
A natural transformation A : F — G is pro-rationally faithful if

l |

limyep(F(X) ® Q) — limxep(G(X) ® Q)

1S a cartesian square.

Let X, F,G be spectra and A : F — G be a map. We say \* : F*X — G*X is pro-
rationally faithful if it is so as natural transformation on the category of finite subspectra
of X.

Theorem 1.3.2. The elliptic character \f : Ef X — KX ((q)) is pro-rationally faithful if
EEX(p) is a projective EL-module for each rime p.

Corollary 1.3.3. The elliptic character
AL @ Ef M String[1/2] — Kt M String[1/2](q))
s pro-rationally faithful.

We prepare the proof of 1.3.2 with three lemmas.
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Lemma 1.3.4. The p-local elliptic character
A;(p) : Epzkp)X — szp)X((q))
s pro-rationally faithful if EED)*X is a projective E&)*—module.
Proof. Let E be an evenly graded Landweber exact theory such that F,X is a projective
E,- module. Then the universal coefficient spectral sequence [3] [15]
EDY = Ext’]’\fU* (MU.X,E,) = EPT1X

collapses and the edge homomorphism E*X — Hompsy, (MU, X, E,) is an isomorphism.
In particular, lim! vanishes since it is the kernel of

E*X — lim E*Y — lim Hompuy, (MUY, E,) = Homyy, (MU, X, E,).
YCX YCX

r T
We may take FE to be E(p), K(][J

K (q) ®pr By X(p) = K" (q)«X(p)

)((q)) or their rationalizations as with E! X (p) also

are projective. Hence, when evaluating the left exact functor Hompsy, (MU, X, ) on the
rationally faithful AT of 1.2.2, we obtain the cartesian square

Hom sy, (MU, X, E} () Hom sy, (MU, X, K} () (9))

l |

Homy, (MU, X, EY ® Q) — Hompyy, (MU.X, K} ()(9) ® Q)

in which each corner may be replaced by limy-x E*Y. That is, there is a pro-rationally
faithful map. However, it is not yet the elliptic character. To finish the proof we have
to compose it with the natural automorphism on limycx K1Y, ((¢)) induced by (id,) for
each K1Y ((q) = KL DY ((q)) as we did in 1.2.3. (Here DY denotes the Spanier-Whitehead
dual of Y.) O

Lemma 1.3.5. Let A be an abelian group and P(A) be the set of all primes p s.t. there is
an element of order p in A. Assume P(A) is finite. Then the diagonal map

A
A— Hp A(p)
1s rationally faithful. Moreover, the completion

(I, Ap)®Q —[[,(A®Q

18 Mono.

Proof. We use the third characterization of rational faithfulness in 1.1.1. There is a splitting

(1) 1, Ap) = @rera) Aw) @ [pgpa) Aw)
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in which the second summand is a torsion free group. Now it is clear that the torsion parts
map isomorphically. It remains to show the monomorphy in cotorsion. For that compute

cotors A =ARQ/Z=@,ARZL/p™ =D, Ap) ® Q/Z = P, cotors A

Thus, the composition of cotors A with cotors [ | Apy — II cotorsA () is mono as it is just
the inclusion of the sum in the product of cotorsions. The last statement is easily verified
by using (1). O

Lemma 1.3.6. Let M be a finitely generated module over a Noetherian ring R. Then
P(M) is finite.

Proof. Every p € P(M) lies in some associated prime ideal a, of M. That is, there exists
an element z, € M whose annihilator is the prime ideal a,. Any other prime ¢ € P(M) is
not contained in a, as x, has precise order p. We conclude that there are at least as many
associated prime ideals in M as primes in P(M). It is a well known fact that the set of

associated primes of a finitely generated module over a Noetherian ring is finite (cf. [28]VI
1.4, 4.9 and 5.5). O

Proof of 1.3.2. From the first lemma we know that
Ar(p) + (BrY)p) — (K1Y)p)(9)

is pro-rationally faithful on the category of finite subspectra Y of X. Let us now be given
a sequence (z¥) € limy K+Y ((¢)) which rationally lifts to a sequence (y¥) € limy E;Y ® Q.
Then for every prime p there is a unique sequence (zé)) € limy (ELY)(,) which agrees
with (yY) rationally and whose character is (z(};)) € limy (K}1Y) () ((g)- Thus, if we apply
1.3.5 to (mé)) € [[,(EfY)(y for each finite complex Y, we find a unique sequence (z¥) €
limy EY with the desired properties. This is possible since E{Y is finitely generated over
the Noetherian ring ET. O

2. DIVIDED CONGRUENCES AND MULTIPLE EXPANSIONS

2.1. Formal Characters. In the previous sections we understood the elliptic cohomology
of various spectra by exploring the properties of the elliptic character map. It is useful to
generalize this concept slightly.

Definition 2.1.1. A multiplicative transformation x : R — S between Landweber exact
theories is a formal character if x is monic in homotopy.

Obviously the elliptic character and the Chern character are formal characters. More
examples are given by the following simple

Lemma 2.1.2. Assume the formal groups F over a ring R and F' over S satisfy the
Landweber exactness conditions. Then so does F over R,S and the natural transforma-
tion R — R A S is a formal character.
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Proof. We have to verify the sequence (ug,u1,us,...) to be regular in R,S. As (R.,F)
suffices the Landweber exactness conditions, uy, is not a zero divisor in R, /(ug,u1 ... ,Up—1).
Hence, when tensoring with the flat R,-module R,S (cf. 1.2.6), uy does not divide zero
in R.S/(ug,u1,-.. ,up—1) and (R.S,F) is Landweber exact. In particular, we have that
R— R,S— R.SRQ=ZR®S®Q is monic which shows the second claim. O

In case S is rational stable homotopy SQ and F’ is the additive formal group one obtains
the Dold character

d:R.X — (RANSQLX 2R, mX Q.

which is an inclusion if X is Landweber exact.

Consequently, if one wishes to determine the structure of the Hopf algebroid R.R of
cooperations, one can do so by embedding R, R in the trivial Hopf algebroid R, ® R, ® Q
via the Dold character. Before carrying out this program in the case of elliptic cohomology,

we compute the ring K, E'.

2.2. The Ring of Divided Congruences. K,®FE. ®Q is concentrated in even dimensions
and can be identified with the ring of inhomogeneous rational (meromorphic) modular forms
> fi where f; has weight i. We omit the redundant powers of the Bott class v to keep the
notation easy.

Proposition 2.2.1. K,E' is the ring of sums Y. f; as above which satisfy the following
conditions: For each non zero integers k and for each choice of cusp the sum of q-series
S kT fi(q) takes coefficients in Z'[3] where Z' = oK' .

Proof of 2.2.1. We first show that the integrality condition is necessary. For that recall the
Adams operations ¢* which were originally constructed as unstable operations in [2]. To

obtain a map of spectra one has to introduce coefficients
1
YK — K[).

Alternatively, 4* may be defined as in section 1 by the ring homomorphism which maps v

to kv and the strict isomorphism

1 A A

] - G — ey
Here [k] denotes the k—series of the multiplicative formal group law Gm. The
Adams operations %* A 1 act on KoE' by ¢*(>fi) = Y. k7ifi.  Hence, if

p: K A K — K denotes the multiplication map in K-theory, then p. (@) (D> k7' f:)
is the g-expansion of the whole sum and it takes coefficients in Z!.
The converse statement is a question about rational faithfulness. By 1.2.5 we know that

N KoE' = EJ K — K} K(«q)
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is rationally faithful. Furthermore, we see from 2.2.2 below that

1 1
mo(p(LA ) (@) : KoK (a) — ( ] ZF[E])((Q)) =~ 1] (ZF[E]((q)))
kEZ—0 kEZ—0
is rationally faithful as well. Now the composite of the two homomorphisms reveals that
KyE" consists of sums Y f; which satisfy the stated condition. O

Lemma 2.2.2. The map

molu(t A1) KoK™ — T (2'17)
kEZ—0

is rationally faithful.

Proof. Recall the classical result of Adams, Harris and Switzer [6] [3] which identifies K, K
with the set of finite Laurent series in K, K ® Q satisfying

f(t,kt) € Zt,t 71, 1/k] forallk € Z —0.
The conditions can be reformulated to the equivalent statement that

1Ak 1. (us 1
LS QN | RS | A5
kE€Z—0 k€Z—0

is rationally faithful. Now let I' be the congruence subgroup I'; (N) for some N > 1. Then

K.K @ Zcw, ] — <k61;[07r0f<[%1) ® Zlow, 771 = (T ke, HIEY

1
N

is rationally faithful by 1.1.3(vi). It remains to show the rational fidelity of the completion

1 1 1
( I ™KL, ) ® L] — 11 (ZF[%])
k€Z—0 kEZ—0
which is easily verified. The case N =1 is similar. O

Example 2.2.3. For n > 1 and any congruence subgroup I' define the elements
jon = (Ban/4n)(1 — Eay,) € KoE' ® Q.

The g-expansion of jo, is integral (cf. A.1). In order to check if jo, actually represents an
element in KoE", it suffices to show the Z[1/k]-integrality of (Ba, /4n)(1 — k~2" Es,) for all
non zero integers k. The only term in question is the coefficient of ¢°

(1 — k2" By, /4n.
Let
oln e Ext}fn ={a € m, K®Q:nr(a) —nr(a) € KinK}/man K
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be the class with e-invariant By, /4n. Then
p(AAY*)(L(a) —nr(a)) = pno(v " Ban/4n) — nr((kv) " By, /4n))
= v 2"By,/4n — (kv) "By, /4n
v (1 — k72 By, /4n
lies in 74, K and coincides with the 0—coefficient under the periodicity map
T K 2 moK =2 7.
Hence, we have shown jo, € KoE".

The condition in 2.2.1 has a surprising refinement.

Lemma 2.2.4. Let Y f; be an inhomogeneous sum of rational modular forms. Then the
following statements are equivalent:

() Y fi lies in KoET.

(ii) 3 fi(q) takes coefficients in KoK'.

(iii) Y k~"f;(q) takes coefficients in Z*[1/k] for all non zero integers k.

(iv) Zh’f,( ) takes coefficients in ZY[1/h] for all non zero integers h.

(v) SS(L)ifi(q) takes coefficients in Z'[1/hk] for all non zero integers h, k.

(vi) S a'fi(q) takes coefficients in ZF) for all prime pt N and a € Z(X)
(vii) S a'f; takes coefficients in ZF for all prime pt N and all a € Z.

)

(viii) > fi(q) takes coefficients in ZF.

Proof. The equivalences (i) <= (ii) <= (i4i) have already been established in 1.2.5 and
2.2.1. (iv) and (v) are equivalent to the previous by the symmetry KoK' = K} K and
2.2.2. (vi) is equivalent to (v) since
N =2l
pthkN

Next, the implication (vii) = (vi) follows from ZED) C Zy and Zy = Zpy N Q. As (viii)
is a trivial consequence of (ii7), we are left with the statement (viii) = (vii) which is the
hard part. Let F,[(n] = Fa be the splitting field of (zN — 1) of degree d (the order of p in
(Z/N)*). Then Zg is the ring of Witt vectors of Fa. Now the assertion is a consequence
of 1.7 in [23]. An alternative proof is provided in the appendix B.1.4. O

Theorem 2.2.5. The ring KoE" coincides with the ring of divided congruences D' of
N. Katz [23]. In other words, for any choice of cusp

— r
N KB = BUK 25 KUK ()Y KD (9)
1s rationally faithful.

Proof. KoE" is the ring of sums Y f; of rational modular forms such that 3" f;(q) takes
coefficients in Z' by 2.2.1 and 2.2.4. O
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The theorem is a g-expansion principle for trivialized modular forms in which form it is due
to N. Katz [23]. Katz identified the ring of divided congruences with the coordinate ring of
the moduli space of elliptic curves together with isomorphisms of their formal groups with
the multiplicative group. It also can be found in [11]. As a consequence we obtain a proof
of a well known result of Serre [43] [11]:

Corollary 2.2.6. The denominator of Boy/2k is the largest one (away from N) occuring
as constant term of any modular form for T1(N) of weight 2k with q—series in Q+Z* (q)) C

Cl(a)-

Proof. Let f be a modular form such that

fl@) —d°(f) € Z"(q)

where ¢°(f) denotes the 0-coefficient of its g-expansion. Then f — ¢°(f) lies in KoE". Thus
q°(f)(v=% —1) represents an element in Ext}{ﬂl/ ) Which is well known to be a cyclic group
of order equal to the denominator of By /2k. O

We also get an elliptic form of the Hattori-Stong theorem for free:
Corollary 2.2.7. The K-Hurewicz map EX — K,E" is rationally faithful.
Proof. immediate from 1.1.3(vii), 1.2.2 and 2.2.5. O

2.3. Multivariate Modular Forms and Expansions. We are now prepared to give a
description of EL ET in terms of integral modular forms in two variables and a g-expansion
principle for such forms.

The theory KT splits into a direct sum of K[1/N]-theories. Using 2.2.5 we conclude that
the elliptic character

N KI®AL ~
A KVE' 2 K| g, K.E' 5" K @k, (KL () = (KL ®k. K1)(q)

is a rationally faithful map of left K}-modules.
Let A" E denote a A-product of n copies of a theory E. Likewise we use the notation

® % M for a product of modules M over a ring R. Then we may consider the (go, g1, ... ,qn)-
expansion

(A ET) = ENATET) KL (A"E") (%) = @r K. E (40))

®5ﬂqo)) (®IIC(:£1,,n(K£ Rk, K»I:)((Qk)))«qo))

= (@K KD (q05--- 1 an))

Hence, in even dimension the (qo, .. . , ¢,)-expansion takes coefficients in the tensor product

Z(TH—I)F — n—+1 ZF
def ®
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which is simply Z[1/2] for I" = I'; (2). For this congruence subgroup and the case n =1 the
following multivariate g-expansion principle was conjectured by F. Clarke and K. Johnson
in [11].

Theorem 2.3.1. The (qo,q1, - - - ,qn)-ezpansion is rationally faithful. That is, T.(\*T" E")
is given by sums > fo® f1 ®...® fn of products of rational (meromorphic) modular forms
with integral (qo, - .. ,qn)-expansion.

Proof. The first map AL in the above is rationally faithful by 1.2.5. Next, we observe that
the tensor product of elliptic characters is the composite of n maps of the form 1 Q... ® 1 ®
M ®1®...®1 each of which is rationally faithful by 1.1.3(vi) and the discussion above.
Hence, the product ® AL ((qo)) is so by 1.1.3(iv). Finally, we use 1.1.3(iv), (vii) and an
obvious induction to show that the completion map is rationally faithful. U

There is a modular interpretation of the ring 7, A" E'.

Definition 2.3.2. A test object in n variables over a ring R is a sequence
(Eo /s, w0, Po) =% (B1/5,w1, P1) 25 ... 25 (Epo1 /g, wn—1, Pa)

consisting of
(i) elliptic curves E; over an (Q" R)-algebra S for each 0 <i <n
(ii) nowhere vanishing sections w; on Fj;
(iii) points P; of exact order N on E;
(iv) isomophisms @; : E; — Ei+1 of formally completed formal groups s.t. ¢} wi11 = w;
when viewed over Ei.
A modular form for T'((N) over R in n variables of weight k is a rule f which
assigns to each test object an element

f((EO/SaWOrPO) ﬂ) s ‘Pn_—f (En—l/Sawn—th—l)) €S

satisfying the following conditions
(i) f only depends on the S-isomorphism class of the sequence
(ii) the formation f((Eo,s,wo, Po) 2o, (En-1/8,Wn-1, Pn—1)) commutes with ar-
bitrary base change
(iii)
F(Boss, Awo, Po) 2% ... 25 (Ep—1/5, Awn—1, Pu-1))
= Aikf((Eo/S, wp, Po) ﬂ) e ‘Pn_)—2 (En—l/Sa Wn—1, Pn—l))

We denote by M:FI(N) (R) the (Q" R)-algebra of such forms.
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The fundamental test object is the sequence of Tate curves

(21) (Tate”(qN),wcan, {-PZ}) dff

(Tate(qg)v)awcana PO) ﬂ) .. SOn_)—l (Tate(q'r]zv—l)awcana Pn—l)

over Z™1 (M) ((qo, ... ,qn_1)) with the canonical isomorphisms ¢; : ¢; — gi4+1 between them
and any choice of N-division points

Py = (g for0 < kil <N,

Let R be a ring in which N is invertible and which contains a primitive N-th root of unity
(n. Then the (qo,qi1,-.. ,q9,)-expansion at the sequence of cusps {F;} is the ring
homomorphism

M£n+1)F(R) — Z((qo, v ,qn)) ® ®n+1 R _c) (®n+1 R) ((QO7 .. aqn))
defined by

[ fle) = f(Taten(qN)z((qo,...,qn))®(®n+1 R)’ {Pi})-

We say f is holomorphic if f(g) already g¢-expands in (®"+1 R)[qo;--- ,qn] and write

M Or (R) for the graded ring of such forms.

Corollary 2.3.3. There is a canonical isomorphism

m \" BT 2 MIT(ZF) — T

and the following q-ezpansion principle holds: If for some cusp f € MM (Q[¢n]) has all its
(o, - - . ,gn_1)-exzpansion coefficients in the ring Z™ then it does so at all cusps and there

18 a unique f € M,?F which gives rise to f by extension of scalars.

Proof. m.(A\" EV) corepresents the functor from graded rings to sets given by the following
data
( (i) isomorphism classes (F; /R, Wi, P;) of n elliptic curves Ej,

nowhere vanishing sections w; and points P; of order N.

R+ { (i) a sequence of graded isomorphisms Fj o, | Ynp F,_q ’

where F is the formal group law of E; in the formal parameter

z = z(F;,w) under which w = dz.

\ 7

This is a consequence of the universal property of ®§f/[_(}* MU,MU and the following com-

mutative diagram

Q" MU, Q" E,

l N

_ -1 ¢
v, MUMU — Qpr E,E" — R,
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Any ring homomorphism ¢ gives rise to n elliptic curves via 7, n graded formal group
laws together with a sequence of isomorphisms of graded formal group laws classified by
ﬁ/[_[}* MU,.,MU and vice versa.
Likewise, there is a canonical map
Q" M, — M
given by

(C2®...® M) (Eoss,wo, Po) 2> ... F (En1/5,wn—1,Pa-1))
= EfO(EO/Saw(JaPO)"'fn_l(Enfl/Saw’nbenfl)

which induces n elliptic curves and graded formal group laws F; over M. Choosing the
identity isomorphism beween them, we get a graded ring homomorphism

7. N* BV — ML,

On the other hand, any modular form f in n variables over Z™ can be evaluated on the
obvious universal test object over 7, A" E'. One readily verifies that this gives a well
defined inverse.

The g-expansion principle for modular forms in n variables is now an immediate conse-
quence of 2.3.1. O

3. MoDULAR HOMOTOPY INVARIANTS

3.1. The Elliptic Based Adams-Novikov Spectral Sequence. Recall the construction
of the Adams-Novikov spectral sequence (ANSS) [4]. Let E be a ring spectrum with unit
ng : S — E. Let E denote the fibre of ng and

- D.j\
Pl

S—F

be the exact triangle. Define spectra E* = A® E and E* = EA A\’ E. By smashing the exact
triangle with E* and applying the functor 7, one obtains an exact couple. The associated
filtration of 77 is given by

F® =im (7, E* — m.8S).
Our goal is an intrinsic description of the Es-term in terms of the coefficients E, by means

of a formal character. Such a description is only known for the character np A E : E =
SNE — EANE.
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Lemma 3.1.1. Let E, F be flat ring theories with torsion free coefficient groups. Let
r: E — F be a map such that r.(1) = 1. Under these assumptions the group of s-cycles
Z$ satisfies

* ANE?
Z? = equalizer ( w,E* r- () 7« (F A\ E®) ).

(T AE®) mx(FANEAE®)

T (F A E®)

Proof. r fits into a commutative solid rombus

and makes the left triangle commute. After applying the functor m,(__ A E®) we have to
show that the cycles are precisely the classes in the upper corner 7, E* which make the right
triangle commute.

Let us refer to the elements in the image of mES — m.E* as permanent cycles even
though they may be boundaries in the Es-term. A permanent cycle certainly lies in the
equalizer by what we have said so far.

Next, let z be a arbitrary cycle in 7m,E£°. Then z lies in the kernel of the differential
7.(d A E®) where

d:E—YE —YEAE.

When smashing with F' the last map in d becomes an inclusion of a direct summand since
the suspension of

FAEANE™NAE PAFAE"S FARE

provides a retraction map. Thus, z generates an element in the kernel of the F—Hurewicz
map m,LE5t — F,XE*t!. As rationally this map is an inclusion, we conclude that z
gives a torsion element in 7, L E*t!. Hence, by exactness N z is a permanent cycle for some
integer N. As we have seen earlier this implies that N(nr A E* —r A ng A E®),z vanishes
in the torsion free group Fy A E*. Consequently, any cycle lies in the equalizer.

Finally, let z lie in the equalizer. = Then by exactness, z is annihalated by
m(np A d A E®). Since the F-Hurewicz map m,2E*t! — F,XE*T! is injective z has
to be a cycle. O

Note that if F' is rational stable homotopy SQ then a natural transformation r : £ — SQ
with 7,1 = 1 always exists. It is convenient to think of 7,2 E ®Q as the quotient F, ® Q/Q.
More generally, define the tensor algebra

T, = (@i ® E: 0 Q)/I
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of the algebra F,®Q. Here I is the two sided ideal generated by the relation [1] = 1 and & is
the direct sum of rational vector spaces. Then (7,E*) ® Q naturally agrees with the degree
s part of the graded algebra G, associated to the filtration im(@D,, ., ®@" Ex ® Q — Ty).
In detail, we have -

(M E) Q2@ E.oQ/ Y @ 'B.eQe®" 'E.~Gi.

Proposition 3.1.2. Let E be flat with torsionfree coefficients. Let Z, B be the be the
groups of cycles and boundaries of the AN-E term, respectively. Then there are canonical
isomorphisms

Z; =2 {z€Gi:1@z€im (E.N°E—E.QQQRQ’E.Q — E,®G:)}
B? im (B, N 'E — Q@ E,®Q — G%)

R

lef ( )

Proof. In the commutative diagram

7! —= B, Y FE° E.NE

| |
the left square is a pullback of monomorphisms by 3.1.1. Hence, a short diagram chase
gives the first isomorphism. Similarly, one sees from

Txd

E.NT'E E. S 1ps1 E.SSEs

| | |

®s E* ® Q s E*EsflEsfl ® Q GS$

that the subgroups of boundaries correspond. O

In the case of elliptic cohomology we can take r : E'' — SQ = HQ to be the 0-coefficient
in the elliptic character followed by the 0-dimensional term of the complexified Chern char-
acter. Then r is not a ring map, but r.(1) = 1. Each class of degree n of the graded algebra
G. contains an essentially unique representative f = Y f! ® ... ® f™ where non of the
rational modular forms f* is constant.

Corollary 3.1.3. The n-line of the E' -based AN-E term consists of sums
f=Xf'®...efreaG!

of products of rational modular forms f* such that 1® f € EL ® G? admits a representative
with integral (qo,q1,- .. ,qn) — expansion.
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The group of boundaries is given by sums which admit a representative with integral

(qos - - - »qn)-ezxpansion.

Corollary 3.1.4. Let I = (i1,42... ,in) be a multi index with only non zero entries. Let
qg' : G — Q be the map which sends a sum of products of modular forms to the ¢' =
qél -+« gin-coefficient of its exzpansion. Then q!(f) is integral for every cycle f.

Proof. 1 ® f has a representative of the form
=10 fl®...0f+3"r Ygohre - 0hlelertlg...@R "

with integral (go. ... ,qn)-expansion. Hence,

¢ (f) =1 f) = ¢ (v)

is integral. U

Example 3.1.5. We can ask whether the divided Eisenstein series

Es; = FEopBoy/4k
2% = o ok /

are non zero elements in the 1-line. 1® Eo;, € EL ® G admits the representative 1 ® Eq —
FEy, ® 1 with integral (qr,, qr)-expansion. Hence it lies in the Eo-term. Ey is non trivial
since the 0-coefficient is not integral. Indeed, for level N modular forms we can define the

homomorphism
LByt =zl /Bl — 2T @ Q/Z; k>0

1 is well defined for positive dimen-

sending a form to the 0-coefficient of its g-expansion. ¢
sions. Any boundary has integral g-coefficients as it is its only representative in Gik. We
claim that ¢! is a monomorphism. Let f be an element in its kernel. Then by the corollary

all coefficients of f are integral. That is, f is an integral modular form and thus bounds.

Theorem 3.1.6. The I-line E%Ak of the E¥ -based ANSS is the cyclic group of order m(2k)
generated by the Eisenstein series Eor. Here, m(t) is the numerical function with

0 if t£0 mod(p—1) orl/p ez’
wm®) =1 rz :
+v,(t) if t=0 mod(p—1) and 1/p ¢ Z
for all odd primes p and

0 if 1/2€ZrF
va(m(t)) = 1 if t#0 mod (p — 1) and 1/2 ¢ ZF
2+u(t) if t=0 mod (p— 1) and 1/2 ¢ ZF
In this notation vy(n) is the exponent to which the prime p occurs in the decomposition of

n into prime powers, so that

n = 2v2(n)gua(n)gus(n)
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Proof. We have just seen that sy generates a cyclic subgroup of Eé’4k of order equal to the
denominator of Bog/4k which is m(2k) up to invertible elements in Z* (c.f. [4]). Now let z
be any non constant rational meromorphic modular form of weight 2k. If z is a cycle and is
represented by some f, then all non zero g-coefficients are integral by 3.1.4. Furthermore,
q°(f) lies in Q + Z' C C as one easily verifies. It follows with 2.2.6 that there is a multiple
a € Z[1/N] such that ¢°(f) = ¢°(a Eo;) mod Z''. We conclude that f — a Fy lies in the
kernel of ;! and thus bounds. That is, z belongs to the cyclic subgroup of E%Ak generated
by Eoy. O

3.2. The 2-Line and Cyclic Cohomology. In order to identify the second line of the
E"-based ANSS we set up the higher analogue of the monomorphism +'. For that a better
description of the group of boundaries is necessary.

Lemma 3.2.1. Let z be a 2-cycle of degree 2k. Then there is a representative » | f ® g
which satisfies

"I (L f®g) € Q+ 2T

Proof. Let f denote the modular form over Q obtained from f € M, ) (Q[¢n]) by setting
(v = 1. Let ) a ®b be any representative of z. We claim that

Zf@g Za@b ba®1->1®ab
will do the job. Let u,w,s andtbe such that
Y1iRa®b+u®lw+s®t®1=0 mod Z3.
In particular, we have
Y1i®ae®b+u®l®w+s®t®1l = 0 mod Z*"
YV1Ia®b+u®l@w+s®t®1 = 0 modZ*"
Next, observe that for any f,g

SO 9) =Yz d(Na(9) =X Nz d® (f@9)

(3.1) =Yz d" (@) =t (Y feg)
=3¢ (f ®g) = 3 ¢°(f) ¢°(9) mod Z2T

Hence, we have

V10 f®g) 2 1®(¢°(a) ®¢°(6) —¢°(0) ¢°(a) @1 — ¢°(a) 1 ® ¢°(D))
= ZO()®1®q() +¢°(s) ®¢°(H) ®1
= Y@@ + "D (") +d°(s) @11

Setting (y ® 1 ® 1 = 1, we conclude
"N f @ 9) = (@ @) + ¢ D) (@) +4°(5) € Q mod Z*"
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O

Hence, when representing 2-cycles we may always assume them to be of the above

form. Note also, for every cycle 3 ¢%(g)f expands in (Q ® Z")((qz,qr) (3. ¢°(f)g in
(Z' ® Q) (g, qr)) respectively) up to series in Z?"' (g1, qr))-

Lemma 3.2.2. Let Y f®g represent a 2-cycle of degree 2k. Then the following statements
are equivalent
(i) > f®g is a boundary.
(i) N fRg+v®1+1®@w=0 mod Z*(qr,qr)) for some v,w of weight k.
(iii) there is a system of equations
Y FRd(9) +ve1+1® ¢°(w) 0 mod Z*"((¢)
() @g+1ewtv)®l = 0 modZ*(q)

for some v, w of weight k.
(iv) Y. q¢%g) f = h mod Q+ Z'((q)) for some h of weight k.
(v) S2¢°%f) g = h mod Q+ Z'(q) for some h of weight k.

Proof. The equivalence of the first two statements has already been established in 3.1.3.
The third statement follows trivially from the second by looking only at the left and right
series. On the other hand (7i7) implies (i7) by 3.1.4. (iv) and (v) are trivial consequences
of (4i7) by letting h be —v and —w respectively.

Now let (iv) be satisfied. Using 3.1.4 and 3.1 we know that

YIRg-2Yd @) -Xd 1oy +>Xd(f9)

has integral (g, gr)-expansion. Setting q; = gr = ¢q and {(y ® 1 = 1 ® {x we conclude

(3.2) YIrg—=>dW@f X g +>Xd"(fg)=0  modZ"((q)).
Hence, we define v = —h and w = h — ), f ¢ and compute
YR +r01+10¢%w) = Nfed9Y) -h®1+11¢(h—fg)

(9
= Zf®q(g) Pr)e1-4"(9g)fe1
(@ ®1+1®¢°(h) -1 ¢°(f)¢’(9) =0
YN eg+1ew+dv)el = 21®q(f)g+1®h—1®fg @)1
= Y104 (f+19¢(fg9)+10h-¢(h)®1
Y10 (=¢"(9)f +h+4°(F)d"(g) — ¢°(h)) = 0.

(v) is similar. O

Filter the ring of divided congruences DT by
DL d:f im(@;_ oM ®Q — D' ®Q) N DF
€



and define the subgroups of D,E RQ

Dt = DY
=k def Q+ k

roo_ r r
D, by Q+ Dy + M, @Q

Proposition 3.2.3. The homomorphism
2 Eyf = Z2/B} — DI @ Q/Z

sending >, f ®g to 3. q°(9)f is injective.

Proof. + is well defined and injective by the equivalence (i) <=> (iv) of the lemma.

We may draw another useful consequence of equality 3.2.

Proposition 3.2.4. A cycle represented by > f ® g satisfies the identity

Yf®g—fg®1=->9gRf+1®fg modZ?.

In particular, we have
A feg) =29 )

Proof. We have to verify the integrality of

(Cf®g—fg®1+g®f—1® fg)

which is immediate from 3.2 and 3.1.4.

29

O

The proposition suggests that we may restrict ourselves to antisymmetric cycles. For

that define the cocyclic object M,ESH)F with faces d; for : = 0,... ,s, degeneracies s; for

j=0,...,s and cyclic operators t; given by

di: MT — MET. S e gt YR filele fi... e 5]
s;t MUY 5 gt v 0 @t e e e @ ot

ty: METIT gt S8 g0 g o (1) T 1.0 £ @ fO
Then one easily verifies the identities

djdi = didj_l fori < j

sj8; = s8;sj41 fori <j
disj—1 fori < j
sjdi = id fori=j51i=5+1
di—15; fori>j+1
tsd; = —di_1ts—1 forl1 <i<s, tydy=(—1)%d;

tssi = —siitsp1 for1<i<s, tgso=(—1)%sst2,,, tt'=id
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The difference between cyclic and cocyclic objects is not serious. Each cocyclic object gives
rise to cyclic one and vice versa (cf. [22]). Dualizing Connes original definition, we define
the cocyclic bicomplex CC MT

JYEl 1=t 3T N Vel 1=t 30 N
b ¥ b —y
M2 1t M2 N 2T 1t M2r N
b - b —v
T 1—t T N T 1—t T N
where
s s—1
b = —1)%d;; ¥ = —1)%d;
e v S

and N =1+4+1t+...+t° is the norm map corresponding to the cyclic operator ¢ = t;. Let
MY in the left hand corner have bidegree (0,0) and write

HC*(M*') = H*(Tot CCM™)
for the s-cohomology of the total complex Tot CCM?T.
Theorem 3.2.5. The canonical map
can : H*(Tot CCM}*,Q/Z) —s E5T1*
induced by the projection onto the first column
Tot COM;T — (MT 5 m20 5 per 5 )
18 an isomorphism in dimensions s =0 and s = 1.

Proof. Let z = (f,a) € MU @@, ., M'T = Tot*CCM;T be a cycle. Then b(f) is an
integral representative of 1® f € M:Fébi+1 and thus a cycle in EST"*. Hence, can is well
defined as any b(g) € M "YT bounds in EST1*. In dimension s = 0 we have 1 — ¢ = 0 and
the two cycle conditions 1 ® f — f ® 1 = 0 mod Z?" obviosly coincide.

Next, let s = 1l and let z = Y. f ® g + h € Tot?’CC M}" be a cycle of degree 2k.
Then N(h) = h vanishes. We wish to verify the injectivity of can and assume can[z] be a
boundary in E;. That is, mod Z?' we have

Y f®g=v1+1Qw
for some v, w of degree 2k. Then

0=1-t)0f®9)=2fR9+9®f=Ww+w)@1+1® (v+ w)
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shows v — ¢°(v) = ¢®(w) — w. Using

0=¢" OB f®9) =3 ¢"(f) °(9) = ¢°(v) + ¢°(w)

we conclude that Y f®g=v®1 —1®v = b(v) bounds.
It remains to show the surjectivity of can. Let Z =) f ® g be a cycle in E;. Then

zdjf2f®g—2fg®1
satisfies (1 — t)(z) = 0 by the antisymmetry relation of 3.2.4. Moreover,
b(z) =310 fRg—-fR®1Qg+fR®9®1-1Q fg®1
is easily checked to be integral using the equalities 3.2 and 3.1. O
The complex
Cr MY 5 M2 Y a3t b

coincides with the well known cobar complex Cpyor (M}, MY) (cf. [40] A.1.2.11) under the
isomorphism

M @ur Qe M @ur MY — MT

e @gf*edl...[(f'eg)h) — ef'®@g f?®...09 ' f*®g’h.

Hence, for positive s we have

E5”™ = H°Cypr(M], M) = Cotoryr (M, M)

= Cotor;;;r(Mf , M} ® Q/Z) = H*Cypor (M, M} ® Q/Z)

H*™H(Cy,Q/Z)

1%

by the exactness of C'otor. Most results of this section can also be deducted from the cobar
complex. However, it is important to have explicit geomertical isomorphisms at hand.

3.3. d, e and f-Invariants. In this section we shall define some basic invariants of stable
homotopy groups. Throughout, we assume that E be a flat ring theory with evenly graded
coefficients F,.

Suppose given a stable homotopy class s € 7,5 in the filtration group F* of the E-based
ANSS. Then we can consider its image under the map

e Fy — Fi FET 2 ESMTS 5 EXNTS
If we take n = s = 0 then the invariant
e mS = F) — EYY = moE

gives the degree d of s. Now let the dimension of s be positive. Then 33’” vanishes as 7,5

is all torsion. Hence, we get the ‘Hopf-Steenrod invariant’

Ln+1 1,n41
ey, S = FL — By
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In case E is elliptic cohomology E' and n = 4k — 1 the invariant may be composed with
the monomorphism ¢! of 3.2.3 for some choice of cusp to yield
1,n+1 1
e:mS T B4 S 2T @Q/Z
Proposition 3.3.1. e coincides with the classical Adams invariant [5] in dimensions 4k —1
for T' =T1(2) at the cusp 0.

Proof. Let s € my,_1S be represented by a manifold M with a framing on its stable tangent
bundle. Then M is the boundary of some Spin manifold N since the Spin-cobordism group
vanishes in dimension 4k — 1. The e-invariant of s is given by the relative A-genus of N (ct.
[8]). The manifold N represents an element in the first line of the M Spin-based ANSS (cf.
[12]). Now ¢! takes N to the 0-coefficient in

_ r'y(2) -
nMspineQ — nE '® 00 K ?(g) e
Its value is the relative A-genus of N as A'1(2)(0) sends 4 to —% and € to 0 [18]. O

The e-invariant vanishes in even dimensions. Hence, for even n > 0 we have
2,n+2 | _ T2 2,n+42
ey TimpS=F; — Ey

which we may compose with the monomorphism 2 of 3.2.3 to obtain

2,n+2

L2
frm8 2 B S DI e/

The f-invariant permits a description in terms of Hirzebruch genera on manifolds with
corners, but the details shall be developed somewhere else. The next result shows that the
f-invariant already takes values in the smaller group of holomorphic divided congruences.

Proposition 3.3.2. The f-invariant admits a factorization
f
\]i
/

_r can
D' ez

™S QZ RQ/Z

where

T _
D, dof im(@j, M ®Q— D" @Q ND.

The kernel consists of elements in the higher filtration group F°.
Proof. Let s € 7, S be a stable class of even dimension n > 0. Then s lies in second

MU-filtration and we can find a § € m,(MU A MU) which projects to s. Now recall that
the elliptic genus o : QU — M already takes values in the subring M} of holomorphic
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modular forms (c.f. [18] 1.7 6.4). Moreover, by looking at the (g%, ¢’)-expansion we see that
the map

Te(0A0) : MU, MU — ELE" = M2"

already takes values in the subring M?" of holomorphic modular forms in 2 variables. Hence,
we obtain the commutative diagram

T (32MU A MU) 7. (S2EC A EY)
K
(2 MUAMU)QQ T (Z2ETAET)®Q
MU.(SMU) ET'(ZET)
MU @MU,®Q MM '®Q
MU, MU+MU,@Q+Q®MU., MZT+MTeQ+QeMT
MI®@M"gQ MIeMT®Q
M2U+ M @Q+QeMT M2T+ MTeQ+QeMT
L2
D ®Q/Z can D' ®Q/Z

in which § is mapped to the f-invariant of s in the lower right corner. Since k(3) = 2™ 1?(s)
in the MU-based ANSS we obtain a well defined factorization of the f invariant. The last
statement is clear. O

We are now going to compute the f-invariant of the periodic family 8 which was first
considered by L. Smith in [45]. Recall that the Hazewinkel generators v, are isomorphic to
un modulo the ideal generated by (p,u1,... ,up—1) (cf. [32]).

Theorem 3.3.3. [45]
(i) Let V(0) be the cofibre of p: S — S and p be an odd prime. Then there is a self map
By : 22Dy (0) — V(0)

inducing multiplication by v1 in complex bordism.
(ii) Let V(1) be the cofibre of @y and p > 5. Then there is a self map

&y : 220Dy (1) — V(1)

inducing multiplication by vo in complex bordism.
(iii) Let B be the composite

S2e*=1) 2 52° -1y () 2y 520" Dy (1) B (1) B w2ty o) B g%
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where 19,11, Po, p1 come from the cofibre sequences above and p > 5. Then B represents
a non-trivial permanent cycle.

A useful result in this context is the Geometric Boundary
Theorem 3.3.4. [40] Let E be a flat ring spectrum and E, be commutative. Let

w-lix Sy sw

be a cofibre sequence of finite spectra with E,(h) = 0. Assume further that [s] € E5*TH (V')

converges to s € m(Y). Then §[s] converges to h.(s) € w5t (W) where § is the connecting

homomorphism to the short exact sequence of chain complezes

0— E;(W) — E;(X) — E(Y) — 0.

Consider the case E = E'1(), In [32] it was shown that for p > 3
vy = (_1)(p71)/2A(p271)/12 mod (p, v1)
and we saw earlier already
v = E,_1 mod p.

Pyirig : £2P* DS 5 V(1) is represented by

vy € EY2P DV (1)) € mype 1y BV (p, v1).

Since E£ 1(1)(})1) = 0 we may apply the Geometric Boundary Theorem to the cofibre se-

quence
22Dy (0) 25 V(0) — V(1) 25 £2-11/(0).

Thus, the boundary é(vy) converges to pi$i1i1ig. To determine the boundary, we view vo as
an element in

Eg(;(zlzl)v(o) = 7T2(p271)EF1(1) /pa

compute its differential and divide by v1. Tt is customary to identify E- 'S ET(1) with the
augmentation ideal in the Hopf algebroid E, 1M E1(1) | Then the first differential becomes
the difference n;, — nr between left and right unit. Let m; be the coefficient of z?" in the
logarithm of the p—typicalized formal group law FEI‘l(l)' Let ¢; be the image of the standard

generators in BP,BP under the classifying map. Then we have the formulas (cf. appendix
of [40], [30])

nr(mg) = Y mitl (mg=to=1)
it+j=k
bPMmpy1 = Z mjvfil-

+j=n
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Hence, we obtain
nr(v1) = pnr(mi) =pti+u
nr(v2) = pnr(me) —nr(mi) nr(vy)
= ply+uth + (va+ 00t /p) — (t1 +v1/p)(pt1 +v1)P
= 'ult’l’ + vg — tw’f mod p
and thus
2_
S(vg) = &£ — vPt; € EX*P D (17(0)).
Finally we apply 3.3.4 to the cofibre sequence
§%-1 Py g%l 32-ly(0) — S7P.
and see that f is represented by
2_1)_
1/pd(# — oPt;) € B> D 7PHL,
In our old notation this element carries the name
-1 -1 -1
1p(1® (v1/p)P — o} @ (v1/p)) = =1/p* (] ®@v1) = =1/p* (B}~ ® Bp-1).
We conclude with 3.2.4

Proposition 3.3.5.
f(B)=—p By =p *Ep1.
The Deligne congruence E, ; = 1 mod p shows that 8 has order at most p. The
nontriviality of 8 is equivalent to the non existence of a congruence
1/p(Ep1—1) =w—¢"(w) modp
for any integral w — q°(w) of weight (p? — p).
4. ORIENTATIONS AND RIEMANN-ROCH FORMULAS

We can use the topological g-expansion principle to equip E' with orientations which
differ from the original complex ones. Recall that the Landweber-Ravenel-Stong elliptic
genus originated from the signature operator on the loop space of a compact Spin manifold
M after a transformation of variables. More precisely, E. Witten [48] formally identified
the S'-equivariant signature with the index of

0+ (TM) @ (@ Ny TM ® SpTM ® C)

using the Lefschetz fix point formula. Here 07 (T'M) is the Dirac operator of M and we
abbreviated A\, E b E/ﬁo(/\k E)tk and S,E b S o (SEE)tE.
€ €
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As the signature is only a twisted version of the Dirac operator one might expect to obtain
a more powerful genus by using the Dirac operator itself. The corresponding expression

ot (TM) ® ®"° S (TM — dimM) ® C

leads to the Witten genus (the factor q% A% included). The Witten genus gives an integral
modular form for every String manifold. We can ask if it arises from a map of ring spectra
w : MString — E' when restricting to the coefficients.

Lemma 4.0.6. There is a unique map of ring spectra w : MString — K ((q)) s.t. the
Riemann-Roch formula

wf!MSt'ring(a) — f!/l(®k>0 qu(dzm Uy — l/M) ® w(a) ® (C)

holds for all String-oriented mapsf : M — X between smooth compact manifolds and all
o € MString*M . Here var is the normal bundle of M.

Proof. We first show uniqueness. Let X be a smooth compact manifold. Then by the work
of D. Quillen [39] every element in M String*?X is of the form f!MSt”"g (1) for a certain

f: M — X as above. The value of w on %9 (1)

is given by the Riemann-Roch formula.
Furthermore every compact space has the homotopy type of a smooth manifold. Hence, w
is determined when restricted to the cofinal system of finite subspectra in M String. We
have seen earlier that all lim! vanish locally at each prime. Thus they vanish globally and
there can only be one map w with the required properties.

We could take the Riemann-Roch formula to show existence. However, there is a more
natural approach. Let A : M String —s M Spin — KT ((¢)) be the usual orientation which
induces the (complexified) A-genus on String manifolds. Let uA(f ) be the induced Thom
class for an arbitrary String bundle €. Then u“(§) = u;‘(ﬁ) RF° Syr(dim £ —§) is another
natural Thom class as the twisting factor is a unit in the ring of power series. The limit of
all such Thom classes yields a map of spectra w : M String — KT ((¢q)). Moreover, the new
Thom class is multiplicative. To see this, let n be another String bundle. Then certainly
uA(S +1n) = u"i(ﬁ ) uA(n). It remains to check the exponential behaviour of the symmetric

powers

SpE+m) = D _SME+mdm =D > S e S @)
n=0 n=07r+s=n

= Y 5@ Y 8%(7) ¢ = S (6) ® S ()
r=0 s=0

Thus w is a map of ring spectra. The correct Riemann-Roch transformation follows as in
[14]. O

Theorem 4.0.7. There is a unique map of ring spectra w : MString — Er[1/2] s.t.

Arw = w. In particular, the Riemann-Roch formula holds

ch xrw [ (@) = fTQA(TM) ch (QF7° S (TM — dimTM) ® w(a) ® C)).
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Proof. Consider the cartesian diagram of 1.3.3

E:M String[1/2] KM String[1/2](q))
l d l ch
H*(MString, B ® Q) — % H*(MString, Kt ® Q)(q))

in which the left vertical arrow is the Dold character. The lemma provides an element
w € KrM String((q)). In order to lift w to Er M String[1/2] it is enough to prove that

chw fM59(1) = FHUATM) ch (QF0 S (TM — dimTM) ® C))

gives an element in H*(X, Ef ® Q) for every String oriented map M — X. The argument
is well known (cf.[18](6.3)) but customly stated in terms of Chern numbers instead of Chern
classes. The computation of

A(TM) ch (QF° S (TM — dimTM) ® C)

in formal Chern roots x; of T'M leads to

2m (e8]

zi/2 (1 - ¢*)2
il:[ sinh(z;/2) 1:[ (1 — gFem)(1 — gFe o)

S SEECTL RN b GUCET D NSRS S
Hsmh (xi/2) (H (1 — gkezi) ¢ _HULT(xi)'

i=1

Here, the first identity holds since the first Pontrjagin class of vjs and hence of T'M vanish.
FE5 denotes the divided second Eisenstein series. In the last equality oy, is the Weierstraf
o-function for the lattice L, (cf. [49]). The coefficients of the r-th homogeneous part of the
last expression are homogeneous lattice functions of weight r, and so modular forms with
respect to any congruence subgroup I' C Sily(Z). Since f,H Q is linear over the coefficients
its pushforward lies in H*(X, Ef ® Q). It remains to show that w is a map of ring spectra.
Obviously,

Ef(M String A M String)[1/2] 2r, K{(MString A M String)[1/2]((¢))
is injective. Thus the assertion follows from 4.0.6. O

The Witten genus w of Er in the above theorem coincides with the canonical orientation
recently provided in [19] by the theorem of the cube. Our approach is more direct and
elementary but less conceptual than the one of Mike Hopkins.

We do not wish to invert 2 but M String is not well understood at the prime 2. However,
the method described above applies for other Thom spectra as well.

Proposition 4.0.8. Let MG be a Thom spectrum and E'}:MG(p) be projective for all prime
p. Let F: E¥ — K% ((q)) be an ezponential class s.t.

chF(V) € HY(X,E! ® Q)
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for all G-oriented vector bundles V over X. Then there is a unique orientation
w: MG — EY
s.t. the Riemann-Roch formula
Arw [ (@) = fTMF (var) © Arw())
holds for all G-oriented f : M — X and alla € MG*M.

Proof. The topological g-expansion priniple 1.3.2 applies. O

APPENDIX A. THE CLASSICAL ¢g-EXPANSION PRINCIPLE

In this appendix we recall the classical g-expansion principles of the basic elliptic curves
which lead to Landweber exact theories. The main references are the books of Silverman
[46] [47], Serre [42] and the articles of Katz [25] [26].

A.1. Weierstra3 Cubics. Classically a complex modular form of weight & is a function
on the upper half plane $ = {7 € C; im(7) > 0} which obeys certain transformation laws
and is holomorphic in a suitable sense. In order to obtain the notion of a modular form over
any ring, we will view them as certain kind of ‘distributions’. The test objects are elliptic
curves together with nowhere vanishing invariant differentials.

Let

GL' = {(w1,wq) € C?; Tm(wa/w1) > 0}

be the space of oriented R-bases of C. Its orbit space L under the right action of Slz(Z) is
the space of lattices L = Zwy + Zwo in C. Weierstrafl theory establishes a correspondence
between points L of L and elliptic curves given as cubics in the complex projective plane
by the inhomogeneous equations

Eic:y” =4a° — go(L)z — g3(L)

where

92(L) = 6020 uer, 1/1% 93(L) = 140 30 ey, 1/1°
Let A = g3 — 27g3 be the discriminant of E/c. Then L becomes the open subspace

Spec(C[ga, g3, A71]) of C2 = Spec(C[g2,93]). Physically, the Weierstra$$ cubic associated
to L is analytically isomorphic to the torus C/L:

z€C/L~ (z=p(2,L),y =p'(2,L))

where p is the Weierstrafl function

1 1 1
Pz L) = — + > (m —p)

0#£leL
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Under this map the translation invariant 1-form dz is sent to the nowhere vanishing holo-
morphic differential

w=dzfy € H(E/c, V).

Conversely, any Weierstra} cubic with invariant differential w generates a lattice of periods

(cf. [25])

L={[ wyyeH (Ex,Z)}.
We will freely think of the C*-space L as lattices with stretching action of C* or as space
of pairs (E/¢,w) with a (E/c,w) = (E/c,aw) for a € C*. A function f : L — C is said
to be homogeneous of weight £ € Z if it is equivariant under the action on C defined by
2+ a k2
For instance, the global coordinates go and g4 have weight 4 and 6 respectively. They
are closely related to the Eisenstein series of weight 2k

Gok(L) = Yoper 1 */2¢(20);  C(s) =X
as G4 = 12 g9 and Gg = 216 g3. A homogeneous function f gives rise to a periodic function
f(r) = f2mi(Z + 7Z)) on H. If f viewed as a function of ¢ = exp(2mit) extends to a
holomorphic function of ¢ in |g| < 1 it is called a holomorphic modular form. In this case,
its Fourier series or g-expansion determines f completely.
g2 and g3 are of particular importance as they freely generate the ring of holomorphic

modular forms
M"(©) = C[Gy, Gs).

We associate to each modular form twice its weight, i.e. |Gox| = 4k, so that _fl(l)((C)
becomes a graded ring. Furthermore, each Weierstral cubic has the structure of a one
dimensional group scheme. Its formal completion is a formal group. As it turns out, the
Weierstrafl parametrization is in fact an isomorphism of groups. Near the identity element
oo = [0, 1,0] the formal parameter

t=—-2z/y=—-2p(2,L)/p'(2,L) = 2z + 2 n>2 AnZ"
is the exponential of the group law in this chart. The series ¢t = f(z), a priori with coefficients
an, € MQF;(U (©) c C]q], actually gives an element in Z[1/6][w, ¢] for w = 1 —ezp(—z). This
can be seen from the g-expansion of p (cf. [18])

1 1 1
p(z’T) - Z n/2,z -n —z - (__ + Z n -n )
oyt (q /26 /2 —q /26 /2)2 12 ooz (q /2 —q /2)2

It is more convenient to equip L, = 27i(Z + 7Z) with the differential 27i dz rather than
dz. Then f(27iz) is the unique parameter in terms of which dz = dz/y for the universal
Weierstral cubic

y? =423 — eqx + €.
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In this notation
12 €4 = E4; 216 €3 = Ee

where Eo, = (27i)% Gy are the normalized Eisenstein series. We would like to give
an interpretation of the ring Z[1/6, E4, E¢| in terms of integral modular forms.

Definition A.1.1. Let S be a R-algebra. A test object is a pair (E/s,w) where E is an
elliptic curve over S (an abelian scheme of dimension one) and w is a nowhere vanishing
differential on E. A modular form over R is a rule which assigns to a test object (E/S, w)
an element

f(E/g,w) €8
satisfying the following conditions:
(i) f(E/s,w) only depends on the isomorphism class of the pair (E,g,w)
(ii) the formation of f(E,s,w) commutes with base change
(i) for any a € S* we have f((E/s,aw) =a *f((E/s,w)
We denote by M{l(l) (R) the R-algebra of such forms.

Alternatively, they can be thought of as global sections of certain invertible sheaves over
the moduli space of elliptic curves, but we will not pursue this point of view any further.

We wish to construct a g-expansion map for arbitrary modular forms, i.e. a ring em-
bedding of MT1()(R) into some power series ring. The original complex g-expansion map
can be recovered by evaluating the modular forms on the test object given by the universal
Weierstrafl cubic over

M"O(C) = C[Ey, B, A7)

and its section pushed over the ring of finite tailed Laurent series C((¢)) via the Fourier
expansion. We could use this process to define a g-expansion for modular forms over any
rings in which 6 is invertible by the following observation. Recall the development of the
Eisenstein series [42]

(A1) Ew(r) = 1-— Ak SO d* g

% 11 am

Here By, denote the Bernoulli numbers determined by

o

z/(e” —1) =) (Bi/il)s".

i=0
An inspection of this formula at & = 2,3 shows that the Weierstrall test object is already
defined over Z[1/6]((¢)). This leaves us with rings R which do not contain 1/6. Under the
change of variables

z—x+1/12 y—T+2y
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the Weierstrafl equation takes the form
y? +zy = 2° + B(g)z + C(q)
where
Blg) = —1/48(Eu(g) = 1)  Clq) = 1/496 (E4(q) — 1) — 1/864(Es(q) — 1)
are power series with integral coefficients (cf. [26]). This is the famous Tate curve which

is defined over Z((¢)) and restricts to the old if 6 is inverted.

Definition A.1.2. The g-expansion map is the ring homomorphism
XM (R) — Z(a) © R € R(q)
given by

=1 (Tate;z(q)oRrs Wean = dz/(2y + T)).

ier !
Needless to mention that the ring of complex meromorphic modular forms M, 1) (© is
just C[E4, Eg, A™!] and the two notions of g-expansions agree. If we define the ring of
holomorphic modular forms M, 1(1)(R) to be the subring of M, 1(1) (R) with g-expansion in
Z[q] ® R, we again have Mfl(l)((C) = C[Ey, Fg).
The most fundamental result about modular forms and their g-expansion is known as

g-expansion principle.

Theorem A.1.3. [13][24] If the g-expansion of a (possibly meromorphic) modular form f
over S of weight k has all its coefficients in a subring R C S then there is a unique modular
form f of weight k over R which gives rise to f by extension of scalars. Moreover, a modular
form of weight k is uniquely detemined by its g-expansion.

Corollary A.1.4. If R is a torsionfree ring, then the q-expansion map
(1
A MU D(R) — Z(q) ® R
1s rationally faithful.

In fact, the corollary is just a reformulation of the theorem for torsion free rings R. It is

also worth mentioning that the canonical map
M'Mz)e R — M O(R)

is an isomorphism (cf. [25]) if 2 and 3 are invertible in R.
A study of the g-expansion of the Eisenstein series F4 and FEg gives

Corollary A.1.5. Mi*"(Z[1/6]) = Z[1/6, Ey, Eg, A™"]
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A.2. Jacobi Quartics and Hirzebruch Curves. In the first paragraph we saw that
integral modular forms do not behave well at the primes 2 and 3. This is reason enough to
enlarge the concept of modular forms by varying the class of test objects.

Consider the family of Jacobi quartics given by the inhomogeneous equation

> =1-2022 + ezt

Its closure in CP? is singular at oo = (0,1,0). However, viewed as curve in CP? under
the normalisation map [z,y,1] — [1,z,22,y] it becomes an honest elliptic curve whenever
A = 64¢ (62 — €) does not vanish. The universal one of these lives over Z [d,¢, A7!], i.e.
any ring homomorphism into some ring R determines a Jacobi quartic over R.

We wish to investigate their relation with lattices. For that we restrict the action of SlyZ
on the space of oriented based lattices GL™ to the subgroup

1
I'1(2) dff {(O 1) mod 2}.

Then the half basis point w;/2 satisfies
b
(w1 4+ cw9)/2 =wi/2 mod L for all (a d) e I'v(2).
c
Hence, it is not hard to verify that the orbit space
L1(2) = GLT/T1(2)
def

is the space of lattices together with a distiguished 2-division point. In order to construct
the desired correspondence define the function [18]

f:CxLi(2) — G f(zL,wi/2) =1/v/p(z, L) = p(wi/2,L) = 2 + O(2?)
which is elliptic with respect to the sublattice L = Z wi + Z 2w, of order 2 in L. f gives a

group homomorphism

Conversely, for arbitrary coefficients ¢ and € with A # 0 we get a differential equation for
f which is uniquely solved with power series methods by a function f which is elliptic with
respect to a lattice L. This implies that L;(2) takes the form Spec C[d,e, A~ ].

By picking z as coordinate near the identity we identify f as exponential of the associated
formal group law. The distinguished point

f(w1/2) =0 € QE/(C = keI‘(E/C i) E/C)

of order 2 imparts an additional structure to each Jacobi quartic.
There is a natural generalization of this concept to higher levels N > 2. Jacobi quartics
belong to the family of Hirzebruch curves

1
Py +aonzN = (%)N + al(%)Nil + .. .aN_l(%) +apn.
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Let f(z,L,w1/N) be the theta function for which fV is elliptic with respect to L, which has
divisor div f = (0) — (27mi/N) and whose Taylor expansion around 0 is of the form z+ O(22).
Again, f can be taken as exponential of a formal group law and w; /N generates a subgroup
of order N. Note that given an elliptic curve over an arbitrary ring the existence of a point
of order N on a curve over R implies that N is invertible in R (cf. [26]).

Definition A.2.1. A T'(N)-test object over R is a triple (E/g,w, P) where E is an elliptic
curve over an R-algebra S, w a nowhere vanishing differential on E and P is a point of
exact order N. A modular form for the congruence subgroup I'i(N) of weight k is
a rule f which assigns to a test object (E/g,w, P) an element

f(E/S,w,P) €S

satisfying the analogous conditions of A.1.1. We denote by M,SI(N) (R) the R-algebra of
such forms.

Interesting test objects are the Tate curves Tate(q") /Z(q) With their canonical differ-
ential ween = dz/(2y+ ) and any point of order N. They are deduced from (T'ate(q), wean)
by the extension of scalars Z((q)) — Z((q)) ¢ — ¢"¥. The Tate curves have multiplicative
reduction given by

o
iy * q
(e =u € C /g%, dufu) (x:Z(l_quu 221 gk’

kez k=1
¢
vy= Z Nku3+zl Nk’d$/2y+$)
iz ( k=1

Thus, the points of order N in Tate(q") correspond to the points of order N on C*/q"N?
and have the form

¢ 0<ij<n-—1

where (n denotes a primitive N’th root of unity. All I';(N)-structures are defined over
Z(q) ® Z[Cn, 1/N].

Definition A.2.2. Let R be a ring in which N is invertible and which contains a primitive
N-th root of unity (n. Then the g-expansion map at the cusp Cf\,qj is the ring homomor-
phism

At N(R) — Z(g) © R € R((9)
defined by
ferfla = f(Tate( ™) 120 R> Wean> Chd)-

We say f is holomorphic if f(q) already g-ezxpands in R[q] for one and hence for all cusps
(cf. [27]) and write Mfl(N)(R) for the graded ring of holomorphic T'1(2)-modular forms over
R.



44

Theorem A.2.3. [13][26] If for some cusp a (possibly meromorphic) I'1(N)-modular form
f over S of weight k has all its q-expansion coefficients in a subring R C S then it does
so at all cusps and there exists a unique I'1(N)-modular form fo of weight k over R which

gives rise to [ by extension of scalars. Furthermore, every g-expansion map is injective.

(N)

Corollary A.2.4. If R is torsionfree, then the g-ezpansion map X' ') is rationally faith-

ful on its homogeneous components.

The expansions of € and § at the cusp 0, i.e. (Tate(q"), Wean, q), are given by the formulas
[18]
1 n
o(r)=-g - 33 (- d)g P e(r)=> (> (3)3)(1”/2-
n>1 2Adn n>1 2Adn

From that it is easy to conclude

Corollary A.2.5.
MUz [1/2]) = Z[1/2,6,6,A7]
MUz [1/2]) = Z[1/2,6,€]

(M)

The g-expansion map of M d:f Mr 1(V) (Z[1/N,(n]) can be used to push the formal
e

group ﬁ’pl( ) defined by the exponential f to the ring of power series. Explicitly, at the
cusp oo, i.e. at (Tate(qV), Wean, (), we have the formulas [18] AL.7/6.4:

&(z,7)®(—27i/N, 1)
1) = 5= Gmi/N), 1)

where

B(z,7) = (62/2 . efz/Q) H (1— qrzizz(;n_)zqne_z)

n=1
A short calculation shows that f gives a power series in Z[1/n,(n,|[w, ¢] where w =1 —

exp(—z). We conclude with the g-expansion principle

Corollary A.2.6. There are unique isomorphisms of formal groups over Z((q)) ®Z[1/N, (]

~ ~ 1_‘ N A~ ~ A
Gm:/\*l( )FT1(N) :FTate(qN)'
In particular, the ring inclusion

MII(N) s MII(NM)

induces an isomorphism of formal groups. The equivalent statement also holds for

M z Mfl(l)(Z[l/ﬁ]).
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APPENDIX B. THE p-ADIC ¢-EXPANSION PRINCIPLE

Modular forms over the p-adic numbers as defined in appendix A do not reflect the p-
adic topology in a serious way as they are just the tensor product of integral modular forms
with Z,. One wishes to allow limits of such forms in such a manner that forms with highly
congruent g-expansion are close. The first approach for such a theory was taken by Serre
[44]. He identified p-adic modular forms with their g-expansion and showed they can be
associated a weight which is a character x : Z; — Z,. Serre modular forms form a subring
of the ring of trivialized modular forms developed by N. Katz. Katz’s theory is preferable
to us as it allows a modular interpretation and his ring is the p-adic counterpart of KoE'.

For a detailed and complete treatment of p-adic modular forms ‘with growth conditions’
the reader is referred to the articles of Katz [24] [25] [26] and the overview given in [16].

B.1. Trivialized Modular Forms and Diamond Operators. Trivialized modular
forms were first introduced by Katz in [24]. Katz uses the expression ‘generalized mod-
ular forms’ as they include honest modular forms, modular forms in the sense of Serre and
‘modular forms with growth condition 1°.

Let R be a p-adic ring. We will always assume that R contains a primitive Nth-root of
unity with p{ N, and that it is a p-adically complete, discrete valuation ring or a quotient
of such a ring.

Definition B.1.1. A trivialized T'1(N)-test object is a triple (E/s, p, P) consisting of
an elliptic curve over a p-adically complete and seperated R-algebra S, a trivialization of
the formal group of E;s by an isomorphism

0: B G
over S and a point P of exact order N. A modular form for T1(N) over R is a rule f which
assigns to any trivialized T'y (IN)-test object a value

f(E/Sa(paP) €s

satisfying the following conditions

(i) f(E/s,p,P) depends only on the S-isomorphism class of (E;s, ¢, P)
(ii) the formation f(E/s, ¢, P) commutes with arbitrary base change.

We denote by TT1(N) (R) the ring of trivialized modular forms over R.

Note that we do not require these modular forms to have a weight. However, there is an
action of Z; on TT1(N)(R): For a € Z,; we define the diamond operator

([a’]f)(E/Sa(p’P) = f(E/Saail(paP)'

It is clear that ordinary I'y (IV)-modular forms f give rise to a trivialized by

f(E/S’(PaP) = f(E/Sa<p*(dT/(1 +T))’P)
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where dT'/(1 4+ T) is the standard differential on G,,. The Tate curve admits a canonical

trivialization (.q, with
Sozan (dT/(l + T)) = Wean

in the notation of appendix A.

Definition B.1.2. The g-expansion map of trivialized modular forms at (n ¢’ is the ring

homomorphism

o —

AR (R) — R((q)
given by
_ Ny t.J
.f = f(q) d;f f(Ta’te(q )/R((q) a§0can,< q )

We say f is holomorphic if it already q-expands in the subring R[q] and write ) (R)
for the resulting ring.

Theorem B.1.3. If a trivialized T'1(n)-modular form over S already q-expands in I/%((q\»
for some subring R C S then there is a unique modular form f over R which gives rise to
f by extension of scalars. Moreover, a trivialized modular form is uniquely determined by
ils g-expansion.

Proof. In [24] Katz gives two proofs of the theorem. The hard part is to show the injectivity
of the g-expansion for a field of characteristic p. It is a consequence of the irreducibility of
the moduli space of trivialized test objects for which Katz refers to Igusa or Ribet. O

Corollary B.1.4. Let W be the Witt vectors of a perfect field of characteristic p which
contains a primitive N ’th root of unity (n. Let )_ f; be a sum of true I'1(N)-modular forms
over W[1/p] which q-expands in W ((q)) at some cusp. Then so does 3. a’ f; for all a € Zy.

Proof. Let N be such that p" f; is a modular form over W. Then Y p" f; gives rise to an
element in 771(V) (W) with g-expansion divisible by p". Thus, by the g-expansion principle
S p f; is uniquely divisible by p¥. We conclude that 3 f; lies in 77 (M) (W) and so does
[a] > fi- But the effect of the diamond operator is
(lal X f)(Ess, 0. P) = (X fi)(E/s,a” o, P)

= Y filEss,a " (dT/(1+T)))

= Y d'fi(Ess, ¢*(dT/(1+1T)))

= (X d'fi)(Es, ¢, P).

Hence, any g-expansion of Y a’f; is integral. O
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