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Abstract. An IP-space is a pseudomanifold whose defining local prop-
erties imply that its middle perversity global intersection homology
groups satisfy Poincaré duality integrally. We show that the symmetric
signature induces a map of Quinn spectra from IP bordism to the sym-
metric L-spectrum of Z, which is, up to weak equivalence, an E∞ ring
map. Using this map, we construct a fundamental L-homology class for
IP-spaces, and as a consequence we prove the stratified Novikov conjec-
ture for IP-spaces.

1. Introduction

An intersection homology Poincaré space, or IP-space, is a piecewise linear
pseudomanifold such that the middle dimensional, lower middle perversity
integral intersection homology of even-dimensional links vanishes and the
lower middle dimensional, lower middle perversity intersection homology of
odd-dimensional links is torsion free. This class of spaces was introduced by
Goresky and Siegel in [GS83] as a natural solution, assuming the IP-space
to be compact and oriented, to the question: For which class of spaces does
intersection homology (with middle perversity) satisfy Poincaré duality over
the integers?

If X is a compact oriented IP-space whose dimension n is a multiple of
4, then the signature σ(X) of X is the signature of the intersection form

IHn/2(X; Z)/Tors×IHn/2(X; Z)/Tors −→ Z,
where IH∗ denotes intersection homology with the lower middle perversity,
[GM80], [GM83]. This signature is a bordism invariant for bordisms of IP-
spaces. The IP-space bordism groups have been investigated by Pardon in
[Par90], where it is shown that the signature (when n = 4k) together with
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the de Rham invariant (when n = 4k+ 1) form a complete system of invari-
ants.

Next we recall the theory of the L-homology fundamental class for man-
ifolds. Let Mn be a closed oriented n-dimensional manifold. The sym-
metric signature σ∗(M) of [M71],[Ran92] is an element of the symmetric
L-group Ln(Z[G]), where Z[G] is the integral group ring of the fundamen-
tal group G = π1(M) of M . It is a non-simply-connected generalization
of the signature σ(M), since for n = 4k the canonical homomorphism
Ln(Z[G]) → Ln(Z) = Z maps σ∗(M) to σ(M). Moreover, σ∗ is homotopy
invariant and bordism invariant for bordisms over the classifying space BG.
Let L• = L•〈0〉(Z) denote the symmetric L-spectrum with homotopy groups
πn(L•) = Ln(Z) and let L•∗(−) denote the homology theory determined by
L•. For an n-dimensional Poincaré space M which is either a topological
manifold or a combinatorial homology manifold (i.e. a polyhedron whose
links of simplices are homology spheres), Ranicki defines a canonical L•-
homology fundamental class [M ]L ∈ L•n(M), see [Ran92]. Its image under
the assembly map

L•n(M) α−→ Ln(Z[G])
is the symmetric signature σ∗(M). The class [M ]L is a topological invariant,
but, unlike the symmetric signature, not a homotopy invariant in general.
The geometric meaning of the L•-homology fundamental class is that its
existence for a geometric Poincaré complex Xn, n ≥ 5, assembling to the
symmetric signature (which in fact any Poincaré complex possesses), implies
up to 2-torsion that X is homotopy equivalent to a compact topological man-
ifold. (More precisely, X is homotopy equivalent to a compact manifold if it
has an L•-homology fundamental class, which assembles to the so-called vis-
ible symmetric signature of X.) Smooth manifolds M possess a Hirzebruch
L-class in H∗(M ; Q), whose Poincaré dual we denote by L(M) ∈ H∗(M ; Q).
Rationally, [M ]L is then given by L(M),

[M ]L ⊗ 1 = L(M) ∈ L•n(M)⊗Q ∼=
⊕
j≥0

Hn−4j(M ; Q).

Thus, we may view [M ]L as an integral refinement of the L-class of M . The
identity α[M ]L = σ∗(M) may then be interpreted as a non-simply connected
generalization of the Hirzebruch signature formula. These facts show that
the L•-homology fundamental class is much more powerful than σ∗(M). For
example, there exist infinitely many manifolds Mi, i = 1, 2, . . . , in the ho-
motopy type of S2 × S4, distinguished by the first Pontrjagin class of their
tangent bundle p1(TMi) ∈ H4(S2 × S4) ∼= Z, namely p1(TMi) = Ki, K a
fixed nonzero integer. On the other hand, σ∗(Mi) = σ∗(S2 × S4) = 0 ∈
L6(Z[π1(S2 × S4)]) = L6(Z) = 0.

We return to singular spaces. A Witt space is a piecewise linear pseudo-
manifold such that the middle dimensional, lower middle perversity rational
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intersection homology of even-dimensional links vanishes, [Sie83]. The sym-
metric signature σ∗(X) ∈ Ln(Q[G]) and the L•-homology fundamental class
[X]L ∈ (L•(Q))n(X) of an oriented Witt space Xn appeared first in the work
of Cappell, Shaneson and Weinberger, see [CSW91] and [W94], though a de-
tailed construction is not provided there.

In [Ban11], the first author outlined a construction of [X]L for IP-spaces
X based on ideas of Eppelmann [Epp07], and pointed out that the existence
of this class implies in particular a definition of a symmetric signature σ∗(X)
as the image of [X]L under assembly. In [ALMP12], it is shown that this
symmetric signature, adapted to Witt spaces and pushed into K∗(C∗rG) via

L∗(Q[G]) −→ L∗(C∗rG) −→ K∗(C∗rG),

agrees rationally with the Albin-Leichtnam-Mazzeo-Piazza signature index
class. The first fully detailed construction of σ∗(X) for Witt spaces X has
been provided in [FM13b]. That construction is closely parallel to the orig-
inal construction of Mǐsčenko, but using singular intersection chains on the
universal cover instead of ordinary chains. The methods of [FM13b] carry
over to IP-spaces and yield a symmetric signature over Z for such spaces, as
we show in Section 7.

In the present paper, we give the first detailed construction of an L•-
homology fundamental class [X]L ∈ L•n(X) for IP-spaces X. While Eppel-
mann used complexes of sheaves, we are able to use the, for our purposes,
more precise and geometric methods of [FM13b]. The main issue is to con-
struct a map (at least in the derived category) on the spectrum level from
IP bordism to L•, for then [X]L can readily be defined as the image of the
identity map [idX ] ∈ (ΩIP)n(X) under (ΩIP)n(X) → L•n(X), see Definition
8.5. To obtain this map of spectra, we rely heavily on the technology of ad
theories and their associated Quinn spectra as developed by the second and
third author in [LM13], [LM]. Roughly, we construct first an ad theory of IP
spaces, which automatically gives an associated Quinn spectrum QIP, whose
homotopy groups are Pardon’s IP bordism groups. Using the symmetric sig-
nature, we define a morphism of ad theories from the IP ad theory to the
ad theory of symmetric algebraic Poincaré complexes over Z. The spectrum
of the latter ad theory is the symmetric L-spectrum L•. The morphism of
ad theories then induces the desired map of spectra. We prove that our L•-
homology fundamental class has all the expected properties (Theorem 8.2):
It is an oriented PL homeomorphism invariant, its image under assembly is
the symmetric signature and it agrees with Ranicki’s L•-homology funda-
mental class when X is a PL manifold.

As an application of our L•-homology fundamental class, we discuss the
stratified homotopy invariance of the higher signatures of IP-spaces. Let X
be an n-dimensional compact oriented IP-space, whose fundamental group
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G = π1(X) satisfies the strong Novikov conjecture, that is, the assembly
map

L•n(BG) −→ Ln(Z[G])
is rationally injective. Then we prove that the stratified Novikov conjecture
holds for X, i.e. the higher signatures

〈a, r∗L(X)〉, a ∈ H∗(BG; Q),

where r : X → BG is a classifying map for the universal cover of X and
L(X) ∈ H∗(X; Q) is the Goresky-MacPherson L-class of X, are stratified
homotopy invariants, see Theorem 9.2. The stratified Novikov conjecture
has been treated from the analytic viewpoint in [ALMP13].

Here is an outline of the paper. Sections 2 and 3 review the basic facts
about IP-spaces and ad theories. Section 4 constructs an ad theory associ-
ated to IP-spaces. Section 5 reviews two (equivalent) ad theories associated
to symmetric Poincaré complexes. Section 6 uses the symmetric signature
(ignoring the fundamental group) to construct a map Sig of Quinn spectra
from IP bordism to the symmetric L-spectrum of Z. Section 7 constructs the
symmetric signature of an IP-space X as an element of Ln(Z[π1X]). Section
8 constructs the L•-theory fundamental class of an IP-space and shows that
it assembles to the symmetric signature constructed in Section 7. Section 9
uses the results of Section 8 to prove the stratified Novikov conjecture for
IP-spaces. Section 10 shows that the map Sig constructed in Section 6 is,
up to weak equivalence, an E∞ ring map; this is applied in Section 11 to
prove that [X × Y ]L = [X]L × [Y ]L. Section 12 proves a result needed for
Sections 8–11, namely the fact that the assembly map for IP bordism is a
weak equivalence. There are four appendices. Appendix A reviews the ba-
sic facts about the intrinsic filtration of a PL space, and Appendix B gives
generalizations of some technical results from [FM13b] which are needed in
Section 7. Appendix C proves a mutliplicative property of the assembly map
which may be of independent interest. Appendix D corrects some signs in
[LM13].

Acknowledgements. We would like to thank Matthias Kreck, Wolfgang Lück,
Shmuel Weinberger and (especially) Greg Friedman for their help.

2. Review of IP bordism

We use the term polyhedron as defined in [RS72, Definition 1.1].

Definition 2.1. An n-dimensional PL pseudomanifold is a polyhedron X
for which some (and hence every) triangulation has the following properties.

(a) Every simplex is contained in an n-simplex.
(b) Every (n− 1)-simplex is a face of exactly two n-simplices.
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Definition 2.2. An n-dimensional PL ∂-pseudomanifold is a polyhedron
X with the property that some (and hence every) triangulation has the
following properties.

(a) Every simplex is contained in an n-simplex.
(b) Every (n− 1)-simplex is a face of either one or two n-simplices; the

union of the (n− 1)-simplices which are faces of one n-simplex is called the
boundary of X and denoted ∂X.

(c) The boundary ∂X is an (n− 1)-dimensional pseudomanifold.
(d) The boundary is collared, that is, there is a PL embedding ∂X ×

[0, 1)→ X with open image which is the identity on ∂X.

Remark 2.3. (i) The subspace ∂X is independent of the triangulation.
(ii) The collaring condition is needed in order for Lefschetz duality to hold

in intersection homology (see [FM13a, Section 7.3]).

Definition 2.4. An orientation of an n-dimensional PL pseudomanifold
or PL ∂-pseudomanifold is a set of orientations of the n-simplices of some
triangulation such that the sum of the n-simplices with these orientations is
a cycle (a relative cycle in the case of a ∂-pseudomanifold).

For some purposes we need a stratification. For a polyhedron Y , let c◦Y
denote the open cone ([0, 1)×Y )/(0×Y ). We recall the inductive definition
of stratified pseudomanifold:

Definition 2.5. A 0-dimensional stratified PL pseudomanifold X is a dis-
crete set of points with the trivial filtration X = X0 ⊇ X−1 = ∅. An n-
dimensional stratified PL pseudomanifold X is a polyhedron together with
a filtration by closed polyhedra

X = Xn ⊇ Xn−1 = Xn−2 ⊇ · · · ⊇ X0 ⊇ X−1 = ∅
such that

(a) X −Xn−1 is dense in X, and
(b) for each point x ∈ Xi−Xi−1, there exists a neighborhood U of x for

which there is a compact n− i−1 dimensional stratified PL pseudomanifold
L and a PL homeomorphism

φ : Ri × c◦L→ U

that takes Ri × c◦(Lj−1) onto Xi+j ∩ U .

The space L in part (b) is determined up to PL homeomorphism by x
and the stratification ([F, Lemma 2.56]); it is called the link of X at x and
denoted Lx. A PL pseudomanifold always possesses a stratification in the
sense of Definition 2.5, by Proposition A.1(iv).

Definition 2.6. An n-dimensional stratified PL ∂-pseudomanifold is a PL
∂-pseudomanifold X together with a filtration by closed polyhedra such that

(a) X − ∂X, with the induced filtration, is an n-dimensional stratified
PL pseudomanifold,
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(b) ∂X, with the induced filtration, is an n − 1 dimensional stratified
PL pseudomanifold, and

(c) there is a neighborhood N of ∂X with a homeomorphism of filtered
spaces N → ∂X × [0, 1) (where [0, 1) is given the trivial filtration) which is
the identity on ∂X.

A PL ∂-pseudomanifold always possesses a stratification in the sense of
Definition 2.6, by Proposition A.2. Next recall the definition of intersection
homology ([GM80], [GM83], [Bo84], [KW06], [Ban07]). We will denote the
lower middle perversity, as usual, by m̄.

Definition 2.7. ([GS83, Par90]) An n-dimensional IP-space is an n-
dimensional PL pseudomanifold X for which some stratification has the
following properties.

(a) IHm̄
l (Lx; Z) = 0 for all x ∈ Xn−2l−1 −Xn−2l−2, and

(b) IHm̄
l−1(Lx; Z) is torsion free for all x ∈ Xn−2l −Xn−2l−1.

Remark 2.8. (i) IP stands for “intersection homology Poincaré”.
(ii) Note that the stratification is not considered as part of the structure

of an IP-space.
(iii) If conditions (a) and (b) hold for some stratification then they hold

for every stratification (by the Proposition in [GM83, Section 2.4]).

Definition 2.9. ([Par90]) An n-dimensional ∂-IP-space is an n-dimensional
PL ∂-pseudomanifold X for which X − ∂X is an IP-space.

Proposition 2.10. If X is a ∂-IP-space then ∂X is an IP-space.

Proof. Give X the stratification of Proposition A.2. By Remark 2.8(iii), the
restriction of this stratification to X − ∂X has properties (a) and (b) of
Definition 2.7. Give ∂X the stratification of Proposition A.1(iv). Part (c)
of Definition 2.6 implies that the links of ∂X are also links of X − ∂X, so
∂X satisfies Definition 2.7. �

Next we consider IP bordism groups. There are two ways to define them:
(1) The objects and bordisms are the compact oriented IP-spaces and

∂-IP-spaces.
(2) An object is a compact oriented IP-space with a given stratification,

and similarly for the bordisms.
Pardon [Par90] does not make it clear which definition he is using, but
fortunately the two definitions give the same bordism groups by [Fa]. We
will use the first definition.

3. Review of ad theories

We recall some definitions from [LM13, Sections 2 and 3]. For a ball
complex K (that is, a CW complex with a compatible PL structure [LM13,
Definition 2.1]) and a subcomplex L we define Cell(K,L) to be the category
in which the objects are the oriented closed cells of K which are not in L,
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together with an empty cell ∅n for each dimension n, and the non-identity
morphisms are given by inclusions of cells (with no requirement on the ori-
entations). The category Cell(K,L) is Z-graded ([LM13, Definition 3.3]),
that is, it comes with an involution i (which reverses the orientation), a
dimension functor d into the poset Z and a section functor given by ∅n.

Given a Z-graded category A, a pre (K,L)-ad of degree k is a functor
Cell(K,L)→ A which decreases dimensions by k. The set of these is denoted
prek(K,L). An ad theory with values in A (called the target category of the
ad theory) consists of a subset adk(K,L) ⊂ prek(K,L) for each (K,L) and
each k, satisfying certain axioms ([LM13, Definition 3.10]). One of the
axioms says that an element of prek(K,L) is in adk(K,L) if and only if its
image in prek(K) is in adk(K), so to describe an ad theory it suffices to
specify the sets adk(K).

An ad theory gives rise to bordism groups Ω∗, a cohomology theory T ∗

with T k(pt) = Ω−k, a spectrum Q ([Q95], [LM13, Section 15]), and to a
weakly equivalent symmetric spectrum M ([LM13, Section 17]) such that
the cohomology theory represented by Q is naturally isomorphic to T ∗. A
morphism of ad theories is a functor of target categories which takes ads
to ads. A morphism ad1 → ad2 of ad theories induces a map Q1 → Q2 of
associated Quinn spectra.

3.1. The ad theory of oriented topological manifolds. As motiva-
tion for the ad theory of IP-spaces, we briefly recall the ad theory adSTop

([LM13, Example 3.5 and Section 6]; also see [LM, Section 2]). The target
category ASTop has as objects the compact oriented topological manifolds
with boundary. The morphisms between objects of the same dimension are
the orientation-preserving homeomorphisms, and the other morphisms are
the inclusions with image in the boundary.

To describe the set adkSTop(K) we need to recall two definitions from
[LM13, Section 5]. A Z-graded category A is called balanced if it comes with
a natural involutive bijection

η : A(A,B)→ A(A, i(B))

which commutes with the involution i; examples are Cell(K) and ASTop.
Functors between balanced categories are called balanced if they commute
with η.

Let Cell[(K) be the category whose objects are the (unoriented) cells of K
and whose morphisms are the inclusions. Let A[STop be the category whose
objects are compact orientable topological manifolds, whose morphisms be-
tween objects of the same dimension are homeomorphisms, and whose other
morphisms are the inclusions with image in the boundary. A balanced func-
tor

F : Cell(K)→ ASTop

induces a functor
F [ : Cell[(K) −→ A[STop.
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We define adkSTop(K) ⊂ prekSTop(K) to be the set of functors F with the
following properties.

(a) F is balanced.
(b) If (σ′, o′) and (σ, o) are oriented cells with dimσ′ = dimσ − 1, and

if the incidence number [o, o′] is equal to (−1)k, then the map

F (σ′, o′)→ ∂F (σ, o)

is orientation preserving.
(c) For each σ, ∂F [(σ) is the colimit in Top of F [|Cell[(∂σ).

It is shown in [LM13, Appendix B] and [LM, Appendix A] that the spec-
trum QSTop (resp., the symmetric spectrum MSTop) obtained from this ad
theory is weakly equivalent to the usual Thom spectrum MSTop (resp., as
a symmetric spectrum).

4. The ad theory of IP-Spaces

Recall Proposition A.2.

Definition 4.1. LetX andX ′ be PL ∂-pseudomanifolds of dimensions n, n′.
A strong embedding f : X → X ′ is a PL embedding for which X[n − i] =
f−1((X ′)[n′ − i]) for 0 ≤ i ≤ n.

Let AIP be the Z-graded category whose objects are compact oriented
∂-IP-spaces (with an empty space of dimension n for each n), whose mor-
phisms between objects of the same dimension are the orientation-preserving
PL homeomorphisms and whose other morphisms are the strong embeddings
with image in the boundary. The involution i reverses the orientation. Then
AIP is a balanced Z-graded category. (The requirement that the morphisms
between objects of different dimensions are strong embeddings will not ac-
tually be used until the proof of Lemma 6.5(ii)). Before defining adkIP(K),
we need a fact about PL topology which will be proved at the end of this
section.

Lemma 4.2. Let P be the category whose objects are compact polyhedra
and whose morphisms are PL embeddings. Let K be a ball complex and
G : Cell[(K)→ P a covariant functor such that, for every σ, the map

colim
τ∈∂σ

G(τ)→ G(σ)

is a monomorphism. Then for every subcomplex L of K
(i) the space colimσ∈LG(σ) has a PL structure for which the maps G(σ)→

colimσ∈LG(σ) for σ ∈ L are PL embeddings, and
(ii) the map

colim
σ∈L

G(σ)→ colim
σ∈K

G(σ)

is a PL embedding.
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Now let A[IP be the category whose objects are compact orientable IP-
spaces with boundary, whose morphisms between objects of the same dimen-
sion are PL homeomorphisms, and whose other morphisms are the strong
embeddings with image in the boundary. A balanced functor

F : Cell(K) −→ AIP

induces a functor
F [ : Cell[(K) −→ A[IP.

Definition 4.3. Let K be a ball complex. Define adkIP(K) ⊂ prekIP(K) to
be the set of functors F with the following properties:

(a) F is balanced.
(b) If (σ′, o′) and (σ, o) are oriented cells with dimσ′ = dimσ − 1, and

if the incidence number [o, o′] is equal to (−1)k, then the map

F (σ′, o′) −→ ∂F (σ, o)

is orientation preserving.
(c) For each σ ∈ K, the map

colim
τ∈∂σ

F [(τ)→ ∂F [(σ)

is a bijection.

Theorem 4.4. adIP is an ad theory.

Remark 4.5. The Cartesian product of ∂-IP-spaces is a ∂-IP-space, and
the product of an element of adkIP(K) with an element of adlIP(L) is an
element of adk+l

IP (K × L). Thus adIP is a multiplicative ad theory ([LM13,
Definition 18.4]) and the associated symmetric spectrum MIP is a symmetric
ring spectrum ([LM13, Theorem 18.5]).

Moreover, adIP is a commutative ad theory ([LM, Definition 3.3]), so
by Theorem 1.1 of [LM] there is a commutative symmetric ring spectrum
Mcomm

IP which is weakly equivalent as a symmetric ring spectrum to MIP.
Specifically, there is a symmetric ring spectrum A and ring maps

MIP ← A→Mcomm
IP

which are weak equivalences.

Proof of Theorem 4.4. The only parts of [LM13, Definition 3.10] which are
not obvious are (f) (the gluing axiom) and (g) (the cylinder axiom).

For part (g), let F be a K-ad; we need to define J(F ) : Cell(K×I)→ AIP.
First note that the statement of part (g) specifies what J(F ) has to be on the
subcategories Cell(K × 0) and Cell(K × 1). The remaining objects have the
form (σ×I, o×o′) and we define J(F ) for such an object to be F (σ, o)×(I, o′),
where (I, o′) denotes the PL ∂-manifold I with orientation o′. F (σ, o) × I
is a ∂-IP-space because the link at a point (x, t) is the link in F (σ, o) at
x. The inclusions of F (σ, o) × {0} and F (σ, o) × {1} in F (σ, o) × I are
strong embeddings (see Definition 4.1) by the definition of the stratification
in Proposition A.2.
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For part (f), let K be a ball complex and K ′ a subdivision of K. Let F
be a K ′-ad. We need to show that there is a K-ad E which agrees with F
on each residual subcomplex of K. We may assume inductively that |K| is
a PL n-ball, that K has exactly one n-cell, and that K ′ is a subdivision of
K which agrees with K on the boundary of |K|. Let L be the subcomplex
of K ′ consisting of cells in the boundary of |K|. The proof of [Wh78, II.6.2]
shows that K ′ has the following properties (where “cell” means closed cell):

(1) Every cell is contained in an n-cell.
(2) Every (n− 1)-cell in L is contained in exactly one n-cell of K ′.
(3) Every (n− 1)-cell not in L is contained in exactly two n-cells.
(4) For any two n-cells σ, σ′, there is a finite sequence σ = σ1, . . . , σm =

σ′ of n-cells such that each consecutive pair has an (n − 1)-face in
common.

Now let τ denote the n-cell of K, and choose an orientation o of τ .
To construct the K-ad E, we only need to define E(τ, o). Let X denote
colimσ∈K′ F

[(σ) and give X the PL structure provided by Lemma 4.2(i).
We first claim that X is a PL ∂-pseudomanifold. Part (a) of Definition 2.2
follows from property (1) of K ′, and part (b) follows from properties (2) and
(3); this also shows that ∂X = colimσ∈L F

[(σ). Part (c) follows from [Wh78,
II.6.2]. For part (d), we first observe that the proof of [LM13, Proposition
6.6] shows that ∂X is locally collared (in the sense of [RS72, page 24]); now
[RS72, Theorem 2.25] shows that ∂X is collared.

Next give the n-cells σ of K ′ the orientations oσ which agree with o. Then
X has an orientation which agrees with the orientations of the F (σ, oσ), and
we define E(τ, o) to be X with this orientation. To justify this choice, we
need to show that X − ∂X is an IP-space. We give X − ∂X the intrinsic
stratification (see Proposition A.1(iv)). Let x ∈ X − ∂X. There is a unique
σ ∈ K ′ − L for which x is in the interior of F [(σ); give F [(σ) the intrinsic
stratification and let U be a distinguished neighborhood of x in F [(σ). The
proof of [LM13, Proposition 6.6] shows that x has a neighborhood V in X
such that there is a PL homeomorphism

f : V → U × E,
where E is a Euclidean space. The filtration of V inherited from X is
the same as the intrinsic stratification of V by Proposition A.1(i), and (by
Proposition A.1(ii) and (iii)) f takes this filtration to the Cartesian product
of the intrinsic stratification of U with the trivial stratification of E. This
implies that the link of x in X is the same as the link of x in F [(σ), and so
conditions (a) and (b) of Definition 2.7 are satisfied.

It remains to show that F [(σ)→ X is a strong embedding when σ is an n-
cell of K ′. We denote the stratification on a PL pseudomanifold (resp., PL
∂-pseudomanifold) Y provided by Proposition A.1(iv) (resp., Proposition
A.2) by Y ∗ (resp., Y [∗]). By its definition, the filtration X[∗] agrees (up to
a dimension shift) with (∂X)∗, so it suffices to show that (∂X)∗ agrees with
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(F [(σ))[∗]. Next we observe that (by the proof of [LM13, Proposition 6.6])
each point of ∂F [(σ) has a neighborhood U in ∂F [(σ) and a neighborhood
V in ∂X with V ≈ U × (−1, 1). Then (∂X)∗ agrees with V ∗ by Proposition
A.1(i), and (by Proposition A.1(ii) and (iii)) the latter agrees with U∗ ×
(−1, 1) (where (−1, 1) is given the trivial filtration). This implies that (∂X)∗

agrees with the restriction of (F [(σ))[∗] to ∂F [(σ). Moreover, (∂X)∗ also
agrees with the restriction of (F [(σ))[∗] to F [(σ) − ∂F [(σ) by Proposition
A.1(i), so the two filtrations agree on all of F [(σ). �

It remains to prove Lemma 4.2. The main ingredient is the following,
which is Exercise 2.27(2) in [RS72].

Lemma 4.6. Let P,Q and R be polyhedra and let f : R ↪→ P, g : R ↪→ Q
be PL embeddings. Then the pushout of

P ←↩ R ↪→ Q,

formed in the category of topological spaces, has a PL structure for which
the inclusions of P and Q are PL embeddings. �

Proof of Lemma 4.2. Assume inductively that (i) and (ii) hold for any ball
complex with at most k cells. Let K be a ball complex with k + 1 cells
and let σ ∈ K be a top-dimensional cell. Let K0 = K − {σ}. Let P =
colimτ∈K0 G(τ) and R = colimτ⊂∂σ G(τ); the inductive hypothesis implies
that P and R have PL structures for which all maps G(τ)→ P and G(τ)→
R are PL embeddings, and it also implies that R → P is a PL embedding.
We are given that the map R → G(σ) is a monomorphism, and it is PL
since its restriction to each G(τ) is PL. Now let S denote colimτ∈K G(τ).
Then S is the pushout of

P ←↩ R ↪→ G(σ),

so by Lemma 4.6 it has a PL structure for which P → S and G(σ) → S
are PL maps; it follows that G(τ)→ S is a PL map for every τ . It remains
to check that part (ii) of Lemma 4.2 holds, so let L be a subcomplex of K.
The map

i : colim
τ∈L

G(τ)→ S

is PL, since its restriction to each G(τ) is PL, so we only need to check that
i is a monomorphism. If σ /∈ L this follows from the inductive hypothesis
and the fact that P → S is a monomorphism. If σ ∈ L then colimτ∈LG(τ)
is the pushout of

colim
τ∈L−{σ}

G(τ)←↩ R ↪→ G(σ),

and this pushout maps by a monomorphism to the pushout of

P ←↩ R ↪→ G(σ)

which is S. �
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5. ad theories of symmetric Poincaré complexes

The ad theory constructed in the previous section gives a spectrum QIP

and a symmetric spectrum MIP. Our next goal is to use the symmetric sig-
nature to construct maps (in the derived category of spectra and the derived
category of symmetric spectra) from QIP and MIP to suitable versions of the
symmetric L-theory spectrum of Z. In order to do this we need an ad theory
for symmetric Poincaré complexes over Z. In [LM13, Section 9] we gave an
ad theory (denoted adZ) which was suggested by definitions from [WW89]
and [Ran92]; in particular this leads to a spectrum QZ which is identical
to Ranicki’s spectrum L•(Z). But this turns out not to be well-adapted to
questions of commutativity (see the beginning of [LM, Section 11]) or to
intersection homology (see the introduction to [FM13b]), so in [LM, Section
11] the second and third authors introduced a modification adZ

rel (rel stands
for “relaxed”) which gives a spectrum QZ

rel weakly equivalent to Ranicki’s
L•(Z). In this section we review this material; we should mention that ev-
erything extends from Z to an arbitrary ring-with-involution R and that
[LM13] and [LM] develop the theory in this generality.

5.1. The ad theory adZ. As motivation we begin with the theory adZ. A
chain complex over Z is called finite if it is free abelian and finitely generated
in each degree and nonzero in only finitely many degrees; it is called homo-
topy finite if it is free abelian in each degree and chain homotopic to a finite
complex. Let D be the category of homotopy finite chain complexes. Let W
be the standard free resolution of Z by Z[Z/2] modules. The n-dimensional
objects of the target category AZ are pairs (C,ϕ), where C is an object of
D and

ϕ : W → C ⊗ C
is a Z/2 equivariant map which raises degrees by n. The morphisms (C,ϕ)→
(C ′, ϕ′) are the chain maps f : C → C ′, with the additional requirement that
(f ⊗ f) ◦ϕ = ϕ′ when the dimensions are equal. The involution reverses the
sign of ϕ. Next, (adZ)k(K) ⊂ (preZ)k(K) is defined to be the set of functors
F with the following properties:

(a) F is balanced. This allows us to write F (σ, o) as (Cσ, ϕσ,o).
(b) F is well-behaved, that is, each map Cτ → Cσ is a split monomor-

phism in each dimension, and (writing C∂σ for colimτ⊂∂σ Cτ ) each map

C∂σ → Cσ

is a split monomorphism in each dimension.
(c) F is closed, that is, for each cell σ of K the map from the cellular

chain complex cl(σ) to Hom(W,Cσ⊗Cσ) which takes (τ, o) to the composite

W
ϕ(τ,o)−→ Cτ ⊗ Cτ → Cσ ⊗ Cσ
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is a chain map. This implies that ϕσ,o represents a class [ϕσ,o] in
Hn(((Cσ/C∂σ) ⊗ Cσ)W ); this group is isomorphic to Hn((Cσ/C∂σ) ⊗ Cσ),
and we denote the image of [ϕσ,o] in the latter group by c.

(d) F is nondegenerate, that is, for each σ the slant product with c
gives an isomorphism

H∗(Hom(C,Z))→ Hdimσ−k−∗(Cσ/C∂σ).

Remark 5.1. In [LM13], the second and third authors give a construction of
a symmetric signature map QSTop → QZ in the derived category of spectra,
using ideas from [Ran92] (see [LM13, Section 10 and the end of Section 8]).
The starting point for this construction is the observation that, if M is a
compact oriented ∂-manifold and ξ ∈ Sn(M), where S∗(−) denotes singular
chains, represents the fundamental class of M then the composite

W ∼= W ⊗ Z 1⊗ξ−→W ⊗ S∗M
EAW−→ S∗M ⊗ S∗M

(where EAW is the extended Alexander-Whitney map, which can be con-
structed using acyclic models) is an object of AZ. The Alexander-Whitney
map (and a fortiori the extended Alexander-Whitney map) does not exist
for intersection chains, which is one reason we need the modification of AZ

given in the next subsection.

Remark 5.2. The ad theory adZ is multiplicative ([LM13, Definitions 18.1
and 9.12]) but not commutative (see the beginning of Section 11 of [LM]).

5.2. The ad theory adZ
rel. An object of the category AZ

rel is a quadruple
(C,D, β, ϕ), where C is an object of D, D is a chain complex with a Z/2
action, β is a quasi-isomorphism C⊗C → D which is also a Z/2 equivariant
map, and ϕ is an element ofDZ/2

n . A morphism (C,D, β, ϕ)→ (C ′, D′, β′, ϕ′)
is a pair (f : C → C ′, g : D → D′), where f and g are chain maps, g is Z/2
equivariant, gβ = β′(f ⊗ f), and (if the dimensions are equal) g∗(ϕ) = ϕ′.

Example 5.3. If (C,ϕ) is an object of AZ then the quadruple (C, (C ⊗
C)W , β, ϕ) is a relaxed quasi-symmetric complex, where β : C ⊗ C → (C ⊗
C)W is induced by the augmentation W → Z. This construction gives a
functor AZ → AZ

rel.

Example 5.4. In the situation of Remark 5.1, we obtain an object of AZ
rel

by letting C be S∗M , D be S∗(M ×M), β be the cross product, and ϕ be
the image of ξ ∈ Sn(M) under the diagonal map.

Now (adZ
rel)

k(K) ⊂ (preZ
rel)

k(K) is defined to be the set of functors F with
the following properties:

(a) F is balanced. This allows us to write F (σ, o) as (Cσ, Dσ, βσ, ϕσ,o).
(b) F is well-behaved, that is, all maps Cτ → Cσ, Dτ → Dσ, C∂σ → Cσ

and D∂σ → Dσ are split monomorphisms in each dimension. This implies
that the map β∗ : H∗(Cσ⊗Cσ, (C⊗C)∂σ)→ H∗(Dσ, D∂σ) is an isomorphism
([LM, Lemma 11.6(ii)]).
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(c) F is closed, that is, for each σ the map

cl(σ)→ Dσ

which takes 〈τ, o〉 to ϕτ,o is a chain map. This implies that ϕσ,o represents
a class [ϕσ,o] in Hn(Dσ, D∂σ).

(d) F is nondegenerate, that is, for each σ the slant product with
β−1
∗ ([ϕσ,o]) is an isomorphism

H∗(Hom(Cσ,Z))→ Hdimσ−k−∗(Cσ/C∂σ).

Remark 5.5. (i) The functor AZ → AZ
rel in Example 5.3 gives a map of

spectra QZ → QZ
rel which is a weak equivalence ([LM, Section 12]).

(ii) The ad theory adZ
rel is commutative ([LM, Definition 3.3 and Remark

11.11]) so Theorem 1.1 of [LM] shows that there is a commutative symmetric
ring spectrum (MZ

rel)
comm which is weakly equivalent as a symmetric ring

spectrum to MZ
rel.

5.3. Connective versions. In the sequel, we will only deal with connective
versions of L-theory rather than with periodic ones. There is a general
procedure which takes an ad theory to another ad theory and which makes
the associated Quinn spectrum connective: define the sub functor ad≥0 of
an ad theory by

adk≥0(K,L) = adk(K,L ∪K(−k−1)).

Here K(n) denotes the n-skeleton of K. We leave it to the reader to check
the properties of an ad theory for ad≥0. Clearly, we get a map of Quinn
spectra Q≥0 → Q which does the right job on homotopy groups. Moreover,
if we start with a multiplicative ad theory then the associated connective
one is multiplicative as well.

Note that that the Quinn spectrum QZ
≥0 coincides with the usual connec-

tive L-theory spectrum up to a canonical weak equivalence: the restrictions
of k-ads on their (−k− 1) skeleton vanish and hence consist of acyclic com-
plexes.

6. The symmetric signature as a map of spectra

In this section we construct symmetric signature maps

Sig : QIP → QZ
≥0,rel

(in the derived category of spectra) and

Sig : MIP →MZ
≥0,rel

(in the derived category of symmetric spectra). The first step is to give a
variant of the ad theory adIP. As we have seen in Remark 5.1 and Example
5.4, in order for a compact oriented ∂-manifold to give rise to an object of
AZ
≥0,rel we must choose a chain representative for the fundamental class. The

same is true for ∂-IP-spaces, so in Subsection 6.1 we construct a suitable
ad theory adIPFun and we show that the forgetful maps QIPFun → QIP and
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MIPFun →MIP are weak equivalences. Next, in Subsection 6.3 we construct
a morphism of ad theories

sig : adIPFun → adZ
≥0,rel.

These results allow us to make the following definition.

Definition 6.1. The symmetric signature map

Sig : QIP → QZ
≥0,rel

is the composite
QIP

'←− QIPFun
sig−→ QZ

≥0,rel.

The symmetric signature map

Sig : MIP →MZ
≥0,rel

is the composite
MIP

'←−MIPFun
sig−→MZ

≥0,rel.

6.1. The ad theory adIPFun. We denote singular intersection chains with
perversity p̄ by ISp̄∗ . By [FM13a, Proposition 7.7], an orientation of
a compact n-dimensional ∂-IP-space X determines a fundamental class
ΓX ∈ IH 0̄

n(X, ∂X; Z), where 0̄ denotes the 0 perversity.
We define a category AIPFun as follows. The objects are pairs (X, ξ),

where X is a compact oriented ∂-IP-space and ξ ∈ IS0̄
n(X, ∂X; Z) is a chain

representative for the fundamental class ΓX ; there is also an empty object of
dimension n for each n. The morphisms (X, ξ) → (X ′, ξ′) between objects
of the same dimension are PL homeomorphisms which take ξ to ξ′, and
the other morphisms are strong embeddings with image in the boundary.
There is a forgetful functor AIPFun → AIP, and we define adkIPFun(K) ⊂
prekIPFun(K) to be the set of functors F such that

(a) F is balanced,
(b) the composite of F with the forgetful functor is an element of

adkIP(K), and
(c) for each oriented cell (σ, o) of K, the equation

∂ξσ,o =
∑

ξσ′,o′

holds, where σ′ runs through the cells of ∂σ and o′ is the orientation for
which the incidence number [o, o′] is (−1)k.

Proposition 6.2. adIPFun is an ad theory.

Proof. We only need to check parts (f) and (g) of [LM13, Definition 3.10].
For the proof of (f) we use the gluing construction in the proof of Theorem
4.4 (and the notation there) and we define ξτ,o to be

∑
ξσ,oσ , where σ runs

throught the n-cells of K ′. The proof of (g) is the same as the corresponding
part of the proof of [LM13, Theorem 7.13]. �



16 MARKUS BANAGL, GERD LAURES, AND JAMES E. MCCLURE

The forgetful functor AIPFun → AIP gives rise to a morphism adIPFun →
adIP of ad theories.

Proposition 6.3. The maps

QIPFun → QIP

and
MIPFun →MIP

induced by the forgetful functor AIPFun → AIP are weak equivalences.

Proof. Recall the definition of the bordism groups of an ad theory ([LM13,
Definitions 4.1 and 4.2]). By [LM13, Proposition 16.4(i), Remark 14.2(i),
and Proposition 17.7], it suffices to show that the map of bordism groups

(ΩIPFun)∗ → (ΩIP)∗
is an isomorphism. This map is obviously onto, and it is a monomorphism
by the proof of [LM13, Lemma 8.2]. �

Remark 6.4. adIPFun is a commutative ad theory, so by Theorem 1.1 of
[LM] there is a commutative symmetric ring spectrum Mcomm

IPFun which is
weakly equivalent as a symmetric ring spectrum to MIPFun. Moreover, the
forgetful map adIPFun → adIP is strictly multiplicative, so the proof of [LM,
Theorem 1.1] gives a commutative diagram

MIP A
'oo ' // Mcomm

IP

MIPFun

'

OO

B
'oo ' //

'

OO

Mcomm
IPFun

'
OO

in which A and B are symmetric ring spectra and all arrows are ring maps.

6.2. Background. Before proceeding we need to recall some informa-
tion about generalized perversities. For a stratified n-dimensional ∂-
pseudomanifold Y the components of Y i − Y i−1 are called i-dimensional
strata; the n-dimensional strata are called regular and the others singular.
Recall ([F, Definition 3.1]) that a generalized perversity1 on Y is a function p̄
from the set of strata of Y to Z which is 0 on the regular strata; an ordinary
perversity q̄ can be thought of as a generalized perversity taking a stratum
S to q̄(codim(S)). We use the definition of intersection homology for gen-
eral perversities given in [F, Definition 6.2]. Let n̄ be the upper middle
perversity.

Let X be a ∂-IP space, and give X the stratification of Proposition A.2.
Give X ×X the product stratification. Define a generalized perversity Qn̄,n̄

1These are simply called perversities in [F].



L-FUNDAMENTAL CLASS FOR IP-SPACES AND THE NOVIKOV CONJECTURE 17

on X ×X as follows.

Qn̄,n̄(S1×S2) =


n̄(S1) + n̄(S2) + 2, S1, S2 both singular strata,
n̄(S1), S2 a regular stratum and S1 singular,
n̄(S2), S1 a regular stratum and S2 singular,
0, S1, S2 both regular strata.

By [FM13a, Subsection 4.1], the diagonal map induces a map

(6.1) d : IS0̄
∗(X; Z)→ IS

Qn̄,n̄
∗ (X ×X; Z)

(this is the reason we need generalized perversities). By [F, Lemma 6.43
and Remark 6.46], the cross product induces an equivalence

ISn̄∗ (X; Z)⊗ ISn̄∗ (X; Z)→ IS
Qn̄,n̄
∗ (X ×X; Z).

6.3. The map sig : adIPFun → adZ≥0,rel.

Lemma 6.5. (i) Let (X, ξ) be an object of AIPFun. Give X the stratifica-
tion of Proposition A.2 and give X × X the product stratification. Then
(C,D, β, ϕ) is an object of AZ

rel, where

C = ISn̄∗ (X; Z),

D = IS
Qn̄,n̄
∗ (X ×X; Z),

β is the cross product, and

ϕ is the image of ξ under the diagonal map (6.1).

(ii) Let f : (X, ξ)→ (X ′, ξ′) be a morphism in AIPFun and let (C,D, β, ϕ)
and (C ′, D′, β′, ϕ′) be the objects of AZ

rel corresponding to (X, ξ) and (X ′, ξ′).
Then f induces a morphism (C,D, β, ϕ)→ (C ′, D′, β′, ϕ′).

Proof. (i) We only need to show that ISn̄∗ (X; Z) is homotopy finite. The
complex ISn̄∗ (X; Z) is free because it is a subcomplex of the singular chain
complex S∗(X; Z). Next let T be a triangulation of X which is compatible
with the stratification of X. Let ICT,n̄∗ (X; Z) denote the complex of PL
intersection chains which are simplicial with respect to T . This is free,
finitely generated in each degree, and nonzero in only finitely many degrees.
By [F, Corollary 5.49], the inclusion

ICT,n̄∗ (X; Z)→ ISn̄∗ (X; Z)

is a quasi-isomorphism. Since the domain and range are free, it is a chain
homotopy equivalence, and thus ISn̄∗ (X; Z) is homotopy finite.

(ii) If the dimensions are not equal then the definition of AIPFun shows
that f , and hence also f × f , is a strong embedding, so they induce maps of
intersection chains and the result follows. If the dimensions are equal then
f is a PL homeomorphism so, by Propositions A.1(iii) and A.2, f and f × f
preserve the filtrations and therefore induce maps of intersection chains. �
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Lemma 6.5 gives a functor

sig : AIPFun → AZ
≥0,rel.

Proposition 6.6. If F ∈ adkIPFun(K) then sig ◦ F ∈ (adZ
≥0,rel)

k(K).

Proof. We only need to check that sig ◦ F is well-behaved and nondegener-
ate. Write F (σ, o) = (Xσ, ξσ,o). First we show that the functor ISn̄∗ (Xσ; Z)
is well-behaved. Let τ ⊂ σ be cells of K; we want to show that the monomor-
phism

ISn̄i (Xτ ; Z)→ ISn̄i (Xσ; Z)
is split for each i. For this it suffices to show that the quotient
ISn̄i (Xσ; Z)/ISn̄i (Xτ ; Z) is free, and this in turn follows from the fact that
this quotient is a subgroup of the free abelian group Si(Xσ; Z)/Si(Xτ ; Z).
The proof of the other parts of the well-behavedness condition is similar.

For nondegeneracy, we need to show that the horizontal map in the fol-
lowing diagram is a quasi-isomorphism for each oriented simplex (σ, o) of
K.

Hom(ISn̄∗ (Xσ; Z),Z)
\β−1
∗ ([ϕσ,o]) //

aΓXσ ++WWWWWWWWWWWWWWWWWWWW
ISn̄dimσ−k−∗(Xσ, ∂Xσ; Z)

ISm̄dimσ−k−∗(Xσ, ∂Xσ; Z)

OO

The construction of the cap product is given in Appendix B, and the fun-
damental class ΓXσ is given by [FM13a, Proposition 7.7]. Inspection of the
definitions shows that the diagram commutes, and the slanted arrow is a
quasi-isomorphism by Theorem B.5, so we only need to show that the ver-
tical arrow is a quasi-isomorphism. For this it suffices to show that the
maps

IHm̄
∗ (∂Xσ; Z)→ IH n̄

∗ (∂Xσ; Z)
and

IHm̄
∗ (Xσ; Z)→ IH n̄

∗ (Xσ; Z)
are isomorphisms. The first of these is an isomorphism by Proposition 2.10
and the argument in [GM83, Subsection 5.6.1]. To see that the second map is
an isomorphism we oberve that if Y denotes Xσ with a collar of the boundary
removed then the maps Y → Xσ and Y → Xσ−∂Xσ are stratified homotopy
equivalences and therefore induce isomorphisms of intersection homology by
[F03, Proposition 2.1], so it suffices to observe that the map

IHm̄
∗ (Xσ − ∂Xσ; Z)→ IH n̄

∗ (Xσ − ∂Xσ; Z)

is an isomorphism by the argument in [GM83, Subsection 5.6.1]. �

The proposition gives the maps

sig : QIPFun → QZ
≥0,rel

and
sig : MIPFun →MZ

≥0,rel
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which are needed for Definition 6.1.

7. The symmetric signature of an IP-space

For a compact oriented n-manifold M (and more generally for a Poincaré
duality space) the symmetric signature σ∗(M) is an element of the sym-
metric L-group Ln(Z[π1M ]). The symmetric signature was introduced by
Mǐsčenko as a tool for studying the Novikov conjecture, and since then it
has become an important part of surgery theory (see [Ran92], for example).
The symmetric signature has many useful properties, such as homotopy in-
variance, bordism invariance, and a product formula.

The paper [CSW91] has a brief description of a construction (using con-
trolled topology) which assigns to a compact oriented Witt space X a sym-
metric signature in Ln(Q[π1X]), with properties analogous to those of the
classical symmetric signature (further information about this construction
is given in [W94, pages 209-210]). A simpler construction of a symmetric
signature σ∗Witt(X) with these properties was given in [FM13b, Section 5.4].
The two constructions are known to agree rationally by an argument due to
Weinberger (cf. [ALMP12, Proposition 11.1]) and, independently, Banagl-
Cappell-Shaneson [BCS03, Proposition 2].

In this section we show that when X is a compact oriented IP-space the
construction in [FM13b] gives a symmetric signature

σ∗IP(X) ∈ Ln(Z[π1X])

with the usual properties.

Remark 7.1. Since we are not assuming that a basepoint for X is given,
we must interpret the symbol π1X as the fundamental groupoid of X, and
the symbol Z[π1X] as a ringoid with involution, as in [WW95, Sections 2.1
and 2.3]. By a left (resp., right) module over Z[π1X] we mean a covariant
(resp., contravariant) additive functor from Z[π1X] to the category of abelian
groups. For a moduleM and a point x ∈ X we writeMx for the restriction
of M to Z[π1(X,x)]. Then M is determined up to canonical isomorphism
by Mx for any x, and because of this the results of [FM13b, LM13, LM]
and Appendix B have routine extensions to this setting (cf. [WW95, Section
2.3]), so we will cite these results without further comment.

Now recall ([LM, Section 11]) that the relaxed symmetric Poincaré ad
theory adZ

≥0,rel described in Subsection 5.2 has an analog adR≥0,rel when R
is any ringoid with involution. By [LM, Proposition 12.3] there is a natural
isomorphism of bordism groups

(7.1) (ΩZ[π1X]
≥0,rel )n

∼=←− (ΩZ[π1X])n = Ln(Z[π1X]),

so we can construct σ∗IP(X) by giving a suitable element of (ΩZ[π1X]
≥0,rel )n.

Notation 7.2. (i) Let π denote the fundamental groupoid of X.
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(ii) Let Z denote the Z[π] module which is the constant functor with value
Z.

Definition 7.3. For a right Z[π] module M and a left Z[π] module N ,
define

M⊗Z[π] N
to be the abelian group (⊕

x∈X
Mx ⊗Nx

)
/∼,

where (m ⊗ fn) ∼ (mf ⊗ n) whenever f is a path from x to x′, m is an
element of Mx′ , and n is an element of Nx.

Remark 7.4. (i) This is canonically isomorphic to the tensor product of
[Ran92, page 27] in this situation.

(ii) For each x ∈ X,M⊗Z[π]N is canonically isomorphic toMx⊗Z[π1(X,x)]

Nx.

Now we can construct the symmetric signature. For each x ∈ X let X̃x

be the universal cover determined by x, and let M be the left Z[π] module
with

Mx = IS0̄
n(X̃x; Z).

Choose an element b ∈ Z ⊗Z[π]M which maps to a representative for the
fundamental class ΓX ∈ IH 0̄

n(X; Z); this is always possible by [FM13b,
Proposition 6.1.3]. Let (C,D, β, ϕ) be defined as follows.
• C is the chain complex of Z[π] modules with Cx = ISn̄∗ (X̃x; Z).
• Let N be the left Z[π] module with

Nx = IS
Qn̄,n̄
∗ (X̃x × X̃x; Z);

then D is the chain complex of abelian groups

Z ⊗Z[π] N ,
with the evident Z/2 action.
• β is the map

Ct ⊗Z[π] C → D

is induced by the composites

ISn̄∗ (X̃x; Z)t⊗Z[π1(X,x)]IS
n̄
∗ (X̃x; Z) ∼= Z⊗Z[π1(X,x)](IS

n̄
∗ (X̃x; Z)⊗ISn̄∗ (X̃x; Z))

1⊗×−−−→ Z⊗Z[π1(X,x)] IS
Qn̄,n̄
∗ (X̃x × X̃x); Z).

• ϕ ∈ DZ/2 is the image of b under the map Z ⊗Z[π] M → Z ⊗Z[π] N
induced by the diagonal maps

IS0̄
n(X̃x; Z)→ IS

Qn̄,n̄
∗ (X̃x × X̃x; Z).

Then β is a quasi-isomorphism by Proposition B.2, and C and D are ho-
motopy finite over Z[π] by Proposition B.3, so (C,D, β, ϕ) is an object of
AZ[π]
≥0,rel.
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Lemma 7.5. (C,D, β, ϕ) is an element of adZ[π1X]
rel (∗).

Proof. This follows from the proof of [FM13b, Proposition 5.17], using The-
orem B.4 in place of [FM13b, Theorem 4.1]. �

The lemma says that (C,D, β, ϕ) represents an element of (ΩZ[π1X]
≥0,rel )n (see

[LM13, Definition 4.2]).

Definition 7.6. Let X be a compact oriented IP-space. Then σ∗IP(X) is
the image of the class of (C,D, β, ϕ) under the isomorphism (ΩZ[π1X]

≥0,rel )n ∼=
Ln(Z[π1X]).

Remark 7.7. The properties of the symmetric signature given in [FM13b,
Section 5.5] remain valid for σ∗IP, with the same proofs.

8. The assembly map and the L-theory fundamental class

For an n-dimensional compact oriented topological manifold M , Ranicki
constructs an L-theory fundamental class [M ]L ∈ L•n(M) ([Ran92, Section
16]) which plays an important role in surgery theory. It is an oriented
homeomorphism invariant whose image under the assembly map

L•n(M)→ Ln(Z[π1M ])

is the symmetric signature σ∗(M). The construction of [M ]L is not difficult
to describe. There is an equivalence

MSTop→ QSTop

in the stable category, where MSTop is the Thom spectrum and QSTop is
the Quinn spectrum; see [LM13, Appendix B] for details. There is an ad
theory adSTopFun which is related to adSTop in the same way that adIPFun

is related to adIP (see the end of [LM13, Section 8]), and the map given by
forgetting the chain representative is an equivalence

QSTopFun
'−→ QSTop.

The symmetric signature gives a map

sig : QSTopFun → QZ
≥0
∼= L•(Z),

so we have a map in the stable category

Sig : QSTop → L•(Z).

Now if M is an n-dimensional compact oriented topological manifold then
the identity map M →M represents an element

[M ]STop ∈ (ΩSTop)n(M)

and the image of [M ]STop under the composite
(8.1)

(ΩSTop)n(M) ∼= MSTopn(M)→ (QSTop)n(M)
Sig−−→ L•(Z)n(M) = L•n(M)

is [M ]L.
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Remark 8.1. The composite

MSTop→ QSTop
Sig−−→ L•(Z)

is the Sullivan-Ranicki orientation.

Our goal in this section is to prove

Theorem 8.2. For an n-dimensional compact oriented IP-space X there is
a fundamental class [X]L ∈ L•n(X) with the following properties:

(i) [X]L is an oriented PL homeomorphism invariant,
(ii) The image of [X]L under the assembly map is the symmetric signature

σ∗IP(X) given by Definition 7.6.
(iii) If X is a PL manifold then [X]L is the same as the fundamental class

constructed by Ranicki.

Remark 8.3. For Witt spaces, a different method for constructing a fun-
damental class is described in [CSW91].

The rest of the section is devoted to the proof of Theorem 8.2. We begin
with the construction of [X]L. For a topological space Z, define a category
AIP,Z as follows. An object of AIP,Z is an object X of AIP together with a
map of topological spaces X → Z. A morphism from X → Z to X ′ → Z is
a commutative diagram

X //

��@
@@

@@
@@

X ′

~~}}
}}

}}
}

Z

for which the horizontal arrow is a morphism in AIP. There is a forgetful
functor

Υ : AIP,Z → AIP,

and we define adkIP,Z(K) ⊂ prekIP,Z(K) to be the set of functors F for which
the composite Υ◦F is in adkIP(K). The proof of Theorem 4.4 shows that this
is an ad theory; in particular we obtain a functor Φ from spaces to spectra
with

Φ(Z) = QIP,Z .

By [LM13, Proposition 16.4(i), Remark 14.2(i), and Definitions 4.1 and
4.2], the homotopy groups of QIP,Z are the same as the IP bordism groups
(ΩIP)∗(Z) defined by Pardon ([Par90, Section 5]). Pardon proves that (ΩIP)∗
is a homology theory, and in particular this shows that Φ is homotopy in-
variant in the sense of [WW95, Section 1]. We therefore have an assembly
map

α : Z+ ∧ Φ(∗)→ Φ(Z)
by [WW95, Theorem 1.1 and Observation 1.2].

Theorem 8.4. α is a weak equivalence.

The proof is deferred to Section 12. Now we have
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Definition 8.5. Let X be an n-dimensional compact oriented IP-space.
(i) Let [X]IP be the class of the identity map X → X in (ΩIP)n(X).
(ii) Let [X]L be the image of [X]IP under the composite

(8.2) (ΩIP)n(X) α←−∼= (QIP)n(X)
Sig−−→ (QZ

≥0,rel)n(X)
∼=←− L•n(X),

where the last map is the isomorphism (7.1).

It remains to prove parts (i), (ii) and (iii) of Theorem 8.2. For part (i) it
suffices to show that if f : X → X ′ is an oriented PL homeomorphism then
f∗([X]IP) = [X ′]IP, and this in turn follows from the fact that the map

(I ×X) ∪1×X X ′ → X ′,

which is the identity on X ′ and takes (t, x) to f(x), is a bordism between f
and the identity map of X ′.

For part (ii) let Ψ be the homotopy functor which takes Z to QZ[π1Z]
≥0,rel

(where Z[π1Z] denotes the fundamental ringoid), and observe that the sym-
metric signature gives a natural transformation

ν : Φ→ Ψ

in the stable category (cf. [LM, Section 13]). Now the naturality of the
assembly map ([WW95, Theorem 1.1]) implies that the diagram

X+ ∧QIP

α

yyssssssssss 1∧Sig

''OOOOOOOOOOO

QIP,X

ν

$$JJJJJJJJJ
X+ ∧QZ

≥0,rel

α

xxpppppppppp

QZ[π1X]
≥0,rel

commutes, and the result follows from the fact that the composite of ν with
the isomorphism (7.1) takes [X]IP to σ∗IP(X).

For part (iii), we need to compare the composites (8.1) and (8.2) for X a
PL manifold M . First we observe that there is a map

Sig : QSTop → QZ
≥0,rel

(see [LM, Section 13]). By [LM, Proposition 13.3], (8.1) is equal to the
composite
(8.3)

(ΩSTop)n(M) ∼= MSTopn(M)→ (QSTop)n(M)
Sig−−→ (QZ

≥0,rel)n(M)
∼=←− L•n(M).

Next we observe that for each space Z there is an ad theory adSTop,Z defined
analogously to adIP,Z . We get a functor Ξ from spaces to spectra by letting

Ξ(Z) = QSTop,Z ,
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and we have
π∗Ξ(Z) = (ΩSTop)∗(Z).

Lemma 8.6. The composite (8.3) is equal to the composite

(ΩSTop)n(M) α←− (QSTop)n(M)
Sig−−→ (QZ

≥0,rel)n(M)
∼=←− L•n(M)

where α is the assembly map for the functor Ξ.

We defer the proof for a moment. Now we observe that Ξ, QSTop, and
Sig all have PL analogs; we write Ξ′ for the PL analog of Ξ. To complete
the proof of Theorem 8.2(iii) it suffices to show that the following diagram
commutes.

Ξ(M) QSTop ∧M+
αoo Sig // QZ

≥0,rel ∧M+

Ξ′(M)

OO

��

QSPL ∧M+
αoo Sig //

OO

��

QZ
≥0,rel ∧M+

=

OO

=
��

Φ(M) QIP ∧M+
αoo Sig // QZ

≥0,rel ∧M+

The left-hand squares commute by the naturality of the assembly map, and
the right-hand squares commute by the definition of the maps Sig. �

Proof of Lemma 8.6. It suffices to show that the diagram

(8.4) (ΩSTop)n(Z) MSTopn(Z)i
∼=

oo

∼= j
��

(QSTop)n(Z)
α

hhPPPPPPPPPPP

commutes, where Z is a space, i is the standard isomorphism and j is given
by [LM13, Appendix B].

First we recall the definition of i (cf. [DK01, pages 224–5]). The k-th
space of the spectrum MSTop ∧ Z+ is TSTopk ∧ Z+, where TSTopk is the
Thom space. The inclusion of the 0-section gives an embedding

BSTopk → TSTopk.

Given a map f : Sn+k → TSTopk ∧ Z+, there is a homotopic map f ′ for
which the composite

Sn+k f ′−→ TSTopk ∧ Z+
p1−→ TSTopk

(where p1 is the projection) is transverse to the 0-section. Then the oriented
topological manifold (p1 ◦ f ′)−1(BSTopk) is equal to (f ′)−1(BSTopk × Z),
and i takes the homotopy class of f to the bordism class of the composite

(f ′)−1(BSTopk × Z)
f ′−→ BSTopk × Z

p2−→ Z.
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Now let S•(TSTopk∧Z+) be the singular complex, and let St• (TSTopk∧Z+)
be the sub-semisimplicial set consisting of maps g : ∆n → TSTopk ∧ Z+ for
which the restriction of p1 ◦ g to each face is transverse to the 0-section (cf.
[LM13, Appendix B]). Let

(MSTop ∧ Z+)t

be the spectrum whose k-th space is the realization of St• (TSTopk ∧ Z+).
Transversality implies that the map

(MSTop ∧ Z+)t →MSTop ∧ Z+

is a weak equivalence. Hence the functor which takes Z to (MSTop ∧Z+)t

is a homotopy functor, and there is an assembly map

MSTopt ∧ Z+
α−→ (MSTop ∧ Z+)t.

Given a simplex g of St• (TSTopk∧Z+), we obtain an element of adkSTop,Z(∆n)
by taking each oriented simplex (σ, o) to (g|σ)−1(BSTop× Z). This gives a
natural transformation

J : (MSTop ∧ Z+)t → QSTop,Z .

Consider the diagram

MSTop ∧ Z+ MSTop ∧ Z+
=oo

(MSTop ∧ Z+)t

'

OO

J
��

MSTopt ∧ Z+

'

OO

αoo

J
��

QSTop,Z QSTop ∧ Z+.
αoo

This commutes by naturality of the assembly map (since the assembly map
for the functor MSTop∧Z+ is the identity map). On passage to homotopy
groups, the left-hand vertical composite induces the map i of diagram (8.4),
and the right-hand vertical composite induces the map j. Thus diagram
(8.4) commutes as required. �

9. The Stratified Novikov Conjecture

Let G be a discrete group and BG its classifying space. Recall that the
strong Novikov conjecture for G asserts that the assembly map

α : L•n(BG) −→ Ln(Z[G])

is rationally injective. The symmetric L-spectrum splits rationally as a
product of Eilenberg-MacLane spectra:

L•(Z)⊗Q '
∏
j≥0

K(Q, 4j),
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and this splitting induces natural isomorphisms

SX : L•n(X)⊗Q
∼=−→
⊕
j≥0

Hn−4j(X; Q).

An n-dimensional compact IP-space X possesses characteristic classes
Lj(X) ∈ Hj(X; Q), which are the Poincaré duals of the Hirzebruch L-
classes when X is a smooth manifold. These classes have been introduced
by Goresky and MacPherson in [GM80] (at least for spaces without odd
codimensional strata, but the method works whenever one has a self-dual
intersection chain sheaf, see [Ban07]). Goresky and MacPherson adapt a
method of Thom, which exploits the bordism invariance of the signatures of
transverse inverse images of maps to spheres. For singular X, these classes
need not lift to the cohomology of X under capping with the (ordinary)
fundamental class. We shall denote the total L-class by L(X).

Lemma 9.1. Let X be an n-dimensional compact IP-space. The isomor-
phism SX maps the rational L-theory fundamental class [X]L to the Goresky-
MacPherson L-class L(X).

Proof. Let Y m be a compact IP-space and j : Y m ↪→ Xn a normally non-
singular inclusion with trivial normal bundle ν. Let Dν = Dn−m × Y be
the total space of its disk bundle, Sν = Sn−m−1 × Y the total space of its
sphere bundle. Note that Dν is a ∂-IP space. Let u ∈ Hn−m(Dν, Sν; Q) be
the Thom class of the normal bundle. The composition

Hk(X; Q)→ Hk(X,X − Y ; Q)
∼=← Hk(Dν, Sν; Q)

u∩−→∼= Hk−n+m(Dν; Q) π∗→∼= Hk−n+m(Y ; Q)
(−1)s→ Hk−n+m(Y ; Q),

where s = 1
2(n −m + 1)(n −m) and π : Dν → Y is the bundle projection,

defines a map
j! : Hk(X; Q) −→ Hk−n+m(Y ; Q).

If Z is any topological space andR any coefficient ring, let ε∗ : H0(Z;R)→ R
be the augmentation map. By the Thom-Goresky-MacPherson construc-
tion, the L-classes are uniquely characterized by the following two properties
([Ban07, Proposition 8.2.11]):

• If j : Y m ↪→ Xn is a normally nonsingular inclusion with trivial
normal bundle, then

Lk−n+m(Y ) = j!Lk(X).

• ε∗L0(X) = σ(X), the signature of X.
Thus the lemma is proven if we show

(1) If j : Y m ↪→ Xn is a normally nonsingular inclusion with trivial
normal bundle, then

(SY [Y ]L)k−n+m = j!(SX [X]L)k;

and
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(2) ε∗(SX [X]L)0 = σ(X).
We turn to (1). Let ν be the normal bundle of j. We write S0 as S0 =
{y−, y+}. Let e ∈ H1(D1, S0; Q) be the element obtained as the image of
the unit 1 ∈ H0(y+; Q) under the composition

H0(y+; Q)
∼=←− H0(S0, y−; Q) δ−→ H1(D1, S0; Q),

where the left arrow is an excision isomorphism and δ is the connecting
homomorphism of the triple (D1, S0, y−). The (n − m)-fold cross-product
e× · · · × e yields an element en−m ∈ Hn−m(Dn−m, Sn−m−1; Q). The Thom
class u arising in the definition of the map j! is then given by u = en−m×1 ∈
Hn−m(Dν, Sν; Q), where 1 ∈ H0(Y ; Q). Analogous classes in L•-homology
and ΩIP can be constructed in a similar fashion: If A is any abelian group,
we shall briefly write AQ for A⊗ZQ. Let eL ∈ (L•)1(D1, S0)Q be the element
obtained as the image of the unit 1 ∈ (L•)0(y+)Q under the composition

(L•)0(y+)Q
∼=←− (L•)0(S0, y−)Q

δ−→ (L•)1(D1, S0)Q.

The (n − m)-fold cross-product eL × · · · × eL yields an element en−mL ∈
(L•)n−m(Dn−m, Sn−m−1)Q. Set uL = en−mL × 1 ∈ (L•)n−m(Dν, Sν)Q, where
1 ∈ (L•)0(Y )Q is the unit. Let eIP ∈ (ΩIP)1(D1, S0)Q be the element ob-
tained as the image of the unit 1 ∈ (ΩIP)0(y+)Q under the composition

(ΩIP)0(y+)Q
∼=←− (ΩIP)0(S0, y−)Q

δ−→ (ΩIP)1(D1, S0)Q.

The (n − m)-fold cross-product eIP × · · · × eIP yields an element en−mIP ∈
(ΩIP)n−m(Dn−m, Sn−m−1)Q. Set uIP = en−mIP × 1 ∈ (ΩIP)n−m(Dν, Sν)Q,
where 1 ∈ (ΩIP)0(Y )Q is the unit. The cap-product of µ :=
[id(Dn−m,Sn−m−1)] ∈ (ΩIP)n−m(Dn−m, Sn−m)Q with en−mIP is given by

(9.1) en−mIP ∩ µ = (−1)s[pt ↪→ Dn−m] ∈ (ΩIP)0(Dn−m)Q,

as we shall now verify. Set µ1 = [id(D1,S0)] ∈ (ΩIP)1(D1, S0)Q. Then µ is
the (n−m)-fold cross product

µ = µ1 × · · · × µ1

and thus

en−mIP ∩ µ = (eIP × · · · × eIP) ∩ (µ1 × · · · × µ1)
= (−1)s1(eIP ∩ µ1)× · · · × (eIP ∩ µ1),
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where s1 = 1
2(n−m)(n−m−1). Let i : (S0,∅) ↪→ (S0, y−) be the canonical

inclusion. To compute eIP ∩ µ1, we consider the diagram

Ω1
IP(D1, S0)Q ⊗ (ΩIP)1(D1, S0)Q

∂
��

∩ // (ΩIP)0(D1)Q

Ω0
IP(S0)Q

δ′

OO

⊗ (ΩIP)0(S0)Q

i∗
��

∩ // (ΩIP)0(S0)Q

ι

OO

Ω0
IP(S0, y−)Q

∼= exc
��

i∗

OO

⊗ (ΩIP)0(S0, y−)Q
∩ // (ΩIP)0(S0)Q

Ω0
IP(y+)Q ⊗ (ΩIP)0(y+)Q

∼= exc

OO

∩ // (ΩIP)0(y+)Q,

ι+

OO

whose middle and bottom portion commute, while the top portion anti-
commutes, since

(δ′a) ∩ α = (−1)deg(δ′a)a ∩ ∂α = −a ∩ ∂α
for an IP-cobordism class a of degree 0. The image of µ1 under i∗∂ is
[i : (S0,∅) ↪→ (S0, y−)], while the image of [idy+ ] ∈ (ΩIP)0(y+) under the
excision isomorphism is [(y+,∅) ↪→ (S0, y−)]. Now

[(y+,∅) ↪→ (S0, y−)] = [i] ∈ (ΩIP)0(S0, y−)Q

via the bordism W = ItI (disjoint union of two intervals) and F : W → S0

defined by mapping the first copy of I by the constant map to y+ and
mapping the second copy of I to y−. Then the disjoint union {y+} t S0 is
contained in ∂W , F restricted to {y+} t S0 agrees with the disjoint union
of the inclusion y+ ↪→ S0 and the identity map S0 → S0, while F maps
∂W − ({y+} t S0) to y−. Hence (W,F ) is a valid bordism. Consequently,

eIP ∩ µ1 = δ′i∗ exc−1(1) ∩ µ1

= −ιι+(1 ∩ exc−1 i∗∂(µ1))
= −ιι+(exc−1 i∗∂(µ1))
= −ιι+[idy+ ]

= −[{y+} ↪→ D1]

and so, with s2 = n−m,
en−mIP ∩ µ = (−1)s1(−1)s2 [{y+} ↪→ D1]× · · · × [{y+} ↪→ D1]

= (−1)s[pt ↪→ Dn−m].

For any pair (W,V ) of IP-spaces, n = dimW, let Si : (ΩIP)n(W,V )Q →
L•n(W,V )Q be the composition

(ΩIP)n(W,V ) A←−∼= (QIP)n(W,V )
Sig−−→ (QZ

≥0,rel)n(W,V )
∼=←− L•n(W,V )
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(which is just (8.2) in the absolute case), tensored with idQ. The following
diagram commutes:

(ΩIP)n(X)Q
Si //

��

L•n(X)Q
SX
∼=

//

��

⊕
qHn−4q(X; Q)

��
(ΩIP)n(X,X − Y )Q

Si // L•n(X,X − Y )Q
S(X,X−Y )

∼=
//
⊕

qHn−4q(X,X − Y ; Q)

(ΩIP)n(Dν, Sν)Q
Si //

uIP∩−
��

∼= exc

OO

L•n(Dν, Sν)Q
S(Dν,Sν)

∼=
//

uL∩−
��

∼= exc

OO

⊕
qHn−4q(Dν, Sν; Q)

u∩−
��

∼= exc

OO

(ΩIP)m(Y ×Dn−m)Q
Si //

π∗∼=
��

L•m(Y ×Dn−m)Q
SY×Dn−m

∼=
//

π∗∼=
��

⊕
qHm−4q(Y ×Dn−m; Q)

π∗∼=
��

(ΩIP)m(Y )Q
Si // L•m(Y )Q

SY
∼=

//
⊕

qHm−4q(Y ; Q)

The left column, multiplied by (−1)s, defines a map j!
IP : (ΩIP)n(X)Q →

(ΩIP)m(Y )Q. The image of [X]IP in (ΩIP)n(X,X − Y )Q equals the image of
[id(Dν,Sν)] ∈ (ΩIP)n(Dν, Sν)Q under the excision isomorphism; the required
bordism is given by the ∂-IP-spaceW obtained from gluing the cylinderX×I
to the cylinder Dν × I along the canonical inclusion Dν × {1} ↪→ X × {0}.
The map F : W → X is defined by F (x, t) = x for (x, t) ∈ X × I and
(x, t) ∈ Dν × I. Note that F maps ∂W − (X × {1} tDν × {0}) to X − Y ,
whence (W,F ) is indeed a viable bordism. Using the cross product on IP-
bordism

(ΩIP)n−m(Dn−m, Sn−m−1)Q ⊗ (ΩIP)m(Y )Q
×−→ (ΩIP)n(Dν, Sν)Q,

we may express the element [id(Dν,Sν)] as

[id(Dν,Sν)] = µ× [Y ]IP.

Thus, using (9.1), we find that

π∗(uIP ∩ [id(Dν,Sν)]) = π∗((en−mIP × 1) ∩ (µ× [Y ]IP))

= π∗((−1)deg(1) deg(µ)(en−mIP ∩ µ)× (1 ∩ [Y ]IP))

= π∗((en−mIP ∩ µ)× (1 ∩ [Y ]IP))

= (−1)sπ∗([pt ↪→ Dn−m]× [Y ]IP)
= (−1)s[Y ]IP.

This proves that
j!
IP[X]IP = [Y ]IP.

By the commutativity of the above diagram,

j!SX [X]L = j!SXSi[X]IP = SY Sij!
IP[X]IP = SY Si[Y ]IP = SY [Y ]L,
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which proves property (1).

It remains to establish property (2). The map f : X → pt from X to a
point induces a homomorphism

f∗ :
⊕
q

Hn−4q(X; Q) −→
⊕
q

Hn−4q(pt; Q)

such that (SX [X]L)0 = f∗SX [X]L. If the dimension n is not divisible by 4,
then

⊕
qHn−4q(pt; Q) = 0 and thus ε∗f∗SX [X]L = 0 = σ(X), that is, (2)

holds. Assume that n is divisible by 4, so that
⊕

qHn−4q(pt; Q) = H0(pt; Q).
Using the commutative diagram

L•n(X)Q
SX
∼=

//

f∗
��

⊕
qHn−4q(X; Q)

f∗
��

L•n(pt)Q
Spt

∼=
//
⊕

qHn−4q(pt; Q)

we can write

(9.2) f∗SX [X]L = Sptf∗[X]L.

Let {1} = π1(pt) denote the trivial fundamental group of the point. The
associated assembly map

L•n(pt) = L•n(B{1})
α{1}−→ Ln(Z[{1}])

is an isomorphism. Recall that when n is divisible by 4, there is an isomor-
phism σ : Ln(Z[{1}]) ∼= Z given by the signature σ. The diagram

L•n(pt)Q
Spt

∼=
//
⊕

qHn−4q(pt; Q)

L•n(B{1})Q

α{1} ∼=
��

H0(pt; Q)

ε∗∼=
��

Ln(Z[{1}])Q
σ
∼=

// Q

commutes, as the calculation

ε∗Spt[pt]L = ε∗(L∗(pt) ∩ [pt]Q) = ε∗(1 ∩ [pt]Q) = ε∗[pt]Q = 1
= σ(σ∗(pt)) = σ(α{1}[pt]L),

using e.g. [Ran92], shows. (The formula SM [M ]L = L∗(M) ∩ [M ]Q holds
for any closed smooth oriented n-manifold, where L∗(M) ∈ H∗(M ; Q) is the
Hirzebruch L-class and [M ]Q ∈ Hn(M ; Q) the rational fundamental class.)
Using this diagram, we obtain

(9.3) ε∗Sptf∗[X]L = σα{1}f∗[X]L.
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The diagram

L•n(X)Q
f∗ //

r∗
��

L•n(pt)Q

L•n(BG)Q

αG
��

L•n(B{1})Q

α{1}
��

Ln(Z[G])Q
f∗ // Ln(Z[{1}])Q

commutes by the naturality of the assembly map. Consequently,

(9.4) f∗αGr∗[X]L = α{1}f∗[X]L.

The ordinary signature information is contained in the symmetric signature
by

(9.5) σf∗σ
∗
IP(X) = σ(X).

Putting equations (9.2), (9.3), (9.4) and (9.5) together, we compute

ε∗(SX [X]L)0 = ε∗f∗SX [X]L = ε∗Sptf∗[X]L = σα{1}f∗[X]L
= σf∗αGr∗[X]L = σf∗σ

∗
IP(X) = σ(X),

as was to be shown. �

Let G = π1(X) be the fundamental group and r : X → BG a classifying
map for the universal cover of X. The map r induces a homomorphism

H∗(X; Q) −→ H∗(BG; Q)

on homology. The higher signatures of X are the rational numbers

〈a, r∗L(X)〉, a ∈ H∗(BG; Q).

Theorem 9.2. Let X be an n-dimensional compact IP-space whose funda-
mental group G = π1(X) satisfies the strong Novikov conjecture. Then the
higher signatures of X are stratified homotopy invariants.

Proof. Let X and X ′ be n-dimensional compact IP-spaces with fundamental
group G and f : X ′ → X an orientation preserving stratified homotopy
equivalence. If r : X → BG is a classifying map for the universal cover of
X, then r′ = r ◦ f : X ′ → BG is a classifying map for the universal cover of
X ′. We must prove that

r′∗L(X ′) = r∗L(X) ∈ H∗(BG; Q).

By Theorem 8.2(ii), the assembly map

L•n(X) −→ Ln(Z[G])
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maps [X]L to σ∗IP(X). Thus, using the factorization

L•n(X) //

r∗
��

Ln(Z[G])

L•n(BG)
α

88qqqqqqqqqq

(similarly for X ′), we may write

αr∗[X]L = σ∗IP(X), αr′∗[X
′]L = σ∗IP(X ′).

The symmetric signature is known to be a stratified homotopy invariant, see
[FM13b]. Therefore,

σ∗IP(X) = σ∗IP(r) = σ∗IP(rf) = σ∗IP(r′) = σ∗IP(X ′).

As α is by assumption rationally injective, it follows that

r∗[X]L = r′∗[X
′]L ∈ L•n(BG)⊗Q.

Using the commutative diagram

L•n(X)⊗Q r∗ //

SX ∼=
��

L•n(BG)⊗Q

SBG∼=
��⊕

j Hn−4j(X; Q) r∗ //
⊕

j Hn−4j(BG; Q)

(and the analogous diagram for X ′), together with Lemma 9.1, we deduce

r∗L(X) = r∗SX [X]L = SBGr∗[X]L
= SBGr

′
∗[X

′]L = r′∗SX′ [X
′]L = r′∗L(X ′).

�

An analytic version of Theorem 9.2 has been proven by Albin-Leichtnam-
Mazzeo-Piazza in [ALMP13]. The scope of their theorem is in fact larger,
as it applies even to those non-Witt spaces, for which a so-called analytic
self-dual mezzoperversity exists. It was shown in [ABLMP13] that such
perversity data corresponds topologically to the Lagrangian structures of
Banagl as introduced in [Ban02]. A comparison of the analytic argument
to our argument shows that the role of our L•n(X) is played in the analytic
context by K∗(X). The role of the isomorphisms SX is played by the Chern
character. The group Ln(Z[G]) corresponds to K∗(C∗rG), while our assembly
map α corresponds to the assemby map K∗(BG) → K∗(C∗rG) used in the
analytic argument.

10. Multiplicativity and commutativity

Recall from Definition 6.1 that the symmetric signature map

Sig : MIP →MZ
≥0,rel
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is the following composite in the homotopy category of spectra:

MIP
'←−MIPFun

sig−→MZ
≥0,rel.

In this section we show that this composite is weakly equivalent to a com-
posite of ring maps between commutative ring spectra. Specifically, we show

Theorem 10.1. There are symmetric ring spectra A, B and C, a commu-
tative symmetric ring spectrum D, and a strictly commutative diagram

(10.1) MIP A
'oo ' // Mcomm

IP

MIPFun

'

OO

sig
��

B
'oo ' //

'

OO

��

Mcomm
IPFun

'
OO

��
MZ
≥0,rel C

'oo ' // D

in which the horizontal arrows, the upper vertical arrows and the lower right
vertical arrow are ring maps.

Remark 10.2. D is weakly equivalent to (MZ
≥0,rel)

comm by [LM, Remark
17.3].

The rest of this section is devoted to the proof of Theorem 10.1. The top
half of the diagram has already been constructed in Remark 6.4. For the
lower half we will use the method of the proof of [LM, Theorem 1.3] (it will
be straightforward to check that the maps MIPFun ← B→Mcomm

IPFun given by
the proof of [LM, Theorem 1.1] are the same as those given by the proof of
[LM, Theorem 1.3]).

Remark 10.3. In order to apply the proof of [LM, Theorem 1.3] without
change we would need to know (by analogy with the paragraph before [LM,
Definition 14.5]) that the cross product gave a natural quasi-isomorphism
from the functor

(AIPFun)×l
sig×l−−−→ (AZ

rel)
×l ⊗−→ AZ

rel

to the functor
(AIPFun)×l → AIPFun

sig−→ AZ
rel

(where the unmarked arrow is the product in AIPFun). But this is not the
case, for the simple reason that the cross product does not give a map

IS
Qn̄,n̄
∗ (X ×X; Z)⊗l → IS

Qn̄,n̄
∗ (X ×X; Z)

(cf. [F, Lemma 6.43]). Our first task is to provide a suitable substitute,
which will be given in Proposition 10.11.
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Definition 10.4. Let Y1, . . . , Yk be stratified PL ∂-pseudomanifolds and
give Y1 × · · · × Yk the product stratification. Define a perversity Qk on
Y1 × · · · × Yk by

Qk(S1 × · · · × Sk) = 2s− 2 +
∑

n̄(Si),

where the Si are strata and s is the number of Si that are singular.

In particular, Q1 = n̄ and Q2 = Qn̄,n̄.

Lemma 10.5. The cross product induces a quasi-isomorphism

IS
Qj
∗ (Y1×· · ·×Yj ; Z)⊗ISQk∗ (Yj+1×· · ·×Yj+k; Z)→ IS

Qj+k
∗ (Y1×· · ·×Yj+k; Z).

This is immediate from [F, Lemma 6.43 and Theorem 6.45]. We need a
more general version of this.

Definition 10.6. (i) Let A be a finite totally ordered set. A partition ρ of
A is a collection B1, . . . , Bk of disjoint subsets of A such that ∪Bi = A and
a < a′ whenever a ∈ Bi, a′ ∈ Bi′ with i < i′.

(ii) Let X1, . . . , Xl be stratified PL ∂-pseudomanifolds and let

ρ = {B1, . . . , Bk}
be a partition of {1, . . . , l}. Let Yi =

∏
j∈Bi Xj and give Yi the product

stratification. Define
ISρ∗(X1 × . . .×Xl; Z)

to be
ISQk∗ (Y1 × . . .× Yk; Z).

Lemma 10.7. The cross product induces a quasi-isomorphism

ISρ∗(X1×· · ·×Xl; Z)⊗ISρ′∗ (Xl+1×· · ·×Xl+m; Z)→ ISρ∪ρ
′

∗ (X1×· · ·×Xl+m; Z).

This is immediate from Lemma 10.5.

Definition 10.8. Let ρ = {B1, . . . , Bj} and ρ′ = {C1, . . . , Ck} be two par-
titions of a set A. Then ρ′ is a refinement of ρ if each Ci is contained in
some Bi.

Lemma 10.9. Let ρ and ρ′ be partitions of {1, . . . , l}. If ρ′ is a refinement
of ρ then

ISρ∗(X1 × · · · ×Xl; Z) ⊂ ISρ′∗ (X1 × · · · ×Xl; Z)
and the inclusion is a quasi-isomorphism.

Proof. The inclusion follows from the fact that the perversity that gives ISρ∗
is ≤ the perversity that gives ISρ

′
∗ . To show the quasi-isomorphism it suffices

to show that

ISn̄∗ (X1 × · · · ×Xl; Z) ↪→ ISρ∗(X1 × · · · ×Xl; Z)
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is a quasi-isomorphism for every ρ. This in turn follows by induction from
the following commutative diagram, where we let ρ = {B1, . . . , Bk} and
ρ1 = {B2, . . . , Bk}.

ISn̄∗ (
∏
i∈B1

Xi; Z)⊗ ISn̄∗ (
∏
i/∈B1

Xi; Z) × //

��

ISn̄∗ (X1 × · · · ×Xl; Z)

��
ISn̄∗ (

∏
i∈B1

Xi; Z)⊗ ISρ1
∗ (
∏
i/∈B1

Xi; Z) × // ISρ∗(X1 × · · · ×Xl; Z)

Here the horizontal arrows are quasi-isomorphisms by [F, Theorem 6.45] and
the left vertical arrow is a quasi-isomorphism by the inductive hypothesis,
so the right vertical arrow is a quasi-isomorphism as required. �

Next is the analogue of Lemma 6.5 for this situation. Recall [LM, Defini-
tion 14.3(i)].

Lemma 10.10. (i) Let l ≥ 1 and let ρ = {B1, . . . , Bk} be a par-
tition of {1, . . . , l}. Let ρ̄ be the partition {B1, . . . , Bk, B1, . . . , Bk} of
{1, . . . , l}

∐
{1. . . . , l}. Let (Xi, ξi) for 1 ≤ i ≤ l be objects of AIPFun. Give

each Xi the stratification of Proposition A.2 and give X1 × · · · × Xl and
(X1×· · ·×Xl)×(X1×· · ·×Xl) the product stratifications. Then (C,D, β, ϕ)
is an object of AZ

rel, where
C = ISn̄∗ (X1 × · · · ×Xl; Z),
D = ISρ̄∗((X1 × · · · ×Xl)× (X1 × · · · ×Xl); Z),
β is the cross product, and
ϕ is the image of ξ1 × · · · × ξl under the composite

IS0̄
∗(X1 × · · · ×Xl; Z)→ IS

Qn̄,n̄
∗ ((X1 × · · · ×Xl)× (X1 × · · · ×Xl); Z)

↪→ ISρ̄∗(X1 × · · · ×Xl ×X1 × · · · ×Xl; Z),

where the first map is induced by the diagonal and the second is given by
Lemma 10.9.

(ii) For 1 ≤ i ≤ l, let fi : (Xi, ξi) → (X ′i, ξ
′
i) be a morphism in AIPFun.

Let (C,D, β, ϕ) and (C ′, D′, β′, ϕ′) be the objects of AZ
rel corresponding to

the l-tuples {(Xi, ξi)} and {(X ′i, ξ′i)}. Then the fi induce a morphism
(C,D, β, ϕ)→ (C ′, D′, β′, ϕ′).

Proof. Part (i) follows from Lemma 10.9 and the fact (shown in the proof
of Lemma 6.5(i)) that ISn̄∗ (X1 × · · · × Xl; Z) is homotopy finite. Part (ii)
follows from the proof of Lemma 6.5(ii). �

Let
sigρ : (AIPFun)×l → AZ

rel

be the functor given by Lemma 10.10. Now we can give the statement
promised in Remark 10.3.



36 MARKUS BANAGL, GERD LAURES, AND JAMES E. MCCLURE

Proposition 10.11. Let {B1, . . . , Bk} be a partition of {1, . . . , l}, let ρi be
a partition of Bi for 1 ≤ i ≤ k, and let ρ be a refinement of ρ1 ∪ · · · ∪ ρk.
The cross product gives a natural quasi-isomorphism from

(AIPFun)×l
Q

sigρi−−−−→ (AZ
rel)
×k ⊗−→ AZ

rel

to
(AIPFun)×l

sigρ′−−−→ AZ
rel

This is immediate from Lemmas 10.7 and 10.9. Next we need the analogue
of [LM, Definition 14.4]. Recall [LM, Definition 14.3(ii)].

Definition 10.12. Let j ≥ 0 and let r : {1, . . . , j} → {u, v}. Let Ai denote
AIPFun if r(i) = u and AZ

rel if r(i) = v.
(i) Let 1 ≤ m ≤ j. A surjection

h : {1, . . . , j} → {1, . . . ,m}
is adapted to r if r is constant on each set h−1(i) and h is monic on r−1(v).

(ii) Given a surjection

h : {1, . . . , j} → {1, . . . ,m}
which is adapted to r, and a partition ρi of h−1(i) for 1 ≤ i ≤ m, define

(h, ρ1, . . . , ρm)� : A1 × · · · × Aj → (AZ
rel)
×m

by
(h, ρ1, . . . , ρm)�(x1, . . . , xj) = (iεy1, . . . , ym),

where iε is the sign that arises from putting the objects x1, . . . , xj into the
order xθ(h)−1(1), . . . , xθ(h)−1(j) and

yi =

{
sigρi({xp}p∈h−1(i)) if h−1(i) ⊂ r−1(u),
xh−1(i) if h−1(i) ∈ r−1(v).

(iii) A datum of type r is a tuple

(h, ρ1, . . . , ρm, η),

where h is a surjection which is adapted to r, ρi is a partition of h−1(i), and
η is an element of Σj with the property that h ◦ η = h.

(iv) Given a datum
d = (h, ρ1, . . . , ρm, η),

of type r, define
d� : A1 × · · · × Aj → AZ

rel

to be the composite

A1 × · · · × Aj
η−→ Aη−1(1) × · · · × Aη−1(j) = A1 × · · · × Aj

(h,ρ1,...,ρm)�−−−−−−−−→ (AZ
rel)
×m ⊗−→ AZ

rel,

where η permutes the factors with the usual sign.
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Finally, we have the analogue of [LM, Definition 14.5].

Definition 10.13. For data of type r, define

(h, ρ1, . . . , ρm, η) ≤ (h′, ρ′1, . . . , ρ
′
m′ , η

′)

if for each i ∈ {1, . . . ,m} there is a p ∈ {1, . . . ,m′} such that η−1(h−1(i)) is
contained in η′−1(h′−1(p)) and η′η−1 takes each piece of the partition ρi to
a union of pieces of the partition ρ′p.

With these changes, the proof of [LM, Theorem 1.3] goes through to
construct the lower half of Diagram (10.1). This completes the proof of
Theorem 10.1.

11. Multiplicativity of the L-theory fundamental class

In this section we prove

Theorem 11.1. Let X and Y be compact oriented IP spaces. Then

[X × Y ]L = [X]L × [Y ]L.

The first step in the proof is to observe that we can replace the spectra Q
in Definition 8.5 by the equivalent symmetric spectra M. Each of the sym-
metric spectra MIP,Z , Z+ ∧MIP, Z+ ∧MZ

≥0,rel and Z+ ∧MZ
≥0 is semistable

([HSS00, Definition 5.6.1]) by [LM13, Corollary 17.9(i)] and [Sch08, Exam-
ples 4.2 and 4.7], and hence their “true” (i.e., derived) homotopy groups
agree with their homotopy groups by [Sch08, Example 5.5]. Thus for a com-
pact oriented IP space Z of dimension l the class [Z]L is the image of [Z]IP
under the composite
(11.1)

(ΩIP)l(Z)
∼=−→ πlMIP,Z

α←−∼= πl(Z+∧MIP)
Sig−−→ πl(Z+∧MZ

≥0,rel)
∼=←− πl(Z+∧MZ

≥0).

Next we observe that the functors in (11.1) have product operations. For
the first functor (and for any spaces X and Y ), Cartesian product induces
a map

(ΩIP)m(X)⊗ (ΩIP)n(Y )→ (ΩIP)m+n(X × Y ).
For the second functor, Cartesian product induces

AIP,X ×AIP,Y → AIP,X×Y

and this induces a map

MIP,X ∧MIP,Y →MIP,X×Y

which gives the desired product. The third, fourth and fifth functors in
(11.1) have products because MIP, MZ

≥0,rel and MZ
≥0 are ring spectra.

It therefore suffices to show that the maps in the composite (11.1) preserve
products. For the second map this follows from Proposition C.1, for the third
map from Theorem 10.1, and for the fourth map from [LM, Remark 12.2].
We will denote the first map by χ, so it remains to show
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Lemma 11.2. The map

χ : (ΩIP)∗(Z)
∼=−→ π∗MIP,Z

preserves products.

The rest of this section gives the proof of this lemma.
Recall that for a spectrum Q or a symmetric spectrum M we write Qk

and Mk for the k-th space. The map χ can be written as the composite
(11.2)

(ΩIP)l(Z) = πl(QIP,Z)0 → πl+k(QIP,Z)k → πl+k(MIP,Z)k → πlMIP,Z

for k ≥ 1 (the first arrow is described in [LM13, Section 15], but one should
use the signs in Appendix D below; the second arrow is described in [LM13,
Section 17]).

If f : W → Z is a map from an l-dimensional compact oriented IP space to
Z, and if p ≤ l+2, let us write f [l+1] (resp., f [p,l+2−p]) for the ∆l+1-ad (resp.,
∆p ×∆l+2−p-ad) which takes the top cell with its canonical orientation to
f and all other cells to ∅ → Z. Then f [l+1] (resp., f [p,l+2−p]) determines an
element of πl+1(MIP,Z)1 (resp., πl+2(MIP,Z)2) which we will denote by f [l+1]

(resp., f [p,l+2−p]). From [LM13, Sections 15 and 17] (but using the signs in
Appendix D) we see that

(11.3) χ([f ]) is represented by f [l+1] ∈ πl+1(MIP,Z)1

and

(11.4) χ([f ]) is represented by − f [0,l+2] ∈ πl+2(MIP,Z)2.

Now let g : U → X and h : V → Y be maps from compact oriented IP
spaces of dimensions m and n respectively; we need to show that

(11.5) χ([g])χ([h]) = χ([g × h]).

By (11.3) and the proof of [Sch, Theorem I.4.54], χ([g])χ([h]) is represented
by the composite

S1 ∧S1 ∧Sm ∧Sn → S1 ∧Sm ∧S1 ∧Sn
g[m+1]∧h[n+1]

−−−−−−−−−→ (MIP,X)1 ∧ (MIP,Y )1

→ (MIP,X×Y )2

(cf. [Sch, I.4.55]). By [LM13, Section 18] this composite is equal to
−(g × h)[m+1,n+1], so by (11.4) the proof of(11.5) reduces to showing that

(g × h)[m+1,n+1] = (g × h)[0,m+n+2], and for this in turn it suffices to show
for 0 ≤ l ≤ m that

(11.6) (g × h)[m+1−l,n+1+l] = (g × h)[m−l,n+2+l].

To prove (11.6), let F be the (∆m+1−l ×∆n+2+l)-ad which takes
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• the top cell (with its canonical orientation) to the composite

U × V × I → U × V g×h−−→ X × Y
(where the first map is the projection),
• the cell ∂0∆m+1−l × ∆n+2+l (with its canonical orientation) to

(−1)m+n times

U × V × {1} → U × V g×h−−→ X × Y,
• the cell ∆m+1−l × ∂0∆n+2+l (with its canonical orientation) to

(−1)n−l times

U × V × {0} → U × V g×h−−→ X × Y,
• and all other cells to the map ∅ → X × Y .

Then F determines a map

Φ : ∆m+1−l ×∆n+1+l+1 → (MIP,X×Y )2,

and the restriction of Φ to the boundary of ∆m+1−l × ∆n+2+l (which is
nullhomotopic) is easily seen (using the signs in Appendix D below) to
be (−1)m+n(g × h)[m−l,n+2+l] + (−1)m+1+n(g × h)[m+1−l,n+1+l]; this proves
(11.6) and completes the proof of Lemma 11.2 �

12. Proof of Theorem 8.4

By [WW95, Observation 1.3] it suffices to show that Φ is strongly excisive.
The fact that (ΩIP)∗ is a homology theory implies that Φ preserves arbitrary
coproducts, so it suffices to show that Φ preserves homotopy cocartesian
squares. First we observe that Φ takes monomorphisms to cofibrations in
the level model structure given by [MMSS01, Theorem 6.5]. For a based
space W , let

Φ̄(W ) = Φ(W )/Φ(∗).
Then the natural map

Φ(W )→ Φ̄(W+)
(where + denotes a disjoint basepoint) is a weak equivalence because (ΩIP)∗
is a homology theory. It therefore suffices to show that Φ̄ takes homotopy
cocartesian squares of based spaces to homotopy cocartesian squares of spec-
tra.

As a first step we give a relationship between ΣΦ̄(W ) and Φ̄(ΣW ). Let
CW be the cone I ∧W , where 1 is the basepoint of I, and let S(W ) denote
the pushout of the diagram

Φ̄(CW )← Φ̄(W )→ Φ̄(CW ).

Since Φ̄(CZ) is contractible, and since Φ̄ takes monomorphisms to cofibra-
tions in the level model structure, S(W ) is weakly equivalent to ΣΦ̄(W ).
Since ΣW is the pushout of

CW ←W → CW,
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there is an evident map

S : S(W )→ Φ̄(ΣW ).

Lemma 12.1. S is a weak equivalence for all W .

We defer the proof for a moment. Let

B
i←− A j−→ C

be a diagram of based spaces. The homotopy pushout of this diagram is the
pushout of the diagram

Mi←↩ A ↪→Mj,

where Mi and Mj are the mapping cylinders; we will denote this pushout
by D. The homotopy pushout of

Φ̄(B)
Φ̄(i)←−− Φ̄(A)

Φ̄(j)−−−→ Φ̄(C)

is (up to weak equivalence) the pushout, which we will denote by E, of

Φ̄(Mi)←↩ Φ̄(A) ↪→ Φ̄(Mj).

It therefore suffices to show that the map E → Φ̄(D) is a weak equivalence.
Consider the diagram

πiΦ̄(A)

=
��

// πi(Φ̄(B) ∨ Φ̄(C))

��

// πiE

��

// πiS(A)

S
��

// πi(S(B) ∨ S(C))

��
πiΦ̄(A) // πiΦ̄(B ∨ C) // πiΦ̄(D) // πiΦ̄(ΣA) // πiΦ̄(ΣB ∨ ΣC),

where the rightmost vertical arrow is induced by the maps

S(B) S−→ Φ̄(ΣB)→ Φ̄(ΣB ∨ ΣC)

and
S(C) S−→ Φ̄(ΣC)→ Φ̄(ΣB ∨ ΣC).

The top row of the diagram is exact because it is π∗ of a cofiber sequence.
The fact that (ΩIP)∗ is a homology theory implies that the second row of the
diagram is exact, and also that the second vertical arrow is an isomorphism.
The fourth and fifth vertical arrows are isomorphisms by Lemma 12.1, and
hence the middle vertical arrow is an isomorphism as required.

It remains to prove Lemma 12.1. We begin by describing a suspension
map

s : πiΦ̄(W )→ πi+1S(W ).
Let a ∈ πiΦ̄(W ). Let κi(W ) denote the kernel of the map πiΦ(W ) →
πiΦ(∗); since (ΩIP)∗ is a homology theory, the map κi(W )→ πiΦ̄(W ) is an
isomorphism, so a comes from an element ã ∈ κi(W ). Let Φ0(W ) denote
the 0-th space of the spectrum Φ(W ); see [LM13, Definitions 15.8 and 15.4].
Since Φ0(W ) is a Kan complex ([LM13, Lemma 15.12]), ã is represented by
an i-simplex σ of Φ0(W ) with all faces at the basepoint. Since κi(CW ) = 0,
there is an (i+ 1)-simplex τ of Φ0(CW ) with ∂0(τ) = σ and all other faces
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at the basepoint. Let τ1 and τ2 be the images of τ under the two inclusions
of Φ̄0(CW ) into S0(W ) and let

(12.1) D = ∆i ∪d0∆i ∆i;

then τ1 and τ2 give a map

a : D/∂D → S(W )

which represents s(a). Combining the map s with the weak equivalence
between S(W ) and ΣΦ̄(W ) gives the usual suspension map πiΦ̄(W ) →
πi+1ΣΦ̄(W ), as the reader can verify, so s is an isomorphism.

It therefore suffices to show that the composite

(12.2) (ΩIP)i(W, ∗) ∼= κi(W ) ∼= πiΦ̄(W ) s−→ πi+1S(W )
S−→ πi+1Φ̄(ΣW ) ∼= (ΩIP)i+1(ΣW, ∗)

is an isomorphism. We will show that this composite is equal to the suspen-
sion isomorphism

(12.3) s′ : (ΩIP)i(W, ∗)→ (ΩIP)i+1(ΣW, ∗)
of the homology theory (ΩIP)∗. First we give an explicit description of the
composite (12.2). Let b ∈ (ΩIP)i(W, ∗). Then b is represented by a map
f : M → W , where M is an i-dimensional manifold which is a boundary;
say M = ∂N . Recall that k-simplices of Φ0(W ) are the same thing as
elements of adkIP,W (∆k). Let σ be the i-simplex of Φ0(W ) which takes ∆i

to f and all faces of ∆i to ∅ → W . We can construct an (i + 1)-simplex τ
of Φ0(CW ) with ∂0(τ) = σ and all other faces at the basepoint as follows.
Let P be

(I ×M) ∪1×M N,

let g : P → CW take (t, x) ∈ I ×M to [t, f(x)] ∈ CW and N to [1, ∗], and
finally let τ take ∆i+1 to g, d0∆i+1 to f , and the remaining faces to ∅ →W .
Let τ1 and τ2 be the images of τ under the two maps Φ0(CW )→ Φ̄0(ΣW );
then (with the notation of Equation (12.1)) τ1 and τ2 give a map

b : D/∂D → Φ̄0ΣW

and the image of b in πi+1Φ̄(ΣW ) is the element represented by b.
Next we show that this description of the image of b in πi+1Φ̄(ΣW ) can

be simplified. Let the two copies of CW in ΣW be [−1, 0]∧W and [0, 1]∧W ,
where the basepoints of [−1, 0] and [0, 1] are −1 and 1. Let

Q = N ∪−1×M ([−1, 1]×M) ∪1×M N,

and let h : Q → ΣW take (t, x) to [t, f(x)] and both copies of N to the
basepoint. Let τ3 be the (i+ 1)-simplex of Φ0(ΣW ) which takes ∆i+1 to h
and all faces of ∆i+1 to ∅ → ΣW ; then τ3 gives a map

b′ : ∆i+1/∂∆i+1 → Φ̄(ΣW ),

and we claim that b and b′ represent the same element of πi+1Φ̄(ΣW ). To
see this, let υ be the (i+ 2)-simplex of Φ0(ΣW ) such that
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• υ(∆i+2) is the composite

I ×Q p−→ Q
h−→ ΣW

(where p is the projection),
• υ(d0∆i+2) = h ◦ p|0×Q,
• υ(d1∆i+2) = h ◦ p|1×(N∪−1×M ([−1,0]×M)),
• υ(d2∆i+2) = h ◦ p|1×(([0,1]×M)∪1×MN),
• υ takes all other faces to ∅ → ΣW .

Then υ gives a homotopy between b and b′ which verifies the claim.
The element of (ΩIP)i+1(ΣW, ∗) corresponding to b′ is represented by the

map h : Q → ΣW ; this completes our calculation of the image of b under
the composite (12.2).

Next we claim that the image of b under the map (12.3) is represented by
h|Q′ , where

Q′ = ([−1, 1]×M) ∪1×M N.

To see this, recall that the suspension map s′ is defined to be the inverse of
the composite

(ΩIP)i+1(ΣW, ∗) q←−∼= (ΩIP)i+1(C ′W,W ) ∂−→ (ΩIP)i(W, ∗),

where C ′W = [−1, 1] ∧ W (with the basepoint of [−1, 1] at 1), q is the
quotient map, and ∂ is the boundary map of the homology theory (ΩIP)∗.
Now consider the map

k : Q′ → C ′W

which takes (t, x) to [t, f(x)] and N to the basepoint. Recall from [Par90,
Section 5] that the boundary map ∂ is defined as in [C79, Section 4]; thus
∂[k] = [f ] = b. We also have q ◦ k = h|Q′ , so s′(b) is represented by h|Q′ as
claimed.

To complete the proof of Lemma 12.1 we observe that h and h|Q′ represent
the same element of (ΩIP)i+1(ΣW, ∗) because the composite

I ×Q p−→ Q
h−→ ΣW

(where p is the projection) is a bordism, in the sense of [C79, Section 4],
between h and h|Q′ .

Appendix A. The intrinsic filtration of a finite-dimensional PL
space

Let X be a PL space. Say that two points x1, x2 ∈ X are equivalent if
there are neighborhoods U1 of x1 and U2 of x2 with a PL homeomorphism
of pairs (U1, x1) ≈ (U2, x2). Let X be finite dimensional. Choose a tri-
angulation of X, and let X(i) be the i-skeleton of this triangulation. The
intrinsic filtration of X is the filtration Xi for which x ∈ Xi if and only if
all points equivalent to x are in X(i). This filtration is independent of the
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chosen triangulation because it is the coarsest PL CS stratification2 of X
([F, Remark 2.97]). We will use the notation Xi throughout this appendix
to denote the intrinsic filtration of X.

Proposition A.1. Let X be a finite-dimensional PL space.
(i) If U is an open subset of X then U i = Xi ∩ U .
(ii) If M is a PL manifold of dimension m then

(X ×M)i =

{
Xi−m ×M m ≤ i ≤ dimX +m,

∅ otherwise.

(iii) If f : X → Y is a PL homeomorphism then f(Xi) = Y i.
(iv) If X is a PL pseudomanifold then the intrinsic filtration on X is a

stratification in the sense of Definition 2.5.

Proof. Part (i) is [F, Lemma 2.107], part (ii) is [F, Lemma 2.108], part (iii)
is immediate from the definition of the intrinsic filtration, and part (iv) is
[F, Proposition 2.104]. �

The following fact is contained in [F, Corollary 2.111 and Proposition
2.110].

Proposition A.2. Let X be a PL ∂-pseudomanifold, and define subsets
X[i] by letting X[i] ∩ (X − ∂X) = (X − ∂X)i and

X[i] ∩ ∂X =

{
(∂X)i−1 1 ≤ i ≤ dimX,

∅ otherwise.

Then the filtration X[i] gives X the structure of a stratified PL ∂-
pseudomanifold. �

Appendix B. Generalizations and variants of some results from
[FM13b]

We begin by showing that the results of [FM13b, Subsections 6.2 and 6.3]
all remain valid with the field F replaced by a PID R. We will use the
notation of those subsections, except that we denote singular chains by S∗
instead of C∗; in particular in this appendix we use I p̄S∗ (instead of ISp̄∗
as in previous sections) for intersection chains. First we have the analog of
[FM13b, Proposition 6.4].

Proposition B.1. (i) If X has a finite covering by evenly covered open
sets (in particular, if X is compact) then I p̄S∗(X̃, Ã;R) is chain homotopy
equivalent over R[π] to a nonnegatively-graded chain complex of free R[π]-
modules.

(ii) For all X, I p̄S∗(X̃, Ã;R) is chain homotopy equivalent over R[π] to
a nonnegatively-graded chain complex of flat R[π]-modules.

2The definition of CS stratification is a weaker version of Definition 2.5.
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Proof of Proposition B.1. The only place in the proof of [FM13b, Proposi-
tion 6.4] where the hypothesis that F is a field is used is in the proof of
Lemma 6.6, where it is asserted that B(V ) is free. But the hypothesis is
not needed there, because Ṽ ≈ V × π and hence B(V ) is isomorphic to the
tensor product of R[π] with the cokernel of

colim I p̄S∗(W ;R)→ I p̄S∗(V ;R),

which by [FM13b, Proposition 6.3] is the cokernel of

I p̄DS∗(V ;R) ↪→ I p̄S∗(V ;R),

(where D is given in the statement of [FM13b, Proposition 6.6], and
I p̄DS∗(V ;R) denotes

∑
W∈D I

p̄S∗(W ;R)), and by Lemma B.6 this cokernel
embeds in the cokernel of∑

W∈D
S∗(W ;R)→ S∗(V ;R),

which is freely generated over R by the simplices that don’t land in any
W . �

Now the proof of [FM13b, Proposition 6.5] goes through without change
to show

Proposition B.2. If X is a ∂-IP space then the cross product

I p̄S∗(X̃, Ã;R)⊗R I q̄S∗(X̃, Ã;R)→ IQp̄,q̄S∗(X̃ × X̃, Ã× X̃ ∪ X̃ × Ã;R)

induces a quasi-isomorphism

R⊗R[π] (I p̄S∗(X̃, Ã;R)⊗R I q̄S∗(X̃, Ã;R))

→ R⊗R[π] I
Qp̄,q̄S∗(X̃ × X̃, Ã× X̃ ∪ X̃ × Ã;R).

Next we have the analogue of [FM13b, Proposition 5.15], except that we
require the perversity to be classical.

Proposition B.3. Let p̄ be a classical perversity. Then I p̄S∗(X̃;R) is quasi-
isomorphic over R[π] to a finite R[π] chain complex.

Proof. It suffices to show that [FM13b, Lemma 6.7] remains valid with F
replaced by R. The only place in the proof of that result where the hy-
pothesis that F is a field is used is in the second paragraph of the proof
of Lemma 6.9, as part of the verification that I p̄S∗(St(s);F ) is homotopy
finite over F , so we need to prove that I p̄S∗(St(s);R) is homotopy finite over
R. Because the perversity is classical, we may assume that St(s) has the
intrinsic filtration (because the intersection chain complexes of St(s) with
the original filtration and with the intrinsic filtration are quasi-isomorphic
by the proof of [F, Theorem 5.50], and since they are free over R they are
chain homotopy equivalent). Since X satisfies conditions (a) and (b) of Def-
inition 2.2, it follows that St(s) also satisfies them. Since St(s) = s ∗ Lk(s),
it follows that Lk(s) is a PL pseudomanifold, and hence that (∂s)∗Lk(s) is a
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PL pseudomanifold. Let us write A for (∂s) ∗Lk(s) and A∗ for the intrinsic
filtration of A. It is shown in the proof of [FM13b, Lemma 6.9] that St(s)
is homeomorphic as a PL space to the open cone c◦A, so it suffices to show
that the intersection chain complex of the latter, with its intrinsic filtration
(c◦A)∗, is homotopy finite over R. Now by Proposition A.1 the restriction
of (c◦A)∗ to A× (0, 1) is the same as the Cartesian product of A∗ with the
trivial filtration on (0, 1), and hence c◦A is stratified homotopy equivalent
to

A′ = ([0,
1
2

]×A)/(0× x ∼ 0× y)

with the filtration inherited from c◦A. A′ is a stratified PL ∂-
pseudomanifold, so by [F, Corollary 5.49] the intersection chain complex
of A′ is quasi-isomorphic (and hence chain homotopy equivalent) to the sim-
plicial intersection chain complex I p̄CT∗ (A′;R) for any suitable triangulation
T . Since A′ is compact, I p̄CT∗ (A′;R) is a finite chain complex, which com-
pletes the proof. �

Now we can apply the method of [FM13b, Section 3] to construct a cap
product

Iq̄H̄
i(X̃;R)⊗ I r̄Hj(X;R)→ I p̄Hj−i(X̃;R)

when X is a ∂-IP-space and Dr̄ ≥ Dp̄ + Dq̄; the only case needed in the
present paper is p̄ = m̄, q̄ = n̄, r̄ = 0̄. As in [FM13b, Section 4], we obtain
a map

D : colim
K

Ip̄H̄
i(X̃, X̃ − K̃;R)→ I q̄Hn−i(X̃;R),

where K runs through the compact subsets of X, and we have

Theorem B.4 (Universal Poincaré duality). Let X be an R-oriented strat-
ified IP-space, let p : X̃ → X be a regular covering of X, and let p̄, q̄ be
complementary perversities. Then D is an isomorphism.

The proof is the same as for [FM13b, Theorem 4.1]. Finally, we have the
analog of Lefschetz duality.

Theorem B.5 (Universal Lefschetz Duality). Let X be an n-dimensional
compact ∂-stratified IP-space with an R-orientation of X−∂X. Let p : X̃ →
X be a regular covering of X, and let p̄, q̄ be complementary perversities.
Then the cap product with ΓX gives isomorphisms

Ip̄H̄
i(X̃, p−1(∂X);F )→ I q̄Hn−i(X̃;F )

and
Ip̄H̄

i(X̃;F )→ I q̄Hn−i(X̃, p−1(∂X);F ).

The proof is the same as for [FM13b, Theorem 4.5]. To complete the
proof of Proposition B.1 it remains to show:



46 MARKUS BANAGL, GERD LAURES, AND JAMES E. MCCLURE

Lemma B.6. Let Z be a filtered space, let U be a finite open cover of Z,
let p̄ be a perversity which is ≤ t̄, and let i ∈ Z. Then the intersection of
I p̄Si(Z;R) with

∑
W∈U Si(W ;R) (considered as subgroups of Si(Z;R)) is∑

W∈U I
p̄Si(W ;R).

Remark B.7. See the beginning of [F, Section 6.2] for the fact that
I p̄Si(Z;R) can be thought of as a subgroup of Si(Z;R) (which is obvious
for classical perversities).

Proof of Lemma B.6. Let U = {W1, . . . ,Wn}; the proof is by induction on
n. Let

ξ ∈ I p̄S∗(Z;R) ∩
∑
W∈U

S∗(W ;R).

Write
ξ =

∑
kmσm,

where km ∈ R and σm is a singular simplex. Let

η =
∑

supp(σm)⊂W1

kmσm.

The construction in the proof of [F07, Proposition 2.9], applied to the or-
dered covering (W1, Z) (but without the preliminary subdivision in line −10
of page 1992), gives a singular chain

θ ∈
n∑
i=2

S∗(W1 ∩Wi;R)

for which η + θ is an element of I p̄S∗(W1;R). Let Z ′ = ∪ni=2Wi and let
U ′ = {W2, . . . ,Wn}. Then ξ − η − θ is an element of

I p̄S∗(Z ′;R) ∩
∑
W∈U ′

S∗(W ;R),

so by the inductive hypothesis

ξ − η − θ ∈
∑
W∈U ′

I p̄S∗(W ;R),

and therefore
ξ ∈

∑
W∈U

I p̄S∗(W ;R)

as required. �

Appendix C. Multiplicativity of the assembly map

This appendix gives the proof of

Proposition C.1. Let F be a homotopy invariant functor from spaces to
spectra, and suppose that there is a natural transformation

µ : F(X) ∧ F(Y )→ F(X × Y ).
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Then the diagram

(X+ ∧ F(∗)) ∧ (Y+ ∧ F(∗))

α∧α
��

µ // (X × Y )+ ∧ F(∗)

α
��

F(X) ∧ F(Y )
µ // F(X × Y )

commutes up to homotopy, where α denotes the assembly map.

Let us recall the definition of the assembly map from [WW95, page 334].
For a space X, let CX (which is denoted simp(X) in [WW95]) be the category
whose objects are maps ∆n → X, and whose morphisms are commutative
triangles

∆m
f∗ //

!!DDDDDDD ∆n

}}{{
{{

{{
{

X

where f∗ is the map induced by a monotone injection3 from {0, . . . ,m} to
{0, . . . , n}. There is a natural equivalence in the homotopy category

λ : X → hocolim
CX

∗

(see below). Let D be the functor from CX to spaces which takes ∆n → X to
∆n. The assembly map is the following composite in the homotopy category
of spectra (where ∧ is the derived smash product)

X+ ∧ F(∗) λ∧1−−→ (hocolim
CX

∗)+ ∧ F(∗) ∼= hocolim
CX

F(∗)

'←− hocolim
CX

F ◦D → F (X).

Our first task is to give an explicit description of λ (this was left as an
exercise for the reader in [WW95]). We need a lemma.

Lemma C.2. The map

hocolim
CX

D → colim
CX

D

is a weak equivalence.

Proof. The category CX is a Reedy category ([H03, Def 15.1.2]) which has fi-
brant constants ([H03, Definition 15.10.1]) by the proof of [H03, Proposition
15.10.4(1)]. The functor D is Reedy cofibrant ([H03, Definition 15.3.3(2)])
and the result follows by [H03, Theorem 19.9.1(1)]. �

3It is not clear why [WW95] does not use all monotone maps in this definition. The
reader can check that using all monotone maps would give the same assembly map, and
would allow us to work with simplicial rather than semisimplicial sets in what follows.
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Now let SX be the semisimplicial set whose n-simplices are the maps
∆n → X. Then λ can be chosen4 to be the composite

X
'←− |SX| = colim

CX
D
'←− hocolim

CX
D
'−→ hocolim

CX
∗.

Our next lemma gives a multiplicative property of λ. Let

d : CX×Y → CX × CY
be the functor which takes f : ∆n → X×Y to the pair (p1 ◦f, p2 ◦f), where
p1 and p2 are the projections.

Lemma C.3. (i) The diagram

X × Y λ×λ //

λ
��

(hocolim
CX

∗)× (hocolim
CY

∗)

hocolim
CX×Y

∗ δ // hocolim
CX×CY

∗

∼=

OO

commutes, where δ is induced by d and the verical arrow is induced by the
projections CX×Y → CX and CX×Y → CY .

(ii) The map δ in part (i) is a weak equivalence.

The proof of part (i) is left to the reader. Part (ii) follows from (i) and
the fact that λ is a weak equivalence.

Next we need some notation. For a space Z let Λ denote the composite

Z+ ∧ F(∗) λ∧1−−→ (hocolim
CZ

∗)+ ∧ F(∗) ∼= hocolim
CZ

F(∗).

Let
δ′ : hocolim

CX×Y
F(∗)→ hocolim

CX×CY
F(∗)

be the map induced by d; this is a weak equivalence by Lemma C.3(ii). Let
E be the functor from CX ×CY to spaces that takes (∆m → X,∆n → Y ) to
∆m ×∆n, and let

δ′′ : hocolim
CX×Y

F ◦D → hocolim
CX×CY

F ◦ E

be the map induced by d and the diagonal maps ∆n → ∆n ×∆n.

4To know that this is a correct choice, one simply has to check that it gives an assembly
map with the properties in [WW95, Theorem 1.1].
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To complete the proof of Proposition C.1, we need only observe that the
following diagram is commutative:

X+ ∧ F(∗) ∧ Y+ ∧ F(∗) //

Λ∧Λ
��

(X × Y )+ ∧ F(∗)

Λ
��

hocolim
CX

F(∗) ∧ hocolim
CY

F(∗) // hocolim
CX×CY

F(∗) hocolim
CX×Y

F(∗)δ′oo

hocolim
CX

F ◦D ∧ hocolim
CY

F ◦D //

'
OO

��

hocolim
CX×CY

F ◦ E

'
OO

((QQQQQQQQQQQQ

hocolim
CX×Y

F ◦Dδ′′oo

'
OO

��
F(X) ∧ F(Y ) // F(X × Y )

Appendix D. Corrections to some signs in [LM13]

All references in this appendix are to [LM13].
In Definition 15.4(i), the i-th face map adk(∆n)→ adk(∆n−1) should be

(−1)i times the composite with the map induced by the i-th coface map
∆n−1 → ∆n. There should also be an analogous sign in Definition 17.2.

In order for Proposition 17.8 to be true, the paragraph that comes after
Lemma 15.7 needs to be replaced by the following.

“Next observe that for each n there is an isomorphism of Z-graded cate-
gories

ν : Cell(∆n+1, ∂0∆n+1 ∪ {0})→ Cell(∂0∆n+1)
which lowers degrees by 1, defined as follows: a simplex σ of ∆n+1 which is
not in ∂0∆n+1 ∪ {0} contains the vertex 0. Let ν take σ (with its canonical
orientation) to the simplex of ∂0∆n spanned by the vertices of σ other than
0 (with its canonical orientation). Let

θ : Cell(∆n+1, ∂0∆n+1 ∪ {0})→ Cell(∆n)

be the composite of η with the isomorphism induced by the face map ∆n →
∂0∆n+1. θ is incidence-compatible, so by part (e) of Definition 3.10 it induces
a bijection

θ∗ : adk(∆n)→ adk+1(∆n+1, ∂0∆n+1 ∪ {0}).′′

This change leads to corresponding changes in Section 16 and Lemma
17.11, which we leave to the interested reader.
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