
Real structures and Morava K-theories

Nitu Kitchloo and Gerd Laures

Abstract. We show that real k-structures coincide for k = 1, 2 on all formal
groups for which multiplication by 2 is an epimorphism. This enables us to

give explicit polynomial generators for the Morava K(n)-homology of BSpin
and BSO for n = 1, 2.

1. Introduction and statement of results

Let F be a formal group law over a ring R and let S be a R-algebra. A power
series f over S in k variables is called a k-structure on F if it satisfies the relations

(i) f(0, x2, x3, . . . , xk) = 1
(ii) f(xσ(1), xσ(2), . . . , xσ(k)) = f(x1, x2, . . . , xk) for all σ ∈ Σk
(iii) f(x1, .., xk)f(x0, x1+Fx2, x3, .., xk) = f(x0+Fx1, x2, .., xk)f(x0, x1, x3, .., xk)

Important examples for k-structures come from topology as follows: for any complex
oriented cohomology theory we are given an isomorphism

E∗(CP∞ × CP∞ × · · · × CP∞) ∼= π∗E[[x1, x2, . . . , xk]].

Here, the class xi for i = 1 . . . k is the first Chern class of the complex line bundle Li
which sits over the ith factor as the tautological bundle. An elementary calculation
using the algebraic independence of the elementary symmetric polynomials shows
that the chern classes cj (0 < j < k) for the virtual bundle (L1−1)(L2−1) · · · (Lk−
1) are trivial. Hence this stable bundle is classified by a map to the 2kth connected
cover BU 〈2k〉 of BU . The induced stable map

f : CP∞+ ∧ . . . ∧ CP∞+ −→ BU 〈2k〉+ ∼= BU 〈2k〉+ ∧ S
0 −→ BU 〈2k〉+ ∧ E

gives a power series over S = E∗BU 〈2k〉, which satisfies the relations above with
F being the formal group law associated to the oriented cohomology theory E
(cf.[AHS99].)

Ando, Hopkins and Strickland showed that for k ≤ 3 all k-structures are rep-
resented in topology this way: let F be the formal group law associated to E over
R = π∗E. Then given any such k-structure g on F over a R-algebra S there is a
unique algebra homomorphism

ϕ : E∗BU 〈2k〉 −→ S
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which satisfies ϕf = g. Explicitly, let CkF be the R-algebra freely generated by
symbols ai1,...ik for ij ≥ 0 subject to the relations(i)-(iii) above for the power series

f(x1, . . . , xk) =
∑

i1,... ,ik

ai1,... ,ikx
i1
1 · · ·x

ik
k .

Then this generating function f is the universal k-structure on the group law F .
The results of Hopkins, Ando and Strickland show that the map

α : CkF −→ E∗BU 〈2k〉
that classifies the k-structure associated to E∗BU 〈2k〉 is an ismorphism. Moreover,
the canonical map ι : BU 〈2k〉 → BU 〈2k − 2〉 is given in E-homology in terms of
the generating functions by

ι∗f(x1, x2, . . . , xk) =
f(x1 +F x2, x3, . . . xk)

f(x2, . . . , xk)f(x1, x3, . . . , xk)
(1)

The classifying spaces of the unitary groups have real counter parts which for k ≤ 2
fit into a diagram

BU 〈4〉 = BSU //

��

BSpin = BO 〈4〉

��
BU 〈2〉 = BU // BSO = BO 〈2〉

.

The involution τ induced by complex conjugation is reflected by the equalities

τf(x) = f(−Fx) for 1-structures(2)
τf(x, y) = f(−Fx,−F y) for 2 -structures(3)

For k = 1, 2 we let CrkF be the universal ring of real k-structures on the formal
group law F . That is, the R-algebra CrkF is the quotiont of CkF subject to the
real realtions given by demanding that the universal k-structure be invariant under
τ . It was shown in [AHS99] that the canonical map

αr : CrkF −→ E∗BO 〈2k〉
is an isomorphism for Morava’s theory K(1) if k = 1 and for K(1) and K(2) if
k = 2. The prime under consideration is understood to be 2 throughout this paper
unless stated otherwise.

Theorem 1.1. Let F be the Honda formal group law of height n over F2[v±n ]
for some n. Then the canonical map

ι∗ : Cr2F −→ Cr1F

is an isomorphism.

We proceed to show that for the Honda formal group law the ring Cr1F is a
polynomial algebra in generators a2, a4, . . . . These results enable us to show

Theorem 1.2. Let bi ∈ K(n)2iBSpin be the image of the class ci1
∗ under the

map induced by the inclusion of the maximal torus

BS1 −→ BSpin(3) −→ BSpin.

(i) For n = 1, 2 we have K(n)∗BSpin ∼= π∗K(n)[ b2n·2, b2n·4, b2n·6, . . . ]
(ii) K(1)∗BSpin ∼= K(1)∗BSO
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(iii) The following is an exact sequence of algebras

1 −→ K(2)∗BSpin −→ K(2)∗BSO
w2−→ K(2)∗K(Z/2, 2) −→ 1

Moreover, the algebra K(2)∗K(Z/2, 2) is generated by one generator b in
degree 6 which satisfies the relation b2 = v2b.

The theorem 1.1 allows a generalization to any formal group G for which mul-
tiplication by 2 is an epimorphism. (A convenient source for the language of formal
schemes and formal groups is provided by [NS].)

Theorem 1.3. If 2 : G −→ G is an epimorphism, then the map

ι : spec Cr1G −→ spec Cr2G

is an isomorphism. In particular this applies to any formal group of finite height
over a field of any positive characteristic.

Although 1.1 is an obvious consequence of 1.3 we postpone the proof of 1.3 to
the very end. Instead we start with the proof of 1.1 since it only uses the language
of power series rather than schemes and helps in the understanding of the proof of
the general result.

Acknowledgements. The coordinate free approach to theorem 1.1 and its gener-
alization 1.3 was pointed out to the authors by the referee. The authors gratefully
incorporated the ceded result into the last section. They also would like to thank
the Mathematisches Institut der Universität Heidelberg for its hospitality while this
research was being carried out.

2. Real structures on the Honda formal group law

In this section we will prove 1.1. The Honda formal group law F of height n
describes the tensor product of complex line bundles in K(n)-theory. It is charac-
terized by the fact that it is 2-typical and its 2-series satisfies

[ 2 ](x) = x+F x = x2n

It is a well known difficulty that for n ≥ 2 the formula of its formal sum becomes
very hard to deal with. Hence we can not prove 1.1 by staring at coefficients but
need a general argument which only uses 2-typicality and the [2]-series.

We will construct an explicit inverse to the canonical map

ι∗ : Cr2 = Cr2F −→ Cr1 = Cr1F.

For that first observe the

Lemma 2.1. The power series S(x) = f(x, x)f(x,−Fx)−1 with coefficients in
Cr2 satisfies the relation

f(x2n , y2n) =
S(x+F y)
S(x)S(y)

.

Proof. The cocylce relation (iii) gives
S(x+F y)
S(x)S(y)

=
f(x+F y, x+F y)f(x,−Fx)f(y,−F y)f(−Fx,−F y)

f(−Fx, x+F y)f(y,−F y)f(x, x)f(y, y)

=
f(x+F y, x+F y)f(x, y)f(−Fx,−F y)

f(x, x)f(y, y)
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and

f(x2n , y2n) =
f(x2n +F y, y)f(x2n , y)

f(y, y)

=
f(x, y)f(x+F y, x+F y)f(x, y)f(x, x+F y)

f(y, y)f(x+F y, x)f(x, x)

=
f(x, y)f(x+F y, x+F y)f(x, y)

f(y, y)f(x, x)
Hence the claim follows from the real relation f(x, y) = f(−Fx,−F y).

Lemma 2.2. For any E the map

(ι+ f)∗ : E∗BSU ⊗π∗E E∗CP∞ −→ E∗BSU × CP∞ −→ E∗BU

is an isomorphism of E∗BSU -modules.

Proof. The diagram

BSU ×BSU × CP∞
ι×ι×f //

µ×1

��

BU ×BU ×BU
1×µ //

µ×1

��

BU ×BU
µ

��
BSU × CP∞

ι×f // BU ×BU
µ // BU

commutes.

There is a ring inbetween Cr2 and Cr1 which will be useful in the sequel: let T (x)
be the power series f(x)f(−Fx)−1 and let Cr

′

1 be the quotient ring of C1 subject
to the relation generated by the set I ′ consisting of the nonconstant coefficients of

T (x+F y)/T (x)T (y).

Then we have

Lemma 2.3. (i) The canonical map ι′ : Cr2 −→ Cr
′

1 is an injection.
(ii) T seen as a power series with coefficients in Cr

′

1 is a power series in x2n .

Proof. Let I be the subset of C2 consisting of the nonconstant coefficients of

f(x, y)f(−Fx,−F y)−1

For (i) first observe that we have

ι
f(x, y)

f(−Fx,−F y)
=

f(x+F y)f(x)f(y)
f(−Fx−F y)f(−Fx)f(−F y)

=
T (x+F y)
T (x)T (y)

It follows that I ′ is the image of I and that the map ι′ is well defined. Hence it
suffices to check that the ideal IC2 generated by f(x, y)f(−Fx,−F y)−1 is the inter-
section of the ideal I ′C1 with C2. By 2.2 there exists a retraction homomorphism

ρ : C1
∼= K(n)∗BU −→ K(n)∗BSU ∼= C2

of C2-modules. Hence any

a =
∑
k

iksk ∈ C2

with sk ∈ C1 and ik ∈ I ′ satisfies

a = ρ(a) =
∑
k

ik ρ(sk) ∈ IC2
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and the first part of the lemma follows.
For the second part, let T (x) = f(x)f(−Fx)−1 be considered as a power series

with coefficients in Cr
′

1 . Since −Fx = x+O(x2n), it follows that T (x) = 1+O(x2n).
By extending coefficients, we may assume that π∗(K(n)) contains all roots of unity.
Let p 6= 2 be any prime. Let ζ be a primitive p-th root of unity. On repeatedly
applying the equality

T (x+F y) = T (x)T (y)

and using 2-typicality, we get the equation:

1 = T (0) = T (
p−1∑

0

ζix) =
p−1∏

0

T (ζix)

On taking logarithmic derivatives, we get the following identity:

0 =
p−1∑

0

ζixT ′(ζix)T (ζix)−1

Since p is any odd prime, it follows that the power series xT ′(x)T (x)−1 may be
expressed as

xT ′(x)T (x)−1 =
∑
i≥1

cix
2i

An easy induction argument now shows that T (x) is an even power series. Let
T (x) = T1(x2), where T1(x) is a power series with coefficients in Cr

′

1 . Notice that
T1(x) = 1 +O(x2n−1

).
Let F1 denote the Frobenius of the formal group law F . We have the equalities

T1(x2 +F1 y
2)

T1(x2)T1(y2)
=
T1((x+F y)2)
T1(x2)T1(y2)

=
T (x+F y)
T (x)T (y)

= 1

Hence, we also have the equality

T1(x+F1 y) = T1(x)T1(y)

Since F1 is also 2-typical, we may repeat the above procedure n times to establish
the existence of a power series Tn(x) such that T (x) = Tn(x2n).

Proof of 1.1. First we claim that the power series S(x) of 2.1 is a power
series in x2n . Using the injection ι′ of 2.3 we get

ι′S(x) = ι′
f(x, x)

f(x,−Fx)
=
f(x2n)
T (x)

.

Hence the claim follows from 2.3. Next define the ring homomorphism κ from Cr1
to Cr2 by demanding

κf(x2n) = S(x).

Then we see with 2.1

κιf(x2n , y2n) =
κf(x2n +F y

2n)
κ(f(x2n))κ(f(y2n))

=
S(x+F y)
S(x)S(y)

= f(x2n , y2n).

Thus the universal property of Cr2 shows that we have constructed a left inverse to
the map ι. Similarly, we see with

ικf(x2n) = ιS(x) = f(x2n)
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that ι is indeed an isomorphism.

Now recall that by definition the algebra Cr1 is generated by the coefficients of
the universal 1-structure

f(x) =
∑
i≥0

aix
i

which satisfies the real relation f(x) = f(−Fx).

Lemma 2.4. We have

−Fx = x+ x2n +O(x2n+1).

Proof. This is easily verified by writing the right hand side as the formal sum
x+F x

2n up to terms of higher order.

Proposition 2.5. The algebra Cr1 is already generated by a2, a4, a6, . . . .

Proof. Decompose −Fx as a sum of power series −Fx = g−(x)+g+(x), where
g−(x) is an odd power series and g+(x) is an even power series with the property
that

g+(x) = x2nε(x)

for some unit power series ε(x). Now consider f(x) as a power series with coefficients
in Cr1 . We have the equality f(−Fx) = f(x). On comparing the even powers on
both sides of this equality, we get∑

i

a2i(−Fx)2i +
∑
i

a2i+1(−Fx)2ig+(x) =
∑
i

a2ix
2i

This equality gives us the identity

g+(x)
∑
i

a2i+1(−Fx)2i =
∑
i

a2i(x2i + (−Fx)2i).

Let z(x) be the right hand side. Then the last equality tells us that there is a power
seires w(x) such that

z(x) = x2nw(x).

Thus we have ∑
i

a2i+1(−Fx)2i = ε(x)−1w(x).

Notice that the right hand side in this identity is a well defined power series with
coefficients that can be written only in terms of a2i. Replacing x by −Fx in the
above identity shows that each odd generator a2j+1 can be written in terms of the
even generators a2i. This proves the proposition.

Lemma 2.6. Let τ : BS1 −→ BS1 be the map which classifies the complex
conjugate L̄ and let ai ∈ K(n)2iBS

1 be the dual of xi. Then there are λij such that
for all j

τ∗aj = aj +
j−1∑
i=1

λijai.
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Proof. Compute〈
τ∗aj , x

i
〉

=
〈
aj , (−Fx)i

〉
=
〈
aj , (x+O(x2n))i

〉
.

Now the first part of the theorem 1.2 will follow from

Proposition 2.7. The classes a2, a4, a6, . . . are algebraically independent in
the algebra Cr1 .

Proof. The strategy will be similar to the proof of 8.5 in [Sna75] where the
special case n = 1 was shown. It is enough to check the independence of the images
of the generators under the algebra homomorphism

Cr1
αr−→ K(n)∗BSO

c−→ K(n)∗BU ∼= C1.

When composed with the projection map C1 → Cr1 it coincides with the induced
map in K(n)-homology of

BU
∆−→ BU ×BU 1×τ−→ BU ×BU µ−→ BU

Hence, we see with the lemma that the generator a2i is mapped to the sum∑
p+q=2i

apτ∗(aq) =
∑

p+q=2i

apaq + terms of lower degree = a2
i + terms of lower degree

and the claim follows.

3. The homology rings of BSpin and BSO

We first consider the homology ring of BSpin for K(n)-theory with n ≤ 2. In
view of the result of Hopkins, Ando and Strickland and the theorem 1.1 we have
isomorphisms

K(2)∗BSpin ∼= Cr2
∼= Cr1

∼= π∗K(n)[ a2, a4, . . . ].

To proof the theorem 1.2: Consider the inclusion of tori

S1 z2
//

��

S1

�� ''NNNNNNNNNNNN

Spin(3)

��

// SO(3)

��

SO(2) = U(1)oo

Spin // SO

In K(n)-homology a generator b2n·m ∈ K(n)∗BS1 is sent to vmn am as one easily
checks. Since vn ∈ π∗K(n) is a unit, the structure of K(n)∗BSpin follows.

For the structure of K(2)∗BSO, we will analyze the Rothenberg Steenrod spec-
tral sequence for the fibration

K(Z/2, 1) −→ BSpin −→ BSO(4)

As a prelude to this calculation, we consider the fibration

K(Z/2, 1) −→ ∗ −→ K(Z/2, 2)(5)
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In the Rothenberg Steenrod spectral sequence for the fibration (5), we have

E2 = TorK(2)∗K(Z/2,1)(K(2)∗,K(2)∗)⇒ K(2)∗K(Z/2, 2)

Its calculation is due to Ravenel and Wilson [RW80] who cautiously assume that
p > 2. However, as explained by Johnson and Wilson in [JW85] their arguments
are valid at 2 as well. For the reader’s convenience we go through the calculation
below and only recall three well known facts:

(i) The spectral sequence is a spectral sequence of Hopf-algebras
(ii) K(2)∗K(Z/2, 2) is a two dimensional vector space over K(2)∗
(iii) K(2)∗K(Z/2, 1) = K(2)∗[ b2 ]/(b42), where b2 is the class that maps to the

corresponding element in K(2)4BS
1.

From these facts we get a description of the E2 term of the spectral sequence as a
Hopf algebra

E2 = Λ(x)⊗ Γ[ y ]

where the bidegrees of the classes are given by |x| = (1, 4), and |y| = (2, 16). For
n ≥ 0, let yn be the generator of Γ[ y ] in bidegree (2n+1, 2n+4), so that y = y0. We
start with

Claim 3.1. In the above spectral sequence, dr = 0 for all r 6= 3. Moreover, for
n ≥ 1, the differential d3 is given by the formula

d3(yn) = yn−1 · yn−2 . . . y1 · x · v5
2

Proof. Let dk be the first nontrivial differential in the spectral sequence. Let
m be the smallest integer so that dk(ym) 6= 0. Notice that dk(ym) must be a
primitive element in odd homogeneous degree. The only element with this property
has the form x · vs2 for some integer s. It follows that k = 2m+1 − 1 and that
s = 3 · 2m − 1. From the value of k we notice that yn is a permanent cycle for
n < m. From the coalgebra structure of this spectral sequence, we deduce that
dk(yn) 6= 0 for n ≥ m. Since we know that the dimension of the E∞ term over
K(2)∗ is 2, we are forced to have m = 1. Finally, the explicit formula for d3 given
above is forced by trivial dimensional reasons.

We now proceed to analyze the Rothenberg Steenrod spectral sequence for the
fibration (4). Notice that we have a diagram of fibrations

K(Z/2, 1) i //

=

��

BSpin

��

// BSO

w2

��
K(Z/2, 1) // ∗ // K(Z/2, 2)

(6)

As before, the Rothenberg Steenrod spectral sequence for the fibration (4) is a spec-
tral sequence of Hopf algebras. It is clear from our calculations that the inclusion
of the fiber i : K(Z/2, 1) → BSpin is trivial in K(2)-homology. Hence we get an
expression of the E2 term as a Hopf algebra

E2 = Λ(x)⊗ Γ[ y ]⊗K(2)∗BSpin

where the classes x and y are as before and K(2)∗BSpin is in external degree zero.
We have
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Claim 3.2. In the Rothenberg Steenrod spectral sequence for the fibration (4)
we have dr = 0 for all r 6= 3. Moreover, for n ≥ 1, the differential d3 is given by
the formula

d3(yn) = yn−1 · yn−2 . . . y1 · x · v5
2

Proof. The fact that d2 = 0 follows for dimensional reasons. That d3(yn) 6= 0
follows by Claim 3.1 on comparing this spectral sequence with the spectral sequence
for the fibration (5) using the diagram (6). The proof will be complete once we
verify the formula for d3(yn) as given above. For this we proceed by induction
on n. As before, d3(y1) must be primitive in external degree one. Hence we get
d3(y1) = x · v5

2 . Here we are using the fact that P (H1 ⊗ H2) = P (H1) ⊕ P (H2),
where P (H) denotes the primitive elements in the Hopf algebra H. Now assume
we know that

d3(yn) = yn−1 · yn−2 . . . y1 · x · v5
2

Consider the general expression for d3(yn+1)

d3(yn+1) = yn · yn−1 . . . y1 · x · p
where p ∈ K(2)∗BSpin is some nonzero element that can be written as p = v5

2 + q

for some q ∈ K̃(2)∗BSpin. Let τ denote the element yn · yn−1 . . . y1 · x · q. Using
the coalgebra structure and the induction hypothesis, we have the equality

d3(∆yn+1) = 1⊗ τ + τ ⊗ 1 + ∆(yn · yn−1 . . . y1 · x · v5
2)

On the other hand

d3(∆yn+1) = ∆d3(yn+1) = ∆(yn · yn−1 . . . y1 · x · v5
2) + ∆τ

On comparing the two expressions, we notice that the element τ is primitive. Using
the structure of primitives in a tensor product of Hopf algebras, we deduce that this
can happen only if q = 0. This completes the induction step and we are done.

Proof of 1.2(iii): Using Claims 3.1 and 3.2 one notices that the Rothenberg
Steenrod spectral sequence for fibration (4) is a free K(2)∗BSpin module on the
spectral sequence for the fibration (5). This structure is induced by the diagram
(6). It follows that K(2)∗BSO is a free K(2)∗BSpin module on K(2)∗K(Z/2, 2).

We finish the proof of 1.2 with the following fact which is the case n = 2 of
theorem 9.2(a) of [RW80]. This theorem was later used by Ando and Strickland
in [AS98] to establish a relationship to Weil pairings. Using their point of view we
give a short proof below.

Proposition 3.3. Let b ∈ K(2)6K(Z/2, 2) be the image of b1 ⊗ b2 under the
multiplication map

µ : K(Z/2, 1)×K(Z/2, 1) −→ K(Z/2, 2).

Then we have

K(n)∗K(Z/2, 2) ∼= K(n)∗[b]/(b2 − v2b)

Proof. The composite

f : K(Z/2, 1)+ ∧K(Z/2, 1)+
µ+−→ K(Z/2, 2)+ −→ K(2) ∧K(Z/2, 2)+
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gives a polynomial

f(x, y) = 1 +
∑

1≤i,j≤3

bijx
iyj ∈ K(2)∗K(Z/2, 2)[x, y]/(x4, y4)

which satisfies
(i) f(x+F y, z) = f(x, z)f(y, z)
(ii) f(z, x+F y) = f(z, x)f(z, y)
(iii) f(x, x) = 1.

This means that f defines a Weil pairing in the sense of Ando and Strickland
[AS98]. Moreover, since f is concentrated in dimensions 6n the only non trivial
coefficients can be b1,2 and b3,3. One easily verifies that the relations are equivalent
to

v2b1,2 = b21,2 = b3,3.

Finally, any of these must generate since f is universal among all Weil pairings
([AS98], [RW80]) and K(2)∗K(Z/2, 2) is 2-dimensional.

4. The proof of 1.3

Before proving the general result we should explain the meaning of the theorem
in terms of the geometry of 1 and 2-structures. A 1-structure on G is just a pointed
function f from G to the multiplicative formal group Gm; while a 2-structure g
defines a commutative central extension

Gm −→ E −→ G.

Here E is the formal scheme G×Gm and the group structure is given by the formula

(a, λ) · (b, µ) = (a+ b, g(a, b)λµ).

The kernel of the map ι : spec C1G −→ spec C2G defined by (1) is hom(G,Gm).
In fact the sequence

hom(G,Gm) −→ spec C1G
ι−→ spec C2G

of group schemes is short exact, and there is a non-additive splitting

spec C1G ∼= hom(G,Gm)× spec C2G.

(If G is the formal group associated to a complex orientable cohomology theory E,
then the short exact sequence of group schemes is isomorphic to the sequence

spec E∗CP∞ −→ spec E∗BU −→ spec E∗BSU,

and the splitting reflects the homotopy equivalence BU ∼= CP∞ ×BSU .)
For a 2-structure g the real condition g(−a,−b) = g(a, b) has the following

meaning in terms of central extensions: the homomorphism

τ : G −→ G; a 7→ −a
gives a central extension τ∗E. There is a natural isomorphism

E −→ τ∗E; (a, λ) 7→ (a, λ)

of formal schemes over G, and g is a real 2-structure if it is a homomorphism of
groups.
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Now consider the restriction of ι to spec Cr1G. Its kernel consists of homo-
morphisms f from G to Gm such that f(a) = f(−a) is satisfied. This implies
that

1 = f(a)2 = f(2a).

If 2 : G −→ G is an epimorphism, then this implies that f ≡ 1, and so

ι : spec Cr1G −→ spec Cr2G

is injective. Hence it remains to show that the map ι is surjective. For that we
construct a splitting in the same way as we did for the proof of 1.1. Given a real
2-structure g on G, let sg : G −→ Gm be given by the formula

sg(a) =
g(a, a)
g(a,−a)

.

Lemma 4.1. If 2a = ±2b then sg(a) = sg(b).

Proof. We treat the case 2a = 2b; the other case is similar. Suppose that
a = b+ u with 2u = 0. The equation

((b, 1)(u, 1))((b, 1)(u, 1)) = ((b, 1)(b, 1))((u, 1)(u, 1))

in the central extension E implies that

g(b+ u, b+ u)g(b, u)2 = g(2b, 2u)g(b, b)g(u, u) = g(b, b)g(u, u).(7)

The equation

((b, 1)(u, 1))((−b, 1)(−u, 1)) = ((b, 1)(−b, 1))((u, 1)(−u, 1))

implies that

g(b+ u,−b− u)g(b, u)g(−b,−u) = g(b,−b)g(u,−u).(8)

If g ∈ Cr2 then g(−b,−u) = g(b, u). If 2u = 0 then g(u,−u) = g(u, u). Then (8)
becomes

g(b+ u,−b− u)g(b, u)2 = g(b,−b)g(u, u),(9)

and dividing (7) by (9) yields

sg(a) =
g(b+ u, b+ u)
g(b+ u,−b− u)

=
g(b, b)
g(b,−b)

= sg(b),

as desired.

If 2 : G −→ G is an epimorphism, then by the lemma we may define a function

tg : G −→ Gm

by the formula

tg(a) = sg(c)

where c is chosen so that 2c = a. Moreover the lemma implies that tg is a real
1-structure.

Lemma 4.2. Suppose that 2 : G −→ G is an epimorphism, so that tg is defined.
Then

ιtg = g.

Proof. This is essentially as in 2.1 and hence left to the reader.

We conclude that t : spec Cr2 −→ spec Cr1 is the desired splitting.
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