
http://www.elsevier.com/locate/aim

Advances in Mathematics 189 (2004) 192–236

The Morava K-theory of spaces related to BO

Nitu Kitchloo,a Gerd Laures,b and W. Stephen Wilsona,�

a Department of Mathematics, Johns Hopkins University, Baltimore, MD 21218, USA
b Mathematisches Institut der Universitaet Heidelberg, Im Neuenheimer Feld 288, D-69120

Heidelberg, Germany

Received 11 August 2003; accepted 16 October 2003

Communicated by Mark Hovey

Abstract

We calculate the ð p ¼ 2Þ Morava K-theory of all of the spaces in the connective

Omega spectra for Z� BO; BO; BSO; and BSpin: This leads to a description of the ð p ¼ 2Þ
Brown–Peterson cohomology of many of these spaces. Of particular interest is the space

BO/8S and its relationship to BSpin:
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1. Introduction

We are interested in all of the spaces associated with BO and its connective covers.
These are the spaces in the Omega spectra for Z� BO; BO; BSO and BSpin: There
are various notations in the literature for these spaces and we have chosen to keep
the notation, bo�; for the spectrum with bo0 ¼ Z� BO (and bu� for the spectrum
with bu0 ¼ Z� BU). However, in general we let BG� be the Omega spectrum with
BG0 ¼ BG rather than use, for example, the more traditional BO/4S for BSpin:
This notation works nicely with respect to the connective covers of various spaces.
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For example, the maps from left to right give all the connective covers:

ð1:1Þ

For a space on the top line, the space to the left is the fibre induced by the vertical
map to an Eilenberg–MacLane space below. We will compute K�bo� and K�BG� for
K ¼ KðnÞ ð p ¼ 2Þ and BG ¼ BO; BSO; BSpin and all the relevant maps. Recall that

KðnÞ�ð�Þ is a generalized homology theory with coefficient ring KðnÞ�CFp½un; u�1
n �;

degree un ¼ 2ð pn � 1Þ; known as the nth Morava K-theory. Our calculations are in
the spirit and tradition of Stong’s calculations of the standard homology of the
connective covers of BO [Sto63]. On close examination of his paper and ours, we got
the easy end of things.

The model for our results is the similar calculation of K�bu� for all primes.

Theorem 1.2 (Ravenel et al. [RWY98, Section 2.6]). Let K ¼ KðnÞ ( for any prime p).
Let B ¼ bui; iX4: Let E-B be a connective cover with fibre F : Then there is a short

exact sequence of Hopf algebras:

K�-K�F-K�E-K�B-K�:

This is really only done for B ¼ BSU ¼ bu4 in [RWY98] but it is not difficult to
get the general result from this. Since K�BSU is polynomial and K�bu5 is exterior this
is split as algebras and since F is a finite Postnikov system with known homotopy its
Morava K-theory is known from [HRW98,RW80].

Our first result looks very similar to this.

Theorem 1.3. Let K ¼ KðnÞ ð p ¼ 2Þ: Let B ¼ boi; iX4; or BGi; iX2; G ¼ O; SO; or

Spin: Let E-B be a connective cover with fibre F : Then there is a short exact sequence

of Hopf algebras:

K�-K�F-K�E-K�B-K�:

Again, by Bott periodicity we know the homotopy of the fibre, F ; and so by
[HRW98] and [RW80] we know K�F : Because of the massive redundancy in this
theorem (e.g. bo10-BO2 is a covering), we need only compute the Morava K-theory
of boi; i ¼ 4; 5; 6; 7; 8 and 9 and BOi for i ¼ 2 and 3: All of the other spaces in the
theorem are connective covers of these eight spaces. Corresponding theorems are
true for odd primes also because these spaces are all pieces of spaces in bu� at an odd
prime.

In the range of this theorem, all of the maps from the left in Diagram (1.1) are
surjective in Morava K-theory and the vertical maps to Eilenberg–MacLane spaces
are trivial. However, if i is low enough the Eilenberg–MacLane space must split off
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and the vertical map should be a surjection. Thus we have some ‘‘transition’’ spaces
we must deal with. BU gives us a good example of this phenomenon.

Here, the bui for i ¼ 0; 1; 2; 3; and 4 are Z� BU ; U ; BU ; SU ; and BSU

respectively. Of course, if i is negative and even, bui ¼ Z� BU ; and if negative and
odd, bui ¼ U : K�BU is polynomial and K�U is exterior. The fibration bu2-bu0-Z

gives a (split) short exact sequence of Hopf algebras in Morava K-theory. K�bu3 is

exterior and bu3-bu1-S1 also gives a (split) short exact sequence of Hopf algebras in
Morava K-theory. K�bu4 is polynomial and bu4-bu2-KðZ; 2Þ gives a short exact
sequence in Morava K-theory which is not split, even as algebras. K�bu5 is exterior
and K�bu5-K�bu3 is surjective and the kernel is generated by n � 1 exterior
generators. These low spaces and maps constitute our transition spaces from (split)
surjection to trivial. After this, the fibration KðZ; i � 1Þ-buiþ2-bui; iX4; gives a

short exact sequence.
In the next section we will state all of our results for these transitions for BO

precisely. It is a bit more complicated than the BU case. A variety of things happen.
It is instructive to give an example here. Note that bo8 is the space frequently referred
to as BO/8S: Recall from [RW80] that the fibration

KðF2; iÞ-KðZ; i þ 1Þ!2 KðZ; i þ 1Þ ð1:4Þ

gives rise to a short exact sequence of Hopf algebras in Morava K-theory. The study
of the Morava K-theory of the fibrations

KðZ; 3Þ-bo8ð¼ BO/8SÞ-BSpin
0
ð¼ BSpinÞ-KðZ; 4Þ

gives, perhaps, the most interesting example of our transition spaces:

Theorem 1.5. Let K ¼ KðnÞ ð p ¼ 2Þ: The maps

KðF2; 2Þ-KðZ; 3Þ-BO/8S-BSpin-KðZ; 4Þ!2 KðZ; 4Þ

give rise to an exact sequence of Hopf algebras in Morava K-theory:

K�-K�KðF2; 2Þ-K�KðZ; 3Þ-K�BO/8S-

K�BSpin-K�KðZ; 4Þ!2� K�KðZ; 4Þ-K�:

where K�BSpin is polynomial. As algebras, K�BO/8S is polynomial tensor with

K�KðZ; 3Þ: Algebraically, we have the four term exact sequence of Hopf algebras:

K�-K�KðZ; 3Þ-K�BO/8S-K�BSpin-K�KðF2; 3Þ-K�:

Note that when K ¼ Kð1Þ in the six term sequence, the two terms on the left and
the two terms on the right are all trivial and we are reduced to a (well known) two
term isomorphism. When K ¼ Kð2Þ the two terms on the right are still trivial but the
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two on the left show up. Since this work was done we have learned that Matthew

Ando, Michael Hopkins and Neil Strickland had calculated Kð2Þ�ðBO/8SÞ in a
rather different form: as ‘‘Sigma’’ structures on the trivial line bundle over the formal
group. They never published this work which was originally part of [AHS01]. When
K ¼ KðnÞ with n42 we get a real six term exact sequence. It was our attempt to
understand the map BO/8S-BSpin for Kð2Þ which got this project started. This
result was one of the very last things to be understood. In a follow-up paper, [KLW],
we show that K�KðZ; 3Þ splits off of K�BO/8S as Hopf algebras (as a special case of
a general splitting theorem).

Our approach is a bit wishy-washy as we determine things are polynomial or
exterior without getting our hands on generators. We prefer to call the approach
coordinate free. It turns out we can pretty much do everything this way and it is
actually quite a bit easier since we do not have to keep track of all those little
elements. However, in some cases, there is some use to having elements named and
so we do that too. In general, the information is there to produce generators if the
need arises. The above description of K�BO/8S and K�BSpin are examples of the
coordinate free approach.

Many people have a passion for BO/8S and its relationship to BSpin: Much more
detail can be extracted from our results for those who need it. It was known from
[RWY98, Section 2.5] that K�BO injects into K�BU using the complexification map.
K�BU is K�½b1; b2;y� as usual for any complex orientable theory. K�KðZ; 3Þ sits in
K�BO/8S as a sub-Hopf algebra. The following Hopf algebras are all polynomial
and the maps are all injections:

K�BO/8S==K�KðZ; 3Þ-K�BSpin-K�BSO-K�BO-K�BU : ð1:6Þ

Using the coordinate free approach, a particular finite Hopf algebra arose which
got carried along through many of our spaces. However, going back and getting a
detailed description of it, we discovered, very much to our surprise:

Theorem 1.7. Let K ¼ KðnÞ ð p ¼ 2Þ: The Hopf algebra cokernel, CK1; of the Morava

K-theory of the forgetful map BU-BO is just

K�½b1; b2;y; b2n�1�;

modulo the relations

0 ¼ b2
i þ

X
kX0

unb2kb2i�2kþ1�2n

where b0 is the Hopf algebra unit and the coproduct is cðbqÞ ¼
P

bi#bq�i: This, in

turn, is isomorphic to

K�
Y
i40

KðF2; iÞ
 !

:
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This Hopf algebra is very well understood from [RW80] where the space is viewed
as a graded space and the Hopf algebra is given the extra structure of a Hopf ring.
There are no topological maps from BO to justify such a description; this is purely
algebraic. In [Rao90], Rao computed K�SO (among many other things) and
discovered this Hopf algebra sitting there. He was able to evaluate the coalgebra
structure but not the algebra structure and so was unable to make the identification
above. However, his paper was a major influence on us in our work.

In [RWY98, Section 2.5], K�BO was calculated using the Atiyah–Hirzebruch
spectral sequence. In a more difficult calculation, it was shown there that it is the
Hopf algebra kernel of the map ð1 � cÞ� on K�BU to itself where c is complex

conjugation. Obviously the composition of this map with ð1 þ cÞ� is trivial. The

Hopf algebras we are working with form an abelian category so we can talk about
chain complexes and homology. We have another formulation of the above theorem.

Theorem 1.8. Let K ¼ KðnÞ ð p ¼ 2Þ: The homology of the middle term of the chain

complex

K�BU ���!ð1þcÞ�
K�BU ���!ð1�cÞ�

K�BU

is

CK1 ¼ K�
Y
i40

KðF2; iÞ
 !

:

Techniques have been developed to take information about the Morava K-theory
of a space and use it to compute the Brown–Peterson cohomology of that space.
When this is possible the Brown–Peterson cohomology has some special properties.
First, it is Landweber flat. M is Landweber flat if it has no p-torsion, M=ð pÞM has
no v1 torsion, M=ð p; v1ÞM has no v2 torsion, etc., where BP�CZð pÞ½v1; v2;y�: This

property gives these spaces a completed Künneth isomorphism, [RWY98, Theorem
1.11, page 149], and makes them into completed Hopf algebras, [KW01, Section 6].
These computational techniques have been developed and refined in [Kas98,-
Kas01,KW01,Wil99]. In our case we must usually move to the 2-adically completed
version of BP cohomology, BP4�

2 ð�Þ: As an example of our applications:

Theorem 1.9. For the spaces and conditions of Theorem 1:3; with i even, we have a

short exact sequence of completed Hopf algebras

BP4�
2 ’BP4�

2 F’BP4�
2 E’BP4�

2 B’BP4�
2 :

and all are concentrated in even degrees.

The category of completed Hopf algebras is not an abelian category so the short
exactness referred to is not automatically defined. However, we can talk about
kernels and cokernels, so what we mean by short exact is that one map is the kernel
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of the other and the second map is the cokernel of the first. A similar theorem is
proven for bu� in [RWY98].

Diagram (1.6) gives us surjections:

BP�BSpin6BP�BSO6BP�BO6BP�BU : ð1:10Þ

BP�BU is BP�½½c1; c2;y��; where the ci are the Conner–Floyd Chern classes.

Theorem 1.11.

(i) ([Wil84], see also [RWY98])

BP�BOCBP�BU=ðci � c�i Þ

where c�i is the complex conjugate of the Conner–Floyd Chern class.

(ii)
BP�BSOCBP�BO=ðc1ðdetÞÞ;

where c1ðdetÞ is the first Chern class of the determinant bundle.
(iii) We have an exact sequence of completed Hopf algebras:

BP�’BP�BSpin’BP�BSO’BP�KðF2; 2Þ’BP�:

Although the Conner–Floyd Chern classes generate BP�BSpin we have been
unable to determine a nice description. BP�KðF2; 2Þ is completely described in

[RWY98] and is known to have generators in degrees 2ð1 þ 2iÞ; i40:
The fact that we are not in an abelian category complicates the study of the map

BO/8S-BSpin: However, we do have theorems analogous to Theorem 1.5. We
have to go to the 2-adic completion of BP: We remind the reader of the short exact
sequence of completed (Landweber Flat) Hopf algebras from Diagram (1.4),
[RWY98,KW01].

BP4�

2 ’BP4�

2 KðF2; iÞ’BP4�

2 KðZ; i þ 1Þ’2
�

BP4�

2 KðZ; i þ 1Þ’BP4�

2 ð1:12Þ

Theorem 1.13. We consider the fibration sequence

KðZ; 3Þ!i
BO/8S!p BSpin!k KðZ; 4Þ:

BP4�

2 ð�Þ for all of these spaces is Landweber Flat.

(i) The cokernel of the map

BP4�

2 BSpin-BP4�

2 BO/8S is BP4�

2 KðZ; 3Þ:

(ii) The induced map i� is the composition of the surjection above with the injection 2�:
(iii) The cokernel of i� is BP4�

2 KðF2; 2Þ:
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(iv) The kernel of the map

BP4�

2 BSpin-BP4�

2 BO/8S is BP4�

2 KðF2; 3Þ:

(v) The map k� factors through the surjection BP4�

2 KðZ; 4Þ-BP4�

2 KðF2; 3Þ:
(vi) The kernel of k� is isomorphic to BP4�

2 KðZ; 4Þ: It is the image of the injection 2�

on BP4�
2 KðZ; 4Þ:

Combining the results above we get legitimate exact sequences:

BP4�

2 ’BP4�

2 KðF2; 2Þ’BP4�

2 KðZ; 3Þ’BP4�

2 BO/8S

and

BP4�

2 BSpin’BP4�

2 KðZ; 4Þ’2
�

KðZ; 4Þ’BP4�

2 :

Again, we cannot describe the image of the injection BP4�
2 KðF2; 3Þ-BP4�

2 BSpin

in terms of Conner–Floyd Chern classes, but from [RWY98] we know that

BP4�

2 KðF2; 3Þ has generators in degrees 2ð1 þ 2i þ 2jÞ; 0oioj: We cannot state this

theorem as a long exact sequence of completed Hopf algebras (yet). The issues are
delicate and have to do with the topology on the BP cohomology. Thus there is still
some opportunity to improve upon our understanding of the map of
BO/8S-BSpin in Brown–Peterson cohomology.

Whenever a finite Postnikov system shows up in our work we know its homotopy
by Bott periodicity. In [HRW98] the Morava K-theory of such a finite Postnikov
tower is shown to be, as Hopf algebras, just the Morava K-theory of the product of
Eilenberg–MacLane spaces with the same homotopy. The Morava K-theory of these
Eilenberg–MacLane spaces is computed explicitly in [RW80]. Thus, whenever the
Morava K-theory of a finite Postnikov system shows up in our work then we can
assume we know everything about it. Because the Morava K-theory of a finite
Postnikov system is even degree, it is known, from [RWY98], to be Landweber Flat.
However, it is not known if the Brown–Peterson cohomology also splits the same
way Morava K-theory does or not. In the case of bu� the Brown–Peterson
cohomology of these finite Postnikov systems is shown to split algebraically in
[KW01]. The short exact sequence, and corresponding splitting are also shown for
odd spaces. In this paper, we are unable to deal with the odd spaces in general and
also cannot get an algebraic splitting of the sort known for bu� for our finite
Postnikov systems.

In many cases we theoretically ‘‘know’’ everything about a Hopf algebra. That
does not always translate into an explicit description of the Hopf algebra, or,
equivalently, its Dieudonné module (see [SW98]).

To a large extent, this paper is a result of questions arising from [KL02] and
[AHS01].

The paper is organized as follows. In Section 2 we state the results of our
calculations explicitly. Section 3 studies the map of K�BU to K�BO and proves
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Theorems 1.7 and 1.8. In Section 4 we review some facts about Hopf algebras and
the bar spectral sequence. We settle down and prove most of our results in Section 5.
Section 6 is dedicated to Brown–Peterson cohomology results.

2. Statement of results

2.1. Introduction

In this section we first give the Morava K-theory of all of our spaces and the
description of all the maps of coverings. Then we give some of the relations with bu:

Many of our spaces are familiar spaces.

bo6 ¼ Spin=SU

bo5 ¼ SU=Sp

bo4 ¼ BSp

bo3 ¼ Sp

bo2 ¼ Sp=U

bo1 ¼ U=O

bo0 ¼ Z� BO

BO2 ¼ Sp=SU

BO1 ¼ SU=SO

BO0 ¼ BO

BO�1 ¼ O

BSO1 ¼ SU=Spin

BSO0 ¼ BSO

BSO�1 ¼ SO

BSO�2 ¼ O=U

BSpin
0

¼ BSpin

BSpin�1
¼ Spin

BSpin�2
¼ SO=U

BSpin�3
¼ U=Spð¼ S1 � SU=SpÞ

BSpin�4
¼ Z� BSp

ð2:1:1Þ

Remark 2.1.2. Recall that for any Omega spectrum f
%
X�g we have O

%
Xiþ1C

%
Xi: When

these spaces are looped down far enough they become redundant. For example,
bo�1CBO�1; BO�2CBSO�2; BSO�3CBSpin�3

; and BSpin�5
Cbo3: When i is small

enough, i.e. negative enough, then
%
Xi ¼

%
Xiþ8: All other negatively index spaces

follow from these facts.

Remark 2.1.3. From Theorem 1.3 and Remark 2.1.2 we see that we need only
compute the Morava K-theory of the following list of spaces: boi for 0pio10; BOi

for �1pio4; BSOi for �2pio2; and BSpin
i

for �4pio2:

2.2. Results for all spaces and covering maps

Our first result to mention is the one stated in the introduction, Theorem 1.3.
Next, we will describe our transition spaces and maps. Our starting point is the fairly
easy fact [RWY98, Section 2.5] that K�BO is polynomial on even degree generators.
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In our description, we need some special even degree finite Hopf algebras and
short exact sequences which are split as Hopf algebras:

K�-CK1-CK0-K�½F2�-K�; ð2:2:1Þ

K�-CK2-CK1-K�KðF2; 1Þ-K�; ð2:2:2Þ

K�-CK3-CK2-K�KðF2; 2Þ-K�: ð2:2:3Þ

In our coordinate free approach these Hopf algebras came up without our knowing
explicitly what they were. However, we will do them first as everything becomes
easier when they are identified.

CKj ¼ K�
Y
iXj

KðF2; iÞ
 !

: ð2:2:4Þ

Definition 2.2.5. Since we are working modulo 2 it is not automatic that exterior algebras
have odd degree generators or polynomials have even degree generators. However, we
want to set the convention, see Restriction A, Remark 4.5, that when we say exterior, we
mean an exterior Hopf algebra on odd degree generators which we will generically denote
by E: When we say polynomial, we mean a polynomial algebra on even degree generators
which we will generically denote by P: Note the distinction between algebra and Hopf
algebra. We tend to say little about the Hopf algebra structure but describe only the
algebra structure. Frequently in our proofs, however, one can see the coalgebra structure.
There will almost always be an infinite number of generators for E and P unless otherwise
stated. When we say short exact we mean as Hopf algebras in Morava K-theory.

Theorem 2.2.6 (boi and BOi-boi). Let K ¼ KðnÞ ð p ¼ 2Þ:

(i) For io0 we have boiCBOi:
(ii) The fibration

BO ¼ BO0-Z� BO ¼ bo0-Z

gives a split short exact sequence of Hopf algebras where K�BO is polynomial.
(iii) The fibration

BO1-bo1-S1

gives a split short exact sequence of Hopf algebras where K�BO1 and K�bo1 are

exterior.
(iv) The fibration

BO2-bo2-KðZ; 2Þ

gives a short exact sequence where K�BO2 and K�bo2 are polynomial.
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(v) The map

K�BO3-K�bo3

is a surjection, both are exterior and the kernel is an exterior Hopf algebra on

n � 1 generators.
(vi) For iX4 the fibration

KðZ; i � 1Þ-BOi-boi

gives a short exact sequence.
(vii) K�bo4 is polynomial.

(viii) K�bo5 is exterior.
(ix) K�bo6 is polynomial tensor CK2:
(x) K�bo7 is exterior tensor CK3:

(xi) K�bo8 is polynomial tensor K�KðZ; 3Þ:
(xii) K�bo9 is exterior tensor K�KðZ; 4Þ:

Theorem 2.2.7 (BOi and BSOi-BOi). Let K ¼ KðnÞ ð p ¼ 2Þ:

(i) For io� 1 we have BOiCBSOi:
(ii) The fibration

SO ¼ BSO�1-O ¼ BO�1-F2

gives a split short exact sequence of Hopf algebras

K�-E#CK1-E#CK0-K�½F2�-K�:

(iii) The fibration

BSO ¼ BSO0-BO ¼ BO0-KðF2; 1Þ

gives a short exact sequence with K�BSO and K�BO both polynomial.
(iv) The map

K�BSO1-K�BO1

is a map of exterior algebras with both the kernel and the cokernel exterior on

n � 1 generators.
(v) For iX2 the fibration

KðF2; iÞ-BSOi-BOi

gives a short exact sequence.
(vi) K�BO2 is polynomial.

(vii) K�BO3 is exterior.
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Theorem 2.2.8 (BSOi and BSpin
i
-BSOi). Let K ¼ KðnÞ ð p ¼ 2Þ:

(i) For io� 2 we have BSOiCBSpin
i
:

(ii) The fibration

BSpin�2
-BSO�2-F2

gives a split short exact sequence of Hopf algebras

K�-P#CK1-P#CK0-K�½F2�-K�:

(iii) The fibration

Spin ¼ BSpin�1
-SO ¼ BSO�1-KðF2; 1Þ

gives a split short exact sequence of Hopf algebras

K�-E#CK2-E#CK1-K�KðF2; 1Þ-K�:

(iv) The fibration

BSpin ¼ BSpin
0
-BSO ¼ BSO0-KðF2; 2Þ

gives a (non-split) short exact sequence with K�BSpin and K�BSO both

polynomial.
(v) The map

K�BSpin
1
-K�BSO1

is a map of exterior algebras with both the kernel and the cokernel exterior on
n�1

2

� �
generators.

(vi) For iX2 the fibration

KðF2; i þ 1Þ-BSpin
i
-BSOi

gives a short exact sequence.

The exact sequence

K�-K�BSpin-BSO-KðF2; 2Þ-K�

occurs in [KL02] for K ¼ Kð2Þ:

Theorem 2.2.9 (BSpin
i

and boiþ8-BSpin
i
). Let K ¼ KðnÞ ð p ¼ 2Þ:

(i) For io� 4 we have BSpin
i
Cboiþ8:
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(ii) The fibration

bo4-BSpin�4
-Z

gives a split short exact sequence with K�BSpin�4
CP#K�½Z�:

(iii) The fibration

bo5-BSpin�3
-S1

gives a split short exact sequence of exterior Hopf algebras.
(iv) The fibration

bo6-BSpin�2
-KðZ; 2Þ

gives a (non-split) short exact sequence with K�BSpin�2
CP#CK1: We need an

injection of short exact sequences to explain what happens with CK :

(v) The fibration

bo7-Spin ¼ BSpin�1
-KðZ; 3Þ

is more complicated. There is an exterior Hopf algebra on n � 1 generators, E0:
The maps

bo7-Spin ¼ BSpin�1
-KðZ; 3Þ!2 KðZ; 3Þ

give rise to an exact sequence of Hopf algebras:

K�-E 0-K�bo7-

K�Spin-K�KðZ; 3Þ!2� K�KðZ; 3Þ-K�:

and we have that K�Spin is E#CK2: Another way to view this is

K�-E0-E1#CK3-E#CK2-K�KðF2; 2Þ-K�

(vi) The fibration maps associated with bo8-BSpin
0

are described in Theorem 1:5:

K�BSpin
0
¼ K�BSpin is polynomial.

(vii) The map

K�bo9-K�BSpin
1
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has the kernel K�KðZ; 4Þ in K�bo9 and n�1
3

� �
exterior generators. K�BSpin

1
is

exterior and all but n�1
3

� �
generators are in the image.

(viii) For iX2 the fibration

KðZ; i þ 3Þ-boiþ8-BSpin
i

gives a short exact sequence.

2.3. Connections to BU

There is a stable cofibration:

Sbo-bo-bu ð2:3:1Þ

which we are unclear on what the most appropriate reference is. However, an
unstable version seems to be due to Reg Wood, reproduced in [And64]. The stable
connective version follows. It appears, for example, in [Dav72, p. 186]. When you
take various connective covers and look at the Omega spectra, this gives a number of
fibrations involving our spaces and those for bu:

bokþ1 - bok - buk - bokþ2 - bokþ1

bokþ1 - BOk - bukþ2 - bokþ2 - BOkþ1

BOkþ1 - BSOk - bukþ4 - BOkþ2 - BSOkþ1

BSOkþ1 - BSpin
k

- bukþ4 - BSOkþ2 - BSpin
kþ1

BSpin
kþ1

- bokþ8 - bukþ6 - BSpin
kþ2

- bokþ9

ð2:3:2Þ

There are also maps between these fibrations (up, the way they are written).
We have described the Morava K-theory of each of the spaces in all of these

fibrations. To do justice we should also describe all of the maps involved. However,
each space now comes equipped with several maps into and out of it and the burden
of stating the results is too much for a reasonable length paper. Knowing the answers
for all the spaces is usually enough to allow the reader to evaluate any maps the
reader might need. To calculate the Morava K-theory of the various spaces we
sometimes do need to resort to information in these fibrations and so we will state
those results which come up naturally. In addition we also give the answers to some
of the other more interesting cases.

Perhaps more important than what we need are a couple of results which were
fundamental to the start of this whole project.

There are two short exact sequences, both of which are split exact as polynomial
algebras, which we knew from before:

K�-K�BO0-K�bu2-K�bo2-K�; ð2:3:3Þ
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which comes from BO-BU-Sp=U ; and

K�-K�bo2-K�bu2-K�bo4-K�; ð2:3:4Þ

which comes from Sp=U-BU-BSp: The first is at the bottom of the page
[RWY98, Section 2.5, p. 161]. The second is in the middle of the page [RWY98,
Section 2.5, p. 162]. They both follow quickly from Theorem 4.8. The homologics of
bo2 and bo4 are both polynomial in even degree so the same holds for KðnÞ�ð�Þ
which gives the splitting.

Theorem 2.3.5. Let K ¼ KðnÞ ðp ¼ 2Þ:

(i) In the fibration BU-BO-SO; the image of K�BO-K�SO is the cokernel of

K�BU-K�BO which is CK1:
(ii) The map K�U-K�SO hits all exterior generators.

(iii) In the fibration SU-Spin-Spin=SUð¼ bo6Þ; the image of K�Spin-K�bo6 is

the cokernel of K�SU-K�Spin which is CK2:
(iv) In the fibration bo6-bu4-BSpin; the polynomial part of K�bo6 is split injective

as algebras to the polynomial algebra K�bu4:
(v) In the fibration bu4-BSpin-bo7; the cokernel of K�bu4-K�BSpin is CK3

which injects into K�bo7:
(vi) In the fibration bo6-bu6-bo8; the kernel of K�bo6-K�bu6 is CK3: The

polynomial part of K�bo6 is split injective to the polynomial part of K�bu6 (which

is K�bu4) and the K�KðF2; 2Þ of CK2 injects to the K�KðZ; 3Þ part of K�bu6:
(vii) In the fibrations U-SO-BSpin�2

-bu2ð¼ BUÞ the image of K�SO in

K�BSpin � 2 is the cokernel of K�U-K�SO; CK1; and the cokernel of

K�SO-K�BSpin�2
is polynomial which is split injective as algebras to the

polynomial algebra K�bu2:

There are a number of associated short exact sequences which, if not useful,
certainly have novelty value. We present them here even though we only need a few
of them in our proofs. In fact, we will not prove most of them.

Theorem 2.3.6. Let K ¼ KðnÞ ð p ¼ 2Þ: The following fibrations give short exact

sequences of Hopf algebras in K�ð�Þ: boi-bui-boiþ2; BOi-buiþ2-boiþ2; and

BSOi-buiþ4-BOiþ2 for i ¼ 0; 1; 2; 3; 4 and 8; and BSpin-bu4-BSO2 and

bo8-bu6-BSpin
2
:

3. K�BU and K�BO

We need a deeper understanding of K�BO and its relationship to K�BU :
We inherit a good deal of knowledge from [RWY98, Section 2.5] where K�BO is

shown to be a polynomial algebra using the Atiyah–Hirzebruch spectral sequence. It
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is easy to reproduce this calculation here. H�ðBOÞCF2½bR
1 ; bR

2 ;y� (modulo 2 of

course). The first differential in the Atiyah–Hirzebruch spectral sequence for K�BO

ðK ¼ KðnÞÞ is obtained from the action of Milnor’s Qn in H�ðRPNÞ: This takes

bR
2nþ1þ2k

to bR
2kþ1 and so the spectral sequence collapses to the polynomial algebra

K�½bR
2 ; bR

4 ;y; bR
2nþ1�2�#K�½ðbR

2iÞ
2 : iX2n�: ð3:1Þ

The Atiyah–Hirzebruch spectral sequence for K�BU collapses to the polynomial
algebra K�½b1; b2;y�: The complexification map, C; on the Atiyah–Hirzebruch

spectral sequence takes bR
2i to bi so we see, quite easily, that K�BO-K�BU

injects.
A much more difficult relation is also shown in [RWY98, Section 2.5]. Let c :

BU-BU be the complex conjugation. It is shown there that K�BO is the Hopf
algebra kernel of ð1 � cÞ�:

K�-K�BO!C�
K�BU ���!ð1�cÞ�

K�BU ð3:2Þ

This was used, in [RWY98], to reprove the result of [Wil84] that
BP�ðBOÞCBP�ðBUÞ=ðci � c�i Þ where the ci are the Conner–Floyd Chern classes

and the c�i are their conjugates.

We need more information. The following diagram gives us a start where R is the
forgetful map.

Clearly the composition ð1 � cÞ�ð1 þ cÞ� is trivial, so ð1 þ cÞ� factors through the

kernel of ð1 � cÞ�; which is K�BO: Thus we can use ð1 þ cÞ� to evaluate R� and

calculate our Hopf algebra cokernel, CK1: We need a better understanding of K�BO

as it sits inside of K�BU :
We will need to make some of our calculations in connective Morava K-theory.

Let k ¼ kðnÞ with kðnÞ�CF2½un�: Since kðnÞ is a complex oriented theory, we still

have kðnÞ�BUCkðnÞ�½b1; b2;y�:
We need to know how c� behaves on the generators of kðnÞ�BU :

Corollary 3.3. Let c : BU-BU be complex conjugation. Then, for biAkðnÞ2iBU ;

ð p ¼ 2Þ

c�bi ¼ bi for io2n

c�b2nþi ¼ b2nþi modulo ðu2
nÞ for i odd

c�b2nþ2q ¼ b2nþ2q þ unb2qþ1 modulo ðu2
nÞ:
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Proof. Because the diagram

commutes, it is enough to prove this formula on the biAkðnÞ2iCPN because they

define the biAkðnÞ2iBU : This follows immediately from the next result. &

Theorem 3.4. Let c : CPN-CPN be complex conjugation. Then, for bqAkðnÞ2qCPN;

ð p ¼ 2Þ

c�ðbqÞ ¼
X2n�1

i¼0

ui
n

q � ið2n � 1Þ
i

	 

bq�ið2n�1Þ modulo u2n�1þ1

n :

We do this for future reference even though we only need the first two terms. The
proof is no harder to do this extra bit. The calculation could be carried out even
further and we will point out how.

Theorem 3.5 (see Bakuradze and Priddy [BP03]). Let F be the formal group law for

K ¼ KðnÞ ð p ¼ 2Þ: For n41

x þF y ¼ x þ y þ unx2n�1

y2n�1

modulo y22ðn�1Þ
:

Theorem 3.6 (Kitchloo and Laures [KL02]). Let K ¼ KðnÞ ð p ¼ 2Þ:

�F x ¼ x þF

XF

j40

uð2jn�1Þ=ð2n�1Þ
n x2jn

:

Proof. The proof is by induction using the fact that x þF x ¼ unx2n

: We add x

(formally) to the above formula, it starts with x þF x: The next step is unx2n þF

unx2n ¼ unðunx2nÞ2n

¼ u
1þu2n

n
n x2n: Continue. Each step gives the next term and so the

next step can also be evaluated. &

We now combine the last two results to get an explicit formula:

Proposition 3.7. Let K ¼ KðnÞ ð p ¼ 2Þ:

�F x ¼ x þ unx2n

modulo u1þ2n�1

n :
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Proof. Modulo u1þ2n�1

n ; �F x ¼ x þF unx2n

: Using our formula for the formal group

law, this is

x þ unx2n þ unx2n�1ðunx2nÞ2n�1

plus terms with u22ðn�1Þ

n in them. Modulo u1þ2n�1

n this is just x þ unx2n

: n ¼ 1 is

direct. &

Remark 3.8. A little more care and we can get:

�F x ¼ x þ unx2n þ u1þ2n�1

n x2n�1ð1þ2nÞ þ u1þ2n

n x22n

modulo u22ðn�1Þ

n :

Proof of Theorem 3.4. The complex conjugate on complex projective space is just the

H-space inverse. If c�ðbqÞ ¼
P

i aiu
i
nbq�ið2n�1Þ we can evaluate the ai as follows:

aiu
i
n ¼/c�ðbqÞ; xq�ið2n�1ÞS ¼ /bq; c�ðxÞq�ið2n�1ÞS

¼/bq; ðx þ unx2nÞq�ið2n�1ÞS ¼
q � ið2n � 1Þ

i

	 

ui

n: &

Theorem 3.9. Let p ¼ 2: Consider the map ð1 þ cÞ� on kðnÞ�BU : Then (with b0 the

Hopf algebra unit)

ð1 þ cÞ�ðb2qÞ ¼ b2
q þ

X
kX0

unb2kb2q�2kþ1�2n modulo ðu2
nÞ:

Remark 3.10. It will be important for us later on that these results are precise, not

just modulo u2
n; when 2qo2nþ1; this is because in kðnÞ theory there are no negative

degree elements. Note also that the sum is trivial when 2qo2n:

Proof. Let c be the kðnÞ�BU Hopf algebra coproduct, and m the multiplication. The

map ð1 þ cÞ� is defined by:

kðnÞ�BU !c kðnÞ�BU#kðnÞ�BU ��!1�#c�
kðnÞ�BU#kðnÞ�BU !m kðnÞ�BU :

We evaluate, modulo u2
n:

ð1 þ cÞ�ðb2qÞ ¼
X

iþj¼2q

bic�ðbjÞ ¼
X

iþj¼2q

bibj þ
X
kX0

unb2kb2q�2kþ1�2n :

The first sum is symmetric and so zero except for the middle term when we get b2
q:

This with the final sum is our desired result. &

Theorem 3.11. Let p ¼ 2: The kernel of

ð1 � cÞ� : kðnÞ�BU-kðnÞ�BU
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contains the following elements:

bi for io2n

and elements zqAkðnÞ2nþ1þ2qBU with

zq ¼ b2
2nþq þ

X
kX0

unb2kb2nþ2q�2kþ1 modulo ðu2
nÞ:

Proof. Let w be the kðnÞ�BU Hopf algebra conjugation. We first change the problem

to finding elements in the kernel of ðc � 1Þ�: This is easier to compute with and it has

the same kernel. The map ðc � 1Þ� is just

kðnÞ�BU !c kðnÞ�BU#kðnÞ�BU ��!c�#w
kðnÞ�BU#kðnÞ�BU !m kðnÞ�BU :

On bi; io2n; this is

ðc � 1Þ�ðbiÞ ¼
X

c�ðbjÞwðbi�jÞ ¼
X

bjwðbi�jÞ ¼ 0

because w satisfies this formula. So, we have the first elements verified in the kernel.
The others are a little harder to come by. We use the fact that the composition
ð1 � cÞð1 þ cÞ is obviously trivial. If we produce our zi in the image of ð1 þ cÞ� then

we know that they are in the kernel of ð1 � cÞ�: We have already done this in

Theorem 3.9. &

Any element xAK�BU can be written as a sum of monomials in the bi with

coefficients in KðnÞ� ¼ F2½un; u�1
n �: Infinite sums are not allowed in homology so by

multiplying enough times by un we can replace x with an element written with only
non-negative powers of un: In fact, every element of K�X can be written, up to a unit,
in terms of standard homology and sums with coefficients non-negative powers of un:
We can always arrange that the first term has no un in it. In this sense, the Atiyah–
Hirzebruch spectral sequence describes the ‘‘lead’’ term of an element. Our next
result calculates the next non-trivial term.

Theorem 3.12. Let K ¼ KðnÞ ð p ¼ 2Þ: K�BO sits inside K�BU as the kernel of ð1 �
cÞ� as a sub-polynomial Hopf algebra. The generators can be written as bi for 0oio2n

(recall that b0 is the Hopf algebra unit) and

zq ¼ b2
2nþq þ

X
kX0

unb2kb2nþ2q�2kþ1 þ u2
nwq for qX0

where wq is written with only non-negative powers of un:

Proof. Inverting un to get KðnÞ�BU from kðnÞ�BU certainly preserves elements in

the kernel. We have identified, in Theorem 3.11, these elements as being in the kernel
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in Diagram (3.2). Furthermore, we can see they are the generators of K�BO from the
Atiyah–Hirzebruch spectral sequence. See Eq. (3.1). &

Note the term unb2nþ2qþ1; which, since un is a unit, shows that zq in K�BO maps to

a generator of K�BU as well. This is not obvious from the Atiyah–Hirzebruch
spectral sequence but is known from Eq. (2.3.3).

The image of the map ðc � 1Þ� is the same as for ð1 � cÞ� but it is a bit easier to

compute with so we use it to compute:

Proposition 3.13. Let p ¼ 2: Modulo decomposables and u2
n; ðc � 1Þ� :

kðnÞ�BU-kðnÞ�BU maps:

ðc � 1Þ�ðb2nþ2qÞ-unb2qþ1:

Proof.

ðc � 1Þ�ðb2nþ2qÞ ¼
X

iþj¼2nþ2q

c�ðbiÞwðbjÞ

¼ c�ðb2nþ2qÞ þ wðb2nþ2qÞ modulo decomposables

¼ b2nþ2q þ unb2qþ1 þ b2nþ2q ¼ unb2qþ1: &

Theorem 3.14. Let K ¼ KðnÞ ð p ¼ 2Þ: The sequence

K�BU ���!ð1�cÞ�
K�BU ���!ð1þcÞ�

K�BU

is exact at the middle term.

Proof. We know the composition is trivial. Because of Theorem 3.9 we know that
ð1 þ cÞ� maps the b2q to a sub-polynomial algebra and there are no relations. The

biggest the kernel could be is the odd indexed generators (plus tails). But by
Proposition 3.13 these are all in the image of ð1 � cÞ�: &

Proof of Theorem 1.7. We know K�BO from Theorem 3.12. We also know that
ð1 þ cÞ� gives us the map of K�BU to K�BO sitting inside of K�BU : From Theorem

3.9 we know that all of the elements zq are in the image. So, our cokernel is generated

by the bi; io2n: Theorem 3.9 also gives us the relations for the squares of these
elements. However, we have to be sure there are no more relations. The map ð1 þ cÞ�
has only been evaluated on the b2q at this stage so we must worry about the odd

indexed b2qþ1: However, we have just shown that they are in the image of ð1 � cÞ�
(Proposition 3.13) and so they are killed by ð1 þ cÞ�: More precisely, we showed that

an element with b2qþ1 as lead term is in the kernel of ð1 þ cÞ�: This implies that

ð1 þ cÞ�b2qþ1 is in the image of the sub-algebra generated by the even b2k: Thus there

are no more relations.
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The proof that this cokernel Hopf algebra is isomorphic to the Morava K-theory
of a product of Eilenberg–MacLane spaces requires an intimate knowledge of the
later from [RW80]. We review that now. We begin by introducing some bad notation
just for the purpose of this proof. We let Ki ¼ KðF2; iÞ and our goal is to describe

K�
Q

i Ki

� �
: We have a map K1-CPN making K�K1 a sub-Hopf algebra of K�CPN

on elements ai-bi for io2n: This gives our usual coproduct. The squares of these

elements are a2
i ¼ 0 except when i ¼ 2n�1 when we get una1: We designate special

elements with a change of notation: að jÞ ¼ a2 j : We use the maps Ki4Kj-Kiþj to

define elements

aI ¼ aði1Þ3aði2Þ3?3aðikÞ AK�Kk;

where 0pi1oi2o?oikon: It is important to note the degree of this is 2
P

2ij and

that there is one for every 0o2io2nþ1: Thus the size of the exterior algebra on this is
precisely the previously observed size of the cokernel CK1: There are rules for

squaring these elements. If ikan � 1 then a2
I ¼ 0: If ik ¼ n � 1 then

a2
I ¼ unað0Þ3aði1þ1Þ3aði2þ1Þ3?3aðik�1þ1Þ:

Thus we have that CK1 really is the same size as K�
Q

i Ki

� �
: We have described this in

terms of the aI and the above relations. We need also to point out that the primitives

are given by the aI with i1 ¼ 0 so there is one for every 0o2io2nþ1 with i odd.

We will construct a Hopf algebra isomorphism from CK1 to K�
Q

i Ki

� �
: We begin

this process with a map of coalgebras from K�fb1; b2;y; b2n�1g to K�
Q

i Ki

� �
: The

coproduct is given by cðbjÞ ¼
P

bj�i#bi: Likewise for the aj: We could map bj to aj :

To get our isomorphism though, we have to modify this map a little with the
primitives in the image. Our map is constructed inductively on bi: Clearly we send b1

to að0Þ: If i is even then the coproduct determines where our bi must go and there is

somewhere to go since K�
Q

i Ki

� �
is cofree as a coalgebra in this range. If i is odd

then we have options. The coproduct can determine where bi must go, but only up to
the primitives. We can choose to include the primitive or not, and we choose to
include it as a term in our image. We can now use the algebra structure to extend our
coalgebra map to a surjective Hopf algebra map

K�½b1; b2;y; b2n�1�-K�
Y
i40

Ki

 !
:

Since we have surjectivity and CK1 is the same size as our target, all we have to do
now is verify that the relations,

b2
i ¼ 0 for io2n�1 and b2

2n�1þi ¼
Xi

k¼0

unb2kb2i�2kþ1;
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map to relations in K�
Q

i Ki

� �
: In the range needed to define the map on the bi;

K�
Q

i Ki

� �
never has a product of two aI with both having a non-trivial aðn�1Þ:

Consequently, every product in this range has square trivial because it must have a

generator from degree less than 2n�1 and which therefore has no aðn�1Þ in it. Thus the

only possibility for a non-trivial square is the aI of the degree of bi: In fact, the image
of the bi must contain this term. If aI is primitive we know this already. If it is not
primitive then it is hit because our coproduct determines our image of bi and a lower
bj has hit the primitive associated with the coproduct of aI : So, we need the relation

associated with b2
i to map to that for the square of aI associated with the image of bi:

If io2n�1 then we know that all the a2
I ¼ 0 and also b2

i ¼ 0: For 2n�1pio2n; the

square of aI is, as we have already seen, a primitive in the same degree as the rest of

the relation for b2
i : Thus we know what element has to hit the primitive for our result

to be true:

Xj

k¼0

b2kb2j�2kþ1 ð3:15Þ

has to hit the primitive in degree 2ð2j þ 1Þ: This is for b2
2n�1þj

where jo2n�1: Since the

degree of this is 2ð2j þ 1Þo2ð2nÞ we are in a range such that all squares of this degree
are zero. If this element is primitive then we are done. When R ¼ Z½b1; b2;y; � is
given the structure of an Hopf algebra via:

cðbnÞ ¼
X

iþj¼n

bi#bj :

The primitives are given by the Newton polynomials Nkðb1; b2;y; bkÞ; k40 via the
recursive definition

Nk ¼ ð�1Þk�1
kbk þ

Xk�1

i¼1

ð�1Þi�1
biNk�i: ð3:16Þ

Define the following formal power series:

(i) NðtÞ ¼
P

N

k¼1 Nktk;

(ii) BðtÞ ¼
P

N

k¼0 ð�1Þk
bktk;

(iii) AðtÞ ¼
P

N

k¼0ð�1Þk
kbktk:

Then notice that Eq. (3.16) may be rewritten as

Nk þ
Xk�1

i¼1

ð�1Þi
biNk�i ¼ �ð�1Þk

kbk; ð3:17Þ

which is

NðtÞBðtÞ ¼ �AðtÞ ð3:18Þ
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so we get

NðtÞ ¼ �AðtÞBðtÞ�1; ð3:19Þ

see [Ada74, page 94].

Let Pk be elements defined via
P

N

k¼1 Pktk ¼ PðtÞ; and

PðtÞ ¼ �AðtÞBðtÞ ð3:20Þ

In particular, we have:

Pq ¼ ð�1Þq�1
qbq þ ð�1Þq�1

Xq�1

i¼1

ibibq�i:

Modulo 2 this is just

Pq ¼ qbq þ
Xq�1

i¼1

ibibq�i:

When q ¼ 2j this, modulo 2; is
Pq�1

i¼1 ibib2j�i and our sum is only non-trivial when i

is odd, so this reduces further to
Pj

k¼1 b2kþ1b2j�2k�1: This sum is symmetric and so

terms pair up to be zero modulo 2 except possibly for a middle term squared which
we already know maps to zero.

In the case where q is odd, q ¼ 2j þ 1; we have

Pq ¼ qbq þ
Xq�1

i¼1

ibibq�i ¼ b2jþ1 þ
Xj�1

k¼0

b2kþ1b2j�2k;

which can readily be seen to be our chosen element, Eq. (3.15).

Now from (3.19) and (3.20), we get the equality PðtÞ ¼ NðtÞBðtÞ2: Since BðtÞ2

maps to zero in our range, the proof follows. &

Remark 3.21. This isomorphism does not come from topology. There is certainly a
map BO-KðF2; 1Þ � KðF2; 2Þ which is surjective for K�ð�Þ: The kernel of this map
is realized by the Morava K-theory of the fibre BSpin; and there is no non-trivial
map from this to KðF2; 3Þ because it is 3-connected. Likewise there can be no maps
from the Eilenberg–MacLane spaces to BO because it would imply that KðF2; 2Þ
splits off of BSO:

4. Hopf algebras and the bar spectral sequence

We let h�ð�Þ be either Morava K-theory or standard mod p homology. In this
paper we only use KðnÞ for p ¼ 2 but these preliminary results are true for the other
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theories so we state things in general. What is important for us is a Künneth
isomorphism which we have for Morava K-theory and standard mod p homology.
This gives us Hopf algebras. All of our spaces are connected infinite loop spaces and
all of our maps are infinite loop maps. Consequently all of our theories always give
us bicommutative Hopf algebras which have exhaustive primitive filtrations. Since
we are using KðnÞ for p ¼ 2 we have to confirm we have commutativity for each of
our spaces because this is not a commutative ring spectrum. This category of Hopf
algebras is Abelian. In particular, all KðnÞ�X with X a connected double loop space

are exhaustive bicommutative Hopf algebras. For details on these Hopf algebras see
[HRW98,SW98].

We need some results on this category.

Theorem 4.1. Our category of bicommutative Hopf algebras with an exhaustive

primitive filtration has the following properties:

(i) [Bou96a, Appendix] The category is Abelian.

(ii) [Bou96b, Theorem B.7] A sub-Hopf algebra of a polynomial Hopf algebra is

polynomial too.

(iii) [Bou96b, Theorem B.9] A short exact sequence of Hopf algebras which ends with

a polynomial algebra is split as algebras.

The Künneth isomorphism also gives us the bar spectral sequence. We rely heavily
on the bar spectral sequence as a spectral sequence of Hopf algebras. This is
discussed in depth in [HRW98, pp. 144–145] and [RW80, pp. 704–705].

Theorem 4.2 (The bar spectral sequence). Let h�ð�Þ be Morava K-theory or standard

mod p homology. Let

F !i
E !r

B

be a fibration of connected double loop spaces with h�F a bicommutative Hopf algebra.

(i) There is a spectral sequence of Hopf algebras:

E2
�;�CTorh�F

�;� ðh�E; h�ÞCTorker i�
�;� ðh�; h�Þ#coker i� ) h�B

where coker i� is Torh�F
0;� ðh�E; h�Þ:

(ii) If i� is injective then we have a short exact sequence of Hopf algebras:

h�-h�F-h�E-h�B-h�:

(iii) With Restriction A (to follow) on our Hopf algebra ker i�; if coker i� is even degree

then coker i� injects into h�B and all differentials in the spectral sequence take

place in Torker i�
�;� ðh�; h�Þ:
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(iv) If

OF !Oi
OE !Or

OB

gives a short exact sequence of Hopf algebras

h�-h�OF-h�OE-h�OB-h�

with h�OB a Restriction A Hopf algebra and K�F even degree, then we get a short

exact sequence of Hopf algebras:

h�-h�F-h�E-h�B-h�:

Remark 4.3. We actually prove something stronger for part (iii) but do not need it in
this paper. If you can write coker i� as H#E where H is an even degree Hopf algebra
and E an exterior algebra on odd degree generators, then H injects into h�B:

Theorem 4.4. Let K ¼ KðnÞ ( p arbitrary). Let E-B0-B be connective coverings of a

simply connected double loop space B: Let F be the fibre of E-B and F 0 the fibre of

E-B0: If

K�-K�F-K�E-K�B-K�

is a short exact sequence of Hopf algebras then so is

K�-K�F
0-K�E-K�B

0-K�:

Proof. We have maps of fibrations:

F 0 and F are finite Postnikov systems and the homotopy of F 0 split injects into the
homotopy of F : From [HRW98] we know this implies the Morava K-theory also
injects. Thus K�F 0 injects to K�E and by Theorem 4.2 (ii) we have our result. &

Remark 4.5. Restriction A.

Hopf algebras over KðnÞ� can get quite messy, [SW98]. To calculate the Tor we

only need the algebra structure and TorB#CCTorB#TorC : As algebras, only a few
basic Hopf algebras show up in our work. We only allow tensor products of those
listed below. In the theorem above, where the restriction applies, we consider only
these Hopf algebras. For odd primes it is automatic that a Hopf algebra splits into
the tensor product of an exterior Hopf algebra on odd degree generators and an even
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degree Hopf algebra. One of the consequences of our restriction here is that the same
is true for p ¼ 2: This is the only restriction on standard homology Hopf algebras.

(i) P ¼ h�½x�; a polynomial algebra on an even degree generator. This is a
restriction because for p ¼ 2 a polynomial algebra generator could have odd
degree. This does not happen in our work so we make the same restriction for

p ¼ 2 as Hopf algebras imply for odd primes. TorPCEðsxÞ; an exterior algebra
on an odd total degree element in the first filtration in the bar spectral sequence,

i.e. sxATorP
1;jxj:

(ii) Pk ¼ h�½x�=ðxpkÞ; the truncated polynomial algebra on an even degree generator.

Note the same restriction here as above. Also, when p ¼ 2 and k ¼ 1; h�½x�=ðx2Þ
is an exterior algebra. However, when the degree of x is even, we think of it as a
truncated polynomial algebra and when the degree of x is odd we think of it as

exterior. TorPkCEðsxÞ#Gðtðxpk�1ÞÞ with sxATorPk

1;jxj and tðxpk�1ÞATorPk

2;pk jxj:

For p ¼ 2 and k ¼ 1 this is really GðsxÞ but the little extra coalgebra structure
does not change the algebra structure and so we will continue to think of it as an
exterior algebra tensored with a divided power algebra.

(iii) For h ¼ KðnÞ we can have an even degree x with xpk

written non-trivially in
terms of lower powers of x in such a way that the Hopf algebra is irreducible,
i.e. has no sub-Hopf algebras. These always have trivial Tor: See [SW98] for

more details. The only living examples are in KðnÞ�KðZ=ðpkÞ; nÞ and

KðnÞ�KðZ; n þ 1Þ where we have xp ¼ 7x (ignoring the powers of un).

(iv) E ¼ EðxÞ an exterior algebra on an odd degree element. Again, this is a
restriction, but only notational this time. Our even degree exterior generators

are called truncated polynomial generators. TorECGðsxÞ with sxATorE
1;jxj:

(v) PN ¼ /a0; a1;yS with a
p
kþ1 ¼ ak and a

p
0 ¼ 0: KðnÞ�KðZ; q þ 1Þ when n4q is

made up of these and TorPNCGðtða0ÞÞ with tða0ÞATorPN

2;pja0j:

For a divided power algebra, GðxÞ we refer to x as its ‘‘generator’’ even though it is
not the algebra generator. It does serve as an adequate reference for the divided
power algebra.

Remark 4.6 (The differentials). We need to discuss the behaviour of differentials in
the bar spectral sequence. Because the spectral sequence is as Hopf algebras we know
that a differential must originate on a generator in filtration 2 or higher and hit a
primitive [Smi70, p. 78]. All generators in filtration 2 or greater in Tor (for our
Restriction A Hopf algebras) are gpiðxÞ in some divided power algebra and they are

in even degree. The targets must therefore be in odd degree and the only odd degree
primitives are in either filtration 0 or 1. Thus each differential is computed on just
one part of the total Tor; a EðxÞ#GðyÞ; with dðgpiðyÞÞ ¼ x: The resulting homology

is the sub-Hopf algebra of GðyÞ generated by the gpj ðyÞ for joi: Because of the length

of this differential, these gpj ; joi; are permanent cycles. Furthermore, they can never

be hit by differentials because they are even degree.
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Proof of Theorem 4.2. We have already discussed the existence of the bar spectral
sequence of part (i). However, the computation of the Tor is not so obvious. The
source for this is [Smi67, Proposition 1.5]. He is working only with graded
(connected) Hopf algebras. His proof depends on the theorem of [MM65] which says
that a Hopf algebra is free over a sub-Hopf algebra. Their proof of this uses the
grading but it is not necessary. Our Hopf algebras have nice coproducts and we can
use what we call the primitive filtration to prove this same freeness result, see

[Rad77]. For the map A-B in the computation of TorAðB; kÞ we have that A is free
over the kernel and that B is free over the image. Both are needed. Part (ii) follows
immediately from the computation of Tor in part (i). Part (iii) follows from the
above discussion about differentials. Differentials only hit odd exterior primitives
and there are none of them in coker i�; which is filtration 0. Part (iv) is a little
different. Recall that K�F is even degree. Let us look at the bar spectral sequence for
OB-F-E: Since K�OE surjects to K�OB; we know that K�OB-K�F is trivial, so
the cokernel term, K�F ; injects to K�E by (iii). Then, by part (ii) we get our short
exact sequence. &

We need the generalized Atiyah–Hirzebruch spectral sequence. See, for example,
[Dye69, pp. 24–25]. We will use it in a non-trivial way.

Theorem 4.7. Let h�ð�Þ be a generalized homology theory. For a fibration F-E-B;
there is a spectral sequence

E2CH�ðB; h�FÞ ) h�E:
From [RWY98, Proposition 2.0.1, p. 155] we have:

Theorem 4.8. Let K ¼ KðnÞ: Let F-E-B be a fibration.

(i) If K�F is even degree and H�ðB;FpÞ is even degree, then the generalized Atiyah–

Hirzebruch spectral sequence collapses.
(ii) If the fibration is one of double loop spaces then we have a short exact sequence of

Hopf algebras:

K�-K�F-K�E-K�B-K�:

We need the following theorem:

Theorem 4.9. The homologies of bo2 and bo4 are polynomial on even degree generators

and the cohomology of bo4 is also polynomial.

Proof. For a contemporary reference for bo4 ¼ BSp see [Koc96]. H�bo2 follows
quickly from a double application of the Eilenberg–Moore spectral sequence. &

Remark 4.10. We need some basic facts about the Morava K-theory of Eilenberg–
MacLane spaces from [RW80]. First, K�KðFp; iÞ is a finite Hopf algebra concentrated
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in even degrees. It is trivial if i4n so that Morava K-theory only sees a finite number
of Eilenberg–MacLane spaces. K�KðZ; iÞ is even degree and infinite and the bar
spectral sequence converging to K�KðZ; i þ 1Þ collapses. It is trivial if i4n: There is a
short exact sequence of Hopf algebras:

K�-K�KðFp; iÞ-K�KðZ; i þ 1Þ!p� K�KðZ; i þ 1Þ-K�: ð4:11Þ

The Morava K-theory of Eilenberg–MacLane spaces always satisfies Restriction A.

5. Main calculation

5.1. Introduction

In this section we will prove the theorems of Section 2. Our organization is
somewhat different here than in that section. There, the results are stated for each
Omega spectrum separately. Here, we are inclined to go up the connective covers a
bit and then deloop and do it again. After a while, we can do things in bulk and
prove Theorem 1.3. Then things sort of get very ad hoc. This is not the historical way
things were done. That would be much too confusing. Nor do we start with the
known results and work from there, or, do the easiest first and move on. We do try to
be as systematic as we find possible though.

5.2. Bicommutativity

We work exclusively with p ¼ 2 and a minor problem presents itself. The spectra
KðnÞ for p ¼ 2 are not commutative ring spectra but we rely heavily not just on Hopf
algebra commutativity, but Hopf algebra cocommutativity as well. Without it we
cannot compute our Tors and we would not have an abelian category to work in.
Fortunately, the obstruction to commutativity is well understood [Wür86,Mir79,
pages 36–37]. Let m be the multiplicative map and T the switch map, then

m3T ¼ m þ unmðQn�14Qn�1Þ;

where Qn�1 is a stable operation of degree 2n � 1 (negative when acting on
homology). All we need here is that it is an odd degree stable operation. We use this
to show commutativity. In particular, if we compute that something is even degree
then it is commutative. We will have to verify commutativity for every space we
consider. Rather than have a separate section we will put in [square brackets] all our
comments as we prove our results in this section.

We remind the reader that RPN ¼ KðF2; 1Þ and CPN ¼ KðZ; 2Þ: We will use them
interchangeably.
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5.3.
%
X0

We start with bo0 ¼ Z� BO where we have BO ¼ BO0; so getting K�BO0 really
starts two of our sequences. This is done explicitly in [RWY98, Section 2.5, p. 161]
using the Atiyah–Hirzebruch spectral sequence, see Eqs. (3.1) and (3.2). There it is
shown to be a polynomial algebra. Next, we know that BSO � RPNCBO; or,
rephrased, BO0CBSO0 � RPN: This gives a short exact sequence of Hopf algebras,

K�-K�BSO0-K�BO0-K�RPN-K�

A sub-Hopf algebra of a polynomial Hopf algebra is polynomial too, see Theorem
4.1. Thus we have that K�BSO0 is a polynomial sub-Hopf algebra of K�BO0:

Next, comes K�BSpin where BSpin ¼ BSpin
0
: We have a sequence of fibrations:

Spin-SO-RPN-BSpin-BSO-?:

Because RPN splits off of SO we know the map K�RPN-K�BSpin is trivial. Thus,

when we use the bar spectral sequence to compute K�BSO the E2 term is

K�BSpin#TorK�RPN

: We know that this converges to K�BSO which we know is
polynomial (on even degree generators) and we want to know the same is true for
K�BSpin: K�BSpin sits in the zeroth filtration of the bar spectral sequence. We know
the Tor part completely from [RW80]. The Tor part consists of some exterior
generators (n � 1 of them in filtration one) and the same number of divided power
Hopf algebras (n � 1 of them starting in filtration 2). Thus, in the spectral sequence,
all differentials must originate on this divided power algebra part and hit exterior
generators. Since there is just enough divided power algebra stuff to kill off the
exterior generators in Tor; and all exterior generators must be hit, then we can
conclude that is precisely what happens. Consequently we can see that K�BSpin

injects into K�BSO and is even degree and by Theorem 4.2(ii)

BSpin-BSO-KðF2; 2Þ

gives rise to a short exact sequence in Morava K-theory so K�BSpin is a
subpolynomial Hopf algebra of K�BSO:

We have now done the zeroth spaces in our four Omega spectra. [Since all are even
degree, all are bicommutative.]

5.4.
%
X1

We can now move on to the
%
X1 for these spectra. By the bar spectral sequence we

get all are exterior algebras on odd degree generators. [The generators are all
suspensions of generators from

%
X0 which had the stable operation associated with

lack of commutativity zero. The trivial obstruction suspends to zero as well so these,
too, are bicommutative.]

We want the maps too. Since bo0CZ� BO0 we have bo1CS1 � BO1: Since K�BO0

is polynomial, both of these are exterior and we get the split short exact sequence of
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Hopf algebras:

K�-K�BO1-K�bo1-K�S
1-K�:

Next we study the fibrations

RPN-BSO1-BO1-KðF2; 2Þ:

We know that K�BSO1 and K�BO1 are exterior from the bar spectral sequence.
K�RPN is even degree so the first map is trivial in Morava K-theory. The bar

spectral sequence converging to K�BO1 thus has E2 term K�BSO1#TorK�RPN

: The
Tor part is well understood. It has an exterior part and a divided power algebra part.
There are the same number of exterior generators (n � 1 in filtration 1) as there are
divided power towers (starting in filtration 2). Since we can have no even degree
generators when we are done, the only thing which can happen is that the divided
power tower generators in filtration 2 have differentials to exterior generators in
filtration 0 (the differentials have to kill all the even stuff and must be at least a d2).
This tells us exactly how many exterior generators are in the kernel, ðn � 1Þ; and
cokernel of the map K�BSO1-K�BO1; ðn � 1Þ:

Next we study the fibrations

KðF2; 2Þ-BSpin
1
-BSO1-KðF2; 3Þ:

The same thing happens here! We know the two middle terms are exterior and the
left one is even degree. So, the argument proceeds just as in the previous case and we

know exactly how many, ðn�1
2 Þ; exterior generators of K�BSpin

1
are in the kernel of

the map to K�BSO1 and how many are in the cokernel (the same number).

5.5.
%
X2

Since K�
%
X1 is exterior on odd degree generators we know that the bar spectral

sequence collapses as divided power algebras all in even degrees [and are therefore
bicommutative]. However, getting the algebra structure and the maps is not so easy.
First, we look at bo2: The standard homology is easy to compute and it is polynomial
on even degree generators, Theorem 4.9. Thus we see, by the Atiyah–Hirzebruch
spectral sequence, that K�bo2 is polynomial on even degree generators. For BO2 we
look at the fibrations

BO1-bo1-S1:

We know this is short exact and split as Hopf algebras. Thus the Tor groups in the 3
bar spectral sequences are also short exact. Since they are all even degree the spectral
sequences all collapse and give rise to the short exact sequence of Hopf algebras:

K�-K�BO2-K�bo2-K�CPN-K�:
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Since we know the middle term is polynomial we have the left side is also polynomial
because it is a sub-Hopf algebra of a polynomial algebra (recall Theorem 4.1).

Our style changes dramatically here. At this point we can go from proving things
one space at a time to getting results in bulk. We have to start this part of our study
by looking at the fibration

S1-BO2-bo2:

Keep in mind that we already know the Morava K-theory for these spaces. The E2

term of the generalized Atiyah–Hirzebruch spectral sequence for the fibration is

H�ðbo2;K�S
1Þ:

We know that all of the odd stuff has to go away. There can be no differentials on

the fibre stuff, i.e. K�S1; so it must be the target of a differential which comes from
H�ðbo2; F2Þ: We now compare this spectral sequence with another. Let Y-bo2 be a
connective cover. Since we know the homotopy of bo2 we can easily compute the
homotopy of the fibre F : We see that F has a circle which splits off of it. Write

F ¼ F 0 � S1: Then we have maps of fibrations

where Y-BO2 is also a connective cover. The generalized Atiyah–Hirzebruch

spectral sequence maps, on E2 terms, as follows:

Because S1 splits off of F ; the top E2 term is

H�ðbo2;K�F
0Þ#H�ðbo2;K�S1Þ:

The first term is all even degree and the spectral sequence for BO2 forces all the
differentials in the right hand side. Then everything is in even degrees and we can see
how the fibration F 0-Y-BO2 behaves under Morava K-theory. We see from the
spectral sequence that K�F

0 injects into K�Y and from this and Theorem 4.2(ii) we
get a short exact sequence:

K�-K�F 0-K�Y-K�BO2-K�:

Furthermore, since the right-hand term is polynomial, these all split as algebras. It is
important to note that we know all about K�F

0 as well.
This concludes our calculation of all Y which are connective covers of BO2: We

can now write these down in our usual notation. They are: BSO2þ8i; BSpin
2þ8i

;
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bo10þ8i; and BO10þ8i; where iX0: [They are all even degree and so bicommutative.]

By Theorem 4.4 we get much more of our Theorem 1.3, namely, the i ¼ 2 modulo 8
part.

5.6.
%
X3

We are now ready to compute the deloopings of all of these spaces to get
%
Xi where

i ¼ 3 modulo 8 now that we know all of these for i ¼ 2 modulo 8.
We start with the fibration

CPN-BO3-bo3:

We know that K�BO2 and K�bo2 are polynomial so we know K�BO3 and K�bo3 are
exterior [and because the generators are suspensions of generators with trivial
obstructions, these too are bicommutative]. We just need to study the map between
them. Since K�CPN is all even degree the first map must be trivial and so the bar

spectral sequence for the above fibration is just K�BO3#TorK�CPN

and we know the
Tor term completely from [RW80] or Restriction A. It is a divided power algebra
with primitives in filtration 2. Since our answer is K�bo3 which is exterior, this must
all go away. The only way this can happen is if there are differentials from the
filtration 2 primitives to exterior generators in filtration 0. We know exactly how
many such elements there are, ðn � 1Þ: Surprisingly, we see that the remaining
answer, after these differentials, is all in filtration zero and so we have a surjection:
K�BO3-K�bo3 and we know how many exterior generators there are in the kernel,
ðn � 1Þ: We had to do this space separately, but now we can move on to once again
do things in bulk.

Let us recall the fibration F 0-Y-BO2: The conditions of Theorem 4.2(iv) are
met so we get a short exact sequence of Hopf algebras (with Bð�Þ the delooping):

K�-K�BF 0-K�BY-K�BO3-K�:

[Although K�BO3 is exterior and bicommutative there is still some possibility that
the obstructions to bicommutativity for K�BY lie in the kernel here, i.e. K�BF 0:
However, these exterior generators in K�BY are suspensions of generators in K�Y

which have trivial obstructions on them, so they are trivial in K�BY too and we have
bicommutativity.] We again use Theorem 4.4 to prove more of Theorem 1.3, the
i ¼ 3 modulo 8 part.

5.7.
%
X4

We now proceed to do the
%
Xi; i ¼ 4 modulo 8 cases. This turns out to be the easiest

case of all. In the case of bo4 we know that there is no torsion in regular homology
and that it is polynomial, Theorem 4.9. Thus the Atiyah–Hirzebruch spectral
sequence collapses and it too is polynomial. We can then take the connective covers,
Y ; and fibre, F ; (a finite Postnikov system with even Morava K-theory), and we have
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a short exact sequence of Hopf algebras

K�-K�F-K�Y-K�bo4-K�

from Theorem 4.8 which is split as algebras because the right hand one is
polynomial. This completes the calculation of all K�

%
Xi for i ¼ 4 modulo 8 in our 4

Omega spectra. [Everything is even degree so we get bicommutativity.] Just as an
example of something new here, we have not computed K�BO4 by itself. However, it
follows from this result that the fibration:

KðZ; 3Þ-BO4-bo4

gives us a short exact sequence which is split as algebras, so, as algebras,

K�BO4CK�KðZ; 3Þ#K�bo4:

More of Theorem 1.3 follows from Theorem 4.4, the i ¼ 4 modulo 8 part.

5.8. Theorem 1.3

Once we prove Theorem 1.3 for boi and show that K�boi satisfies Restriction A, we
get Theorem 1.3 for boiþ1 and then Theorem 4.4 gives it for i and i þ 1 modulo 8:

Thus, all we need to complete the proof is to calculate K�boi and show it meets
Restriction A for i ¼ 5; 6; 7 and 8. For this result we don’t need it, but of course we
want i ¼ 9 for completeness.

5.9.
%
X5

The bar spectral sequence from K�bo4 to K�bo5 is exterior and collapses. [It is
bicommutative because the generators are the suspensions of generators with trivial
obstructions on them. For a connective cover, Y ; the only possibility is that the
obstructions on the exterior generators lands in K�F but those exterior generators
are also suspensions of elements with trivial obstructions, so K�Y is bicommutative.]

5.10. Review

Let us consolidate our gains now. We have computed the Morava K-theory of boi

and all its connective covers for i ¼ 2; 3; 4 and 5, plus
%
Xi for i ¼ 0 and 1. We are left

with the necessity to compute K�bo6; K�bo7; K�bo8; and K�bo9: Their connective
covers are automatic from the preceding subsections. All other spaces have been
computed except for some of the negatively indexed spaces: BO�1 ¼ O; BSO�1 ¼
SO; BSO�2 ¼ O=U ; BSpin�1

¼ Spin; BSpin�2
¼ SO=U ; K�BSpin�3

CS1 � bo5 and

K�BSpin�4
CZ� bo4: These last two we can see the answers for immediately in terms

of things we already know. Also, BO�1 is F2 � SO and BSO�2 is F2 � BSpin�2
:
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This cuts our list of unknowns down to bo6; bo7; bo8; bo9; BSO�1 ¼ SO;
BSpin�1

¼ Spin; and BSpin�2
¼ SO=U : In addition to this list, there are just a few

maps left unstudied. The ones we do not know yet are: Spin-SO; bo6-BSpin�2
;

bo7-Spin; bo8-BSpin; bo9-BSpin
1
:

So far, in our proofs, we have not yet had to use the spaces bu�: This is about to
change.

5.11. SO

We have already computed the cokernel of K�BU-K�BO as CK1: We can use this
in the spectral sequence for the fibration BU-BO-SO: The kernel of
K�BU-K�BO is known already to be polynomial on generators with lead terms
the odd b2qþ1: We compare the spectral sequences for the two fibrations:

ð5:11:1Þ

Since the kernel is polynomial we see that for SO the spectral sequence collapses to
CK1#E: CK1 is the cokernel in filtration 0 and E is Tor of the kernel which is
polynomial and so the exterior generators are in filtration one and have trivial
differentials. We see that E injects to K�SU : [Bicommutativity is harder to come by
in this case than in previous ones. As we have computed it, it is possible that Qn�1 of
an exterior generator is nonzero in CK1: To solve this problem we use the fibration

BSpin�3
-U-SO: BSpin�3

Cbo5 � S1: The Morava K-theory of this has already

been shown to be exterior on odd degree generators and bicommutative. We know
the same is true for U (the generators are in the image of the even degree generators
of bu0). Using the bar spectral sequence for this fibration we see that both the kernel
and the cokernel must be exterior algebras. Our Tor is thus an exterior algebra, the
cokernel, coming from K�U in filtration zero, and Tor of the kernel, an even degree
divided power algebra. There could be differentials but we do not care. All we care
about is that all of the exterior generators of K�SO come from K�U and therefore the
obstructions to commutativity on them are all trivial.]

5.12. Spin

We know that BSO-BO-KðF2; 1Þ gives a short exact sequence so we know that
the cokernel of K�BU-K�BSO is CK2: We can now use the fibration
BU-BSO-Spin to compute K�Spin in the same way we computed K�SO: From
this the fibration Spin-SO-KðF2; 1Þ easily reduces to a short exact sequence:

K�-CK2#E-CK1#E-K�KðF2; 1Þ-K�: ð5:12:1Þ

[Bicommutativity follows from the injection.]
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5.13. bo6

We study the fibration bu3-Spin-bo6: K�bu3 is exterior and hits all the exterior
generators of K�Spin but does not hit any of CK2: The kernel must be exterior so Tor

is CK2 tensored with a divided power algebra generated by the suspensions of the
exterior generators in the kernel. This is all even degree so collapses. [And we have
bicommutativity.] Comparing fibrations:

ð5:13:1Þ

we see the divided power part must inject into K�bu4 which is polynomial. So, K�bo6

is CK2#P: Furthermore, the polynomial part splits off of K�bu4 as algebras. This is
more difficult to see. Consider the fibration bo6-bu4-BSpin: K�bu4 is polynomial
so the cokernel, K�bu4//P is even degree and the kernel, CK2; is Restriction A. So,
K�bu4//P injects into K�BSpin by Theorem 4.2(iii). Since this is polynomial, K�bu4//P
is polynomial so K�bu4 splits as these algebras.

5.14. BSpin�2

From the splitting BSpin�3
CS1 � bo5 and the spectral sequences for the delooping

of these spaces, we get evenly graded spectral sequences which must collapse and be
short exact [giving bicommutativity]:

K�-K�bo6-K�BSpin�2
-K�CPN-K�:

But this does nothing obvious to elucidate the algebra structure of K�BSpin�2
: We

use the fibration:

SO-BSpin�2
-bu2:

We need the maps:

All the vertical maps are surjections in Morava K-theory. We know from the
injection K�bo6-BSpin�2

that we have a finite subalgebra CK2: Using the bar

spectral sequence for SO-BSpin�2
-bu2 we know CK2 must not be in the cokernel

because the cokernel is even degree and so injects to the polynomial algebra K�bu2 by
Theorem 4.2(iii). So this coker is polynomial also. However, CK2 can be hit by K�SO
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so it must be. Likewise, the K�RPN part of K�SO is carried along by the above
diagram. Thus we see that CK1 injects from K�SO to K�BSpin�2

and the cokernel is

polynomial. We see that

K�BSpin�2
CCK1#P:

Note how we yet again use the spectral sequence starting with the thing we don’t
know and without computing the spectral sequence we end up knowing it.

5.15. Review again

Our list of unknowns now stands at K�bo7; K�bo8 and K�bo9: The maps are:
bo7-Spin; bo8-BSpin; and bo9-BSpin

1
:

5.16. bo7

Consider the diagram

The left vertical map is surjective. The image of the top horizontal map is CK2: The
lower horizontal map injects so we get a surjection CK2-K�KðF2; 2ÞCK�KðZ; 3Þ:

Because K�BSpin�2
surjects to K�CPN we have K�CPN maps trivially to K�bo7:

So, we compare bar spectral sequences for the fibrations:

We know the bottom spectral sequence from [RW80] or Restriction A. Tor is a
divided power algebra on n � 1 ‘‘generators’’ in filtration 2. Tor in the top one is just

K�bo7 (the cokernel in filtration zero) and TorK�CPN

: Since we know the image of the
right vertical map we know which elements must be the source of differentials and
that they must kill off exterior generators (and how many (n � 1)) in K�bo7: Since
this converges to K�Spin which we know to be exterior and CK2; then K�bo7 must be
exterior tensor with CK3: It is important to note that there are some, (n � 1), exterior
generators in the kernel of the map K�bo7-K�Spin and that all of the exterior
generators of K�Spin are in the image of this map. (Bicommutativity is not obvious.
We could have our odd degree operation on something in CK3 ending on one of the
exterior generators in the kernel. To solve this problem we use the fibration
BSU-BSpin-bo7: The cokernel part of Tor is even degree and the kernel must be
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polynomial so Tor of it is exterior and we see that the spectral sequence collapses.
Since the even degree stuff is in filtration zero and the odd generators are in filtration
one, we cannot have the above possibility occur so we have bicommutativity.)

5.17. bo8

Consider the fibration

Spin-KðZ; 3Þ-bo8:

We know the cokernel of the first map is just another K�KðZ; 3Þ from Remark 4.10
and the previous subsection. Since it is even degree it injects into K�bo8 by Theorem
4.2(iii). This gives us the KðF2; 2Þ-KðZ; 3Þ-bo8 part of Theorem 1.5.

Now consider the fibration

KðZ; 3Þ-bo8-BSpin:

We know what the image and kernel of the first map are, and we know what the
spectral sequence converges to. Since the kernel is K�KðF2; 2Þ we know Tor for this.
It has, as usual, a bunch of exterior generators in filtration 1 and a bunch of divided
power algebras with primitives in filtration 2. Filtration 0 is K�bo8 modulo the image
of K�KðZ; 3Þ; which is another copy of K�KðZ; 3Þ: Since K�BSpin is polynomial,
there can be no exterior elements left in the spectral sequence when we are done. The
number of exterior generators in filtration one is precisely the same as the number of
possible sources for differentials. Thus there can be no sources left over to hit
anything in filtration zero. Thus K�bo8//K�KðZ; 3Þ is polynomial since it injects to the
polynomial K�BSpin: So K�bo8 is K�KðZ; 3Þ tensor with a polynomial algebra as
algebras [and so bicommutative]. We cannot obviously determine the cokernel of the
map of bo8 to BSpin from this but we want it to be K�KðF2; 3Þ: Certainly it is even
degree and so injects into K�KðZ; 4Þ: We have an array of fibrations (both vertical
and horizontal):

The right top vertical map K�bu6-K�bu4 is known to be surjective so the right
bottom vertical map K�bu4-K�KðZ; 4Þ is trivial. Thus, the map from K�BSpin to
the lower right hand corner must be zero since it factors through K�bu4: Going the
other way, we see that the map K�BSpin-K�KðZ; 4Þ must factor through K�KðF2; 3Þ
because we go to zero in the right lower corner and we have the short exact sequence
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(and we are working in an abelian category):

K�-K�KðF2; 3Þ-K�KðZ; 4Þ!2� K�KðZ; 4Þ-K�:

We need the additional array of commuting maps and fibrations.

First we look at the bar spectral sequence for the vertical fibration on the right.
Whatever the image of the top map is, call it L; we have Tor zero is K�KðZ; 4Þ=L

which is all in even degrees and so injects into K�bo9: We know that L factors
through K�KðF2; 3Þ so if we can show that K�KðF2; 3Þ goes to zero in K�bo9 then we
have it is equal to L: By the commuting diagram, K�KðF2; 3Þ to K�bo9 factors
through K�BSpin

2
so if we can show that the map K�BSpin

2
to K�bo9 is trivial then

we are done. This will be trivial if the map of K�bu6 to K�BSpin
2

is surjective and this

will happen if the map K�bo8 to K�bu6 is injective (because the bar spectral sequence
for K�BSpin

2
will collapse and give a short exact sequence). To see this injection, we

look at the bar spectral sequence for the fibration using the last 3 terms on the left.
We know that K�bo8 is even degree and K�BSpin

1
is exterior, so the map of the later

to the former is trivial. The cokernel is K�bo8 which is even degree so it injects to
K�bu6:

5.18. bo9

Consider the fibration

KðZ; 4Þ-bo9-BSpin
1
:

We have evaluated the image of the first map as being the quotient of K�KðZ; 4Þ by

K�KðF2; 3Þ; which is just another K�KðZ; 4Þ: So, the bar spectral sequence E2 term is

just K�bo9 modulo this image tensored with TorK�KðF2;3Þ: However, the answer is
exterior and so all of the divided power towers must go away completely. The only
way this can happen is if there are differentials, d2; from the second filtration
generators of these towers to exterior generators in filtration 0. This will allow the
exterior generators in Tor to survive. Thus we must have K�bo9 is K�KðZ; 4Þ tensor

with an exterior algebra. A finite number, ðn�1
3
Þ; of these exterior generators go to

zero in K�BSpin
1

and the same number of exterior generators in K�BSpin
1

are not in

the image. [Bicommutativity follows easily from the spectral sequence going from
K�bo8 to K�bo9: All the exterior generators are in the image of polynomial generators
and so the obstructions are trivial.]
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5.19. Miscellaneous

The fibration

bo4-bu4-bo6

gives us a short exact sequence because the homology of bo4 injects.
Considering the fibration

BSpin-bu4-BSO2;

we get a short exact sequence of Hopf algebras. We know all of these are polynomial.
If K�BSpin injects then we must have split short exact. If it does not inject then we
know the kernel must be polynomial and so in Tor the higher filtration stuff is
generated by exterior generators in the first filtration and they have trivial
differentials and the spectral sequence would collapse with odd exterior generators.
There are no odd exterior generators in K�BSO2; contradiction. Thus there is no
kernel.

6. Brown–Peterson cohomology

We would like to have a computation of the Brown–Peterson cohomology of all of
the spaces we study in this paper. However, the similar calculation for buk for all k

done in [KW01] is extremely difficult and depends on tools we do not have available
for the spaces considered here.

Before we proceed we need to review some basic results. The process of going from
Morava K-theory to Brown–Peterson cohomology is developed in [Kas98,-
Kas01,KW01,RWY98,Wil99].

The Brown–Peterson cohomology of many spaces has turned out to be
surprisingly nice. The property, in this case, which turns out to qualify as ‘‘nice’’
is Landweber Flatness. A BP�-module is said to be Landweber Flat (LF) if it is flat
for the category of BP�BP-modules which are finitely presented over BP�:
Landweber showed, in [Lan76], that a BP�-module, M; is LF if it has no p-torsion,
M=ðpÞM has no v1-torsion, M=ðp; v1ÞM has no v2-torsion, etc. This has some very
nice properties. In particular, if BP�ðX Þ is LF ; then there is a completed Künneth
isomorphism for BP�ðX � YÞ: This makes any such X which is an H-space into a
completed Hopf algebra as in [KW01].

The first result we need covers most of our spaces. We use the notation Pð0Þ rather
than BP. It indicates BP if the inverse limit of the BP cohomology of the finite
skeleta gives the BP cohomology. This is the case for simple things like BO and BU :
If not, then we must use the p-adically complete version of BP, BP4

p : This happens

most of the time for us in this paper, in particular, whenever there is a KðZ; qÞ in a
finite Postnikov system.
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Theorem 6.1 (Ravenel et al. [RWY98]). If KðnÞ�ðX Þ is concentrated in even

degrees for all n40 then Pð0Þ�ðXÞ is Landweber Flat and it too is concentrated in

even degrees.

All of the even spaces in all four of our Omega spectra have this property so they
are all Landweber Flat and are completed Hopf algebras. Also, all of our finite
Postnikov systems have this property. In [KW01] it was shown that for the finite
Postnikov systems associated with coverings of bui; the BP cohomology split up as
the completed tensor product of the BP cohomology of Eilenberg–MacLane spaces
having the same homotopy. It is not known if this happens in general (as it does for
Morava K-theory). In particular, we have no such theorem for the finite Postnikov
systems which arise in this study.

In [RWY98] there is a basic theorem lifting short exact sequences of Hopf algebras
in Morava K-theory to information about BP cohomology. This is further refined in
[KW01].

Theorem 6.2 (Ravenel et al. [RWY98], Kashiwabara and Wilson [KW01,
Corollary 6.10, p. 79.]). Let E be various cohomology theories which includes

Pð0Þ; (see [KW01]), and let the composition of the H-space maps X1-X2-X3

be trivial. If, for all n40; we have short exact sequences of bicommutative Hopf

algebras

K�-K�X1-K�X2-K�X3-K�

with the middle space having Landweber flat E cohomology, then the other two spaces

also have Landweber flat E cohomology and we get a similar short exact sequence of

completed Hopf algebras in E�ð�Þ:

Theorem 1.9 of the introduction follows immediately from this. Even more. We
know from [KW01] that all of the spaces bu� are Landweber Flat, so the above result
combined with Theorem 2.3.6 gives us:

Theorem 6.3. The following fibrations give short exact sequences of completed

Hopf algebras for BP4�
2 ð�Þ: boi-bui-boiþ2; BOi-buiþ2-boiþ2; and BSOi-

buiþ4-BOiþ2 for i ¼ 0; 1; 2; 3; 4 and 8; and BSpin-bu4-BSO2 and bo8-
bu6-BSpin

2
:

Since most of these are spaces with even Morava K-theory this is straightforward.
However, we do get bo1; bo3; bo5; BO1; BO3; BO5; BSO1; and BSO3 are Land-
weber Flat without any work. Presumably some of them could be seen to be
Landweber Flat by other techniques, but this makes it easy. It is not at all clear how
one could get BO5 or BSO3 by other techniques. However, now that we have them,
we get more short exact sequences for free. We see that the fibrations
KðZ; 4Þ-BO5-bo5 and KðF2; 3Þ-BSO3-BO3 give short exact sequences of
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completed Hopf algebras for Pð0Þ cohomology (BP#2 is necessary for the first one but

BP will do for the second).
Our work so far with BP cohomology has been to collect freebies from our work

on Morava K-theory together with known results. A more thorough understanding
of BP cohomology would require another significant research initiative and this
section is not it. We would like to get started on a more explicit study of two of the
more important spaces in our paper, BSpin and BO/8S:

Proof of Theorem 1.11(ii). First, we recall Theorem 1.11(i):

BP�BOCBP�½½c1; c2;y��=ðci � c�i Þ:

We have an array of maps with the columns fibrations:

We know the 3 vertical fibrations give short exact sequences in Morava K-theory.
We know the bottom horizontal fibration gives a short exact sequence. From
[RWY98] we know the middle horizontal maps give a left exact sequence. It follows
(we are in an abelian category) that the top row is also left exact. All that remains is
for us to describe c1ðdetÞ: Consider

S1 �?� S1-UðnÞ!det
S1

where det is the determinant. The composition from the circles is just the
multiplication on the circles. When we take the limit and go to the classifying

spaces we can evaluate c1ðdetÞ as the formal sum
PF

i xi in BP�ðCPN �?� CPNÞ:
This is a symmetric function and so can be written in terms of Conner–Floyd Chern
classes. We see that BP�BSUCBP�BU=ðc1ðdetÞÞ: &

Another way to look at this is as the short exact sequence of completed Hopf
algebras coming from the first column: BSO-BO-RPN:

K�BO was computed as the kernel of ð1 � cÞ� on K�BU in [RWY98] by splicing

together the two short exact sequences which come from the fibrations
BO-BU-bo2 and bo2-BU-bo4 and showing that the composite map was 1 �
c: We can do the same for BSO by splicing together the short exact sequences coming
from the fibrations BSO-BSU-BO2 and BO2-BSU-bo4: We can now do this
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one better: splice together the sequences from the fibrations BSpin-BSU-BSO2

and BSO2-bu6-BO4: Together, we get:

Theorem 6.4. Let K ¼ KðnÞ ðp ¼ 2Þ: We have four term exact sequences and maps

with the indicated surjections and injections:

Proof. The only thing left to do is to justify the name 1 � c on the map BSU-bu6:
There are fibrations: KðZ; 3Þ-bu6-BSU-KðZ; 4Þ: The map 1 � c from BSU to
BSU pushed down to KðZ; 4Þ is trivial so we get a lift BSU-bu6: Because there are
no maps BSU-KðZ; 3Þ; this lift is unique. &

We now have two ways to view BP�BSpin: The fibration BSpin-BSO-KðF2; 2Þ
gives a short exact sequence in Morava K-theory and so a short exact sequence of
completed Hopf algebras when we apply BP�ð�Þ: (This proves Theorem 1.11(iii).)
Ideally we would like to evaluate BP�BSpin as a quotient of BP�BSO in terms of
Conner–Floyd Chern classes. A good concrete problem for someone else. We know

that BP�KðF2; 2Þ has generators in degrees 2ð1 þ 2iÞ with i40 from [RWY98, p.
191]. One would hope these hit corresponding ck with some sort of tail, but precisely
what they are we do not know. One might hope to get at this using the other

approach that BP�BSpin is the cokernel of ð1 � cÞ� : BP�bu6-BP�BSU : Since we

know that BP�BSO is the cokernel of ð1 � cÞ� on BP�BSU ; we are only missing the
BP�KðF2; 2Þ: We have a short exact sequence from the fibration
KðZ; 3Þ-bu6-BSU so the KðF2; 2Þ part must come from the KðZ; 3Þ: In Morava
K-theory we get an injection K�KðF2; 2Þ-K�KðZ; 3Þ and a corresponding surjection
in BP4�

2 ð�Þ: If one lifts elements of K�BSU to K�bu6 and applies ð1 � cÞ�; one can

see the K�KðF2; 2Þ part of K�KðZ; 3Þ get hit. However, it is not obvious how to use
this information to get what we want about BP�BSpin:

At this point we know BP�BSO explicitly and we know that BP�BSpin is
BP�BSO//BP�KðF2; 2Þ: We would like to make progress towards BP�BO/8S:
Unfortunately, the technology is not there to use anything more than a short exact
sequence to get information. Even at that, the right exact sequence
K�BO/8S-K�BSpin-K�KðF2; 3Þ (Theorem 1.5) we have is only algebraic with
no geometry behind it. The technology is very far from being able to do anything
with this. Consequently we’ll have to be a little ad hoc in our arguments.
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Proof of Theorem 1.3(i)–(iii). We start with a map of fibrations:

The Morava K-theory of each gives a short exact sequence. Since we are in an
abelian category we get a snake lemma, i.e. a 6 term exact sequence of Hopf algebras
relating the kernels and the cokernels of the maps between these short exact
sequences. As it turns out, we already know all of these kernels and cokernels:

The 6 term exact sequence is really a 4 term exact sequence, the one in Theorem 1.5.
Each of these short exact sequences gives a short exact sequence of completed

Hopf algebras in BP4�
2 ð�Þ: So, applying BP4�

2 ð�Þ we get:

For clarity the trivial Hopf algebras have been left off of the short exact sequences.
The top two rows and the left two columns are all short exact. Some explanation is
necessary for what is going on in the lower right hand corner. The map 2� is not the
cokernel. Instead, the bottom row comes from our fibration. We would like to
evaluate the map BP4�

2 BO/8S-BP4�
2 KðZ; 3Þ in the fibration. Because
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BP4�
2 BSpin

2
maps trivially through BP4�

2 bu6 to BP4�
2 KðZ; 3Þ; the map of BP4�

2 bu6

to BP4�
2 KðZ; 3Þ factors through the cokernel BP4�

2 BO/8S and we get a surjection a:
We can now do two desirable things. We can mimic parts of both sequences
in Theorem 1.5. First, we have the purely algebraic surjection BP4�

2 BO/8S-
BP4�

2 KðZ; 3Þ given by a: Second, we can splice this together with the short exact

sequence

BP4�
2 -BP4�

2 KðZ; 3Þ!2
�

BP4�
2 KðZ; 3Þ-BP4�

2 KðF2; 2Þ-BP4�
2

To get a geometrically induced exact sequence of completed Hopf algebras

BP4�
2 BO/8S-BP4�

2 KðZ; 3Þ-BP4�
2 KðF2; 2Þ-BP4�

2

This has unraveled a significant sticking point. The exact sequences of Theorem 1.5
do not allow us to address the map on BP to the fibre but we have now managed to
see that it is what we would expect it to be anyway.

We can see even more here. BP4�
2 KðZ; 3Þ is the cokernel of the map

BP4�
2 BSpin-BP4�

2 BO/8S: We revert to the basic definition of cokernel to see

this. If we have a map (in our category) of BP4�
2 BO/8S to H which is trivial on

BP4�
2 BSpin then we get a map of BP4�

2 bu6 to H which is trivial on BP4�
2 BSU : Since

that sequence is known to be short exact, this means our map factors through
BP4�

2 KðZ; 3Þ: &

Proof of Theorem 1.13(iv)–(vi). We need to introduce a new space, gBSpinBSpin; the
pullback of the maps BSpin-KðZ; 4Þ and the Bockstein KðF2; 3Þ-KðZ; 4Þ; and a
big diagram of fibration sequences:

Our first goal is to show that the two fibrations in boxes give short exact sequences in

Morava K-theory. We show that K�KðZ; 3Þ injects to K� gBSpinBSpin: The vertical short
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exact sequence follows. To get injectivity we use the bar spectral sequence for the

fibration Spin-KðZ; 3Þ- gBSpinBSpin: The first map is just the usual map of Spin to
KðZ; 3Þ followed by multiplication by 2: The image of the usual map is K�KðF2; 2Þ
which is killed by 2� so the first map is trivial in Morava K-theory. The cokernel part
of the bar spectral sequence is just K�KðZ; 3Þ which is even degree and therefore
injects by Theorem 4.2(iii).

To see that the (boxed) horizontal fibration gives us a short exact sequence in
Morava K-theory we will again show that the first map is injective on Morava K-
theory. To do this we will use the bar spectral sequence for the fibration

KðF2; 2Þ-BO/8S- gBSpinBSpin: The first map factors through K�KðZ; 3Þ and we know
that the kernel of this map into K�BO/8S is precisely K�KðF2; 2Þ so this map is
trivial. Once again we see that the cokernel for the spectral sequence is even degree,
K�BO/8S; and so injects.

Since the two boxed fibrations give us short exact sequences in Morava K-theory,
they give short exact sequences of completed Hopf algebras in BP4�

2 ð�Þ as well. We

can now evaluate the kernel of the map BP4�
2 BO/8S’BP4�

2 BSpin: If we have a

map in our category of an H to BP4�
2 BSpin which is trivial in BP4�

2 BO/8S then it

maps to BP4�
2

gBSpinBSpin and is still trivial in BP4�
2 BO/8S: Since BP4�

2
gBSpinBSpin is part of a

short exact sequence we can factor H through its kernel, BP4�
2 KðF2; 3Þ: This prove

part (iv), Parts (v) and (vi) follow from the diagram. We end with our sequence:

BP4�
2 BSpin’BP4�

2 KðZ; 4Þ’2
�

BP4�
2 KðZ; 4Þ’BP4�

2 : &
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