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Introduction

This work originated from the question:

what is the E∞-structure of the K-local spin bordism theory?

The work determines the structure by giving a multiplicative splitting of the

spin bordism into E∞-cells. The answer to the question leads to a construction

of the Witten orientation for topological modular forms in the K-local E∞-

setting and creates new isomorphisms of Conner-Floyd type. The work consists

of two major parts, one in which the splitting formula is developed and one

which deals with its applications to real K-theory and to local topological

modular forms.

The splitting of the spin bordism. One of the most important results

about spin bordism goes back to Anderson, Brown and Peterson. They showed

that two spin manifolds are spin bordant if and only if all Stiefel-Whitney and

KO-characteristic numbers coincide. Moreover, all spin bordism groups can

be computed from the additive 2-local splitting

MSpin ∼=
∨

n(J)even
1 6∈J

ko 〈4n(J)〉 ∨
∨

n(J)odd
1 6∈J

ko 〈4n(J) + 2〉 ∨
∨
i∈I

ΣdiHZ/2.

Here, J is a finite sequence of non negative integers, n(J) is the sum over all

entries and I is some index set. However, the formula does not capture the

ring structure of the spin bordism. This problem has been around for the

last 30 years because the Eilenberg Mac Lane part is very hard to track in

practice. Fortunately, when we restrict our attention to the part which can be

detected by K-theory this term disappears. More precisely, the localization of

spin bordism with respect to mod 2 K-theory K(1) is a sum of KO-theories.

The generator ζ of the -1st homotopy group of the K(1)-local sphere van-

ishes in KO and so it does in MSpin. These considerations lead to an E∞-map

from the E∞-cone Tζ over ζ to the K(1)-local MSpin. One may hope that

this map already is an isomorphism since the homotopy groups appear to be

7



8 INTRODUCTION

the same. However, when taking into account the Dyer-Lashof operations we

see that in KO-homology we get a free θ-algebra in one generator for Tζ and

one in infinitely many generators for MSpin. When analyzing the action of

the Adams operations and collecting all results we end up in the multiplicative

splitting:

MSpin ∼= Tζ ∧
∞∧
i=1

TS0.

Here, TS0 is the free E∞-spectrum generated by the sphere spectrum. The

proof of this splitting formula takes the major part of the work. The difficulty

is the determination of the θ-algebra structure and a good control of the be-

haviour of the map from Tζ . For that, we need to understand the ABP-splitting

map in KO-homology and to conduct some 2-adic analysis.

Consequences of the splitting formula. As a first immediate corollary

we obtain the θ-algebra structure of the spin bordism itself:

π∗MSpin ∼= π∗KO ⊗ T {f1, f2, . . . }

That is, the homotopy of MSpin is the free θ-algebra over π∗KO in infin-

itely many generators. Moreover, we give an algorithm for constructing the

generating classes.

Dispite this beautiful formula for the θ-algebra structure it turns out that

MSpin can not be made into a KO-algebra even in the K(1)-local world. (The

question if it can be made into an KO-module spectrum in the category of

spectra was asked by Mahowald and answered by Stolz in [Sto94].)

The splitting formula allows a cellular decomposition of KO-theory when

viewed as a relative E∞-CW complex via the Â-map. Moreover, we give a new

proof of the formula

MSpin∗X ⊗MSpin∗ KO∗
∼= KO∗X

which was obtained by Hovey and Hopkins in [HH92]. It is not hard to see

that the difficulties in proving this Conner-Floyd isomorphism appear in the

K(1)-local setting. Thus the splitting formula can be applied and promptly

furnishes the result.

Finally, the splitting is applied to topological modular forms. To motivate

the results we first recall some facts about elliptic cohomology theories. For a
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more detailed treatment the reader is referred to the overview articles of Segal

[Seg88] and Hopkins [Hop95].

A brief review of elliptic cohomology theories. In his analysis of the

Dirac operator on loop spaces [Wit88] Witten introduced a bordism invariant

for spin manifolds whose Pontryagin class p1/2 vanishes. This so called Witten

genus associates to each O 〈8〉-manifold an integral modular form. One may

hope that the theory allows a generalization to families of O 〈8〉-manifolds.

From the topological point of view, this means that there is a multiplicative

transformation of generalized cohomology theories from the bordism theory

MO 〈8〉 to some new cohomology theory E. For spin bordism KO-theory

plays the role of a family index theory via the Â-genus. Hence the theory E

can be thought of as a higher version of KO-theory.

There are several candidates for such a theory E. The first was introduced

by Landweber, Ravenel and Stong in [LRS95]. It has coefficients in the ring

of modular forms of level 2 over Z[1/2]. For this and other elliptic theories

in which 2 is invertible the Witten orientation was first constructed by the

author in [Lau99]. The difficulty appears at the prime 2 since MO 〈8〉 is not

well understood yet.

There are elliptic cohomology theories for which 2 is not a unit (see [Fra92]

et al.) These theories E share the property that they are complex orientable

and the associated formal group comes from the formal completion of an ellip-

tic curve. The homotopy inverse limit of all these so called elliptic spectra is

denoted by tmf since its coefficients allow an interpretation in terms of topo-

logical modular forms. This new theory tmf is not complex oriented but it

maps to any elliptic spectrum in a canonical way. Hence, an O 〈8〉 orientation

of tmf furnishes the desired orientation of any other elliptic spectrum.

The applications to topological modular forms. In [HAS99] Hop-

kins, Ando and Strickland show that the construction of a Witten orientation

can be reduced to finding one for theK(1) andK(2) localizations of tmf . Here,

the theory K(n) is the nth Morava K-theory at the prime 2. In [Hop98b]

Hopkins shows that tmf can be obtained from Tζ by attaching one more E∞-

cell. In particular, there is an E∞-map from Tζ to tmf . It thus suffices to

relate the cone Tζ to the bordism theory MO 〈8〉. Since in the K(1)-local

category MO 〈8〉 coincides with MSpin this is done by the splitting formula.



10 INTRODUCTION

During the time when this work had been finished Hopkins found another

approach to the Witten orientation which even works in the unlocalized setting.

However, a splitting formula for the unlocalized O 〈8〉-bordism seems to be out

of reach from the today’s point of view.

We use our splitting formula to explicitly list the E∞-cells which are needed

to obtain tmf from MO 〈8〉: loosely speaking, the cells kill the free part of

MO 〈8〉 and turn the Adams operation ψ into the Atkin-Lehner operator for

trivialized elliptic curves. Furthermore, we are able to establish the Conner-

Floyd isomorphism

MO 〈8〉∗X ⊗MO〈8〉∗ tmf∗
∼= tmf∗X

in the K(1)-local category. In the last chapter deeper results on the structure

of tmf are necessary which we reproduce from the work of Hopkins [Hop98b].

How this work is organized. In the first chapter we supply the technical

framework for the splitting formula. We recall the basic properties of the K(1)-

local category and then turn to E∞-spectra. We take the classical point of view

and work with operads. However, all constructions can be made in the brave

new world of [EKMM97] or in the category of symmetric spectra of Smith

[HSS00] as well. As a consequence calculations become more manageable.

However, the invariance of the E∞-structure under localization is not available

in the literature and we felt to provide a proof here.

In the second chapter we review Dyer-Lashof operations in K-theory. The

θ-algebra structure of TS0 was first computed by McClure by using Dyer-

Lashof operations in singular homology. We give a new proof of his result by

looking at the representations of the symmetric groups and using results of

Hodgkin and Atiyah.

In the third chapter we construct the map from the cone Tζ to MSpin and

look at his behaviour in KO-homology. For that, we give explicit generators

for the homology rings. Then we use Bott’s canabalistic classes to compute

the image of the generators under the ABP-splitting map.

The fourth chapter is devoted to the computation of the θ-algebra structure

of various bordism theories. Partial results were obtained earlier by Snaith in

[HS75] by looking at representations of the symmetric groups. Unfortuately,

all calculations of Snaith were made in characteristic 2 and hence are not of any

use for us. Moreover, it seemed to be difficult to generalize his long calculations



INTRODUCTION 11

to higher orders of 2. Hence, we take a different approach and look at tom

Dieck operations instead. A fixed point formula of Quillen and a ‘change of

suspension formula’ help to compute the action of θ for the spin bordism.

In the fifth chapter we compute the action of the Adams operations to

decribe spherical classes. The splitting theorem is then a consequence of earlier

results and some 2-adic analysis.

In the last two chapter the promised applications are given.

Acknowledgements. The author would like to thank Mike Hopkins for

posing the question at the Oberwolfach Homotopietagung 1998 and for shar-

ing the notes [Hop98b] that freely. He is indebted to Matthias Kreck and

Haynes Miller for their encouragement and for interesting discussions. He is

also grateful to Matthew Ando, Alexander Schmidt, Pete Bousfield and Peter

May for their help in getting various points straight.
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CHAPTER 1

E∞-spectra and localizations

This chapter reviews the basics of the category of E∞-spectra and their

properties under localization. We will work in the category of May, Puppe et

al. which is described in [LMS86] or [Lau93]. We use operads to describe

E∞-structures. This classical approach to E∞-spectra has the advantage that

every object is fibrant which keeps calculations easy to survey.

1. The category of spectra

In this work a topological space is a compactly generated weak Hausdorff

space. We write T for the category of topological spaces and T∗ for its based

pendant. To talk about the category of spectra we first fix a real inner product

space U of countable dimension, a so called universe. A prespectrum X is a

collection of pointed spaces XV indexed by the finite dimensional subspaces

V ⊂ U equipped with maps

σW,V : SW−V ∧XV −→ XW

for all V ⊂ W . Here, the space W − V is the orthogonal complement of V in

W and SW−V denotes its one-point compactification. One requires that σV,V is

the identity and that the associativity condition (1 ∧ σV,U)σW,V = σW,U holds

whenever U ⊂ V ⊂ W . A spectrum is a prespectrum with the additional

property that the adjoint maps

τW,V : XV −→ ΩW−VXW

are homeomorphisms. A map of (pre-) spectra f : X −→ Y is a collection of

maps fU : XU −→ YU commuting with the structure maps.

A construction of Lewis shows that the forgetful functor from the category

of spectra SU to prespectra admits a left adjoint L, called the spectification.

The spectification is easy to visualize in case that each σW,V is a closed inclu-

sion:

LX = (V 7→ colim
W⊃V

ΩW−VXW ).

13



14 1. E∞-SPECTRA AND LOCALIZATIONS

The morphism set SU(X, Y ) has a natural topology as subspace of the product

of mapping spaces T (XV , YV ). Moreover, for each pointed space Q we may

form the spectrum

XQ : V 7→ T∗(Q,XV )

and its adjoint

X ∧Q = L(V 7→ XV ∧Q).

These constructions are natural with respect to all variables and we have the

relationship

T∗(Q,SU(X, Y )) ∼= SU(X ∧Q, Y ) ∼= SU(X, Y Q).

The category SU becomes a closed model category if we define the fibrations

and weak equivalences spacewise. That is, a map f from X to Y is a fibration

(or w.e.) if for for all V the maps fV : XV −→ YV are so. The resulting

homotopy category is equivalent to the stable category of Adams for any infinte

dimensional U .

This coordinate free approach to spectra enables us to change universes in

a continuous way. Suppose U and V are universes and let L(U ,V) denote the

(contractible) space of linear isometries from U to V . Any f ∈ L(U ,V) defines

an adjoint pair of functors:

f∗X = L(W 7→ SW−f(U) ∧XU) f ∗X : V 7→ XfV

with U = f−1W . Since the functors continuously depend on the isometry f this

construction can be generalized as follows. A map from a space A to L(U ,V)

gives rise to a functor Ao : SU −→ SV and its adjoint F [A, ) : SV −→ SU .

The construction is natural in A and reduces to the above if A is a point.

Moreover, the half smash product has the following properties:

(i) the identity map idU ∈ L(U ,U) serves as a unit

id∗X = {idU}oX ∼= X

(ii) for any X ∈ SU and for any A −→ L(U ,V), B −→ L(V ,W) the map

B × A −→ L(V ,W)× L(U ,V) −→ L(U ,W)

satisfies

(B × A)oX ∼= B o (AoX).
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(iii) for any X ∈ SU , Y ∈ SV and for any A −→ L(U ,U ′), B −→ L(V ,V ′)
the map

A×B −→ L(U ,U ′)× L(V ,V ′) −→ L(U ⊕ V ,U ′ ⊕ V ′)

satisfies

(A×B)o (X ∧ Y ) ∼= (AoX) ∧ (B o Y ).

Elmendorf took all spectra over all universes together into a big category S.

A morphism from a spectrum X over U into a Y over V is given by a pair, an

isometry f : U −→ V and a map of spectra from f∗X to Y . It is convenient

to topologize S(X, Y ) in a way that we have

T /L(U ,V)(A,S(X, Y )) ∼= SV(Ao Y ).

Here, T /L(U ,V) denotes the category of spaces over L(U ,V).

These constructions are useful once it comes to smash products. If X is

indexed over U and Y over V then the spectification of the (partial) prespec-

trum

U × V 7→ XU ∧ YV

is indexed over U×V . This product is associative and symmetric up to coherent

equivalences and turns S into a symmetric monoidal category with unit I =

(S0, 0). To get an internal product in SU we can choose an isometry f :

U × U −→ U and take the pushforward f∗(X ∧ Y ). A more canonical object

is the spectrum

L(U × U ,U)o (X ∧ Y ).

However, it still is only associative up to coherent equivalences in the homotopy

category. To talk about ‘ring-like’ objects in SU we need to introduce the

concept of an operad.

2. Operads and E∞-spectra

An operad in a symmetric monoidal category M = (M, I,⊗) is a family

of objects T0, T1, . . . ∈M together with right Σn-actions on each Tn and Σn×
Σi1 × . . .Σin-equivariant structure maps

Tn ⊗ Ti1 ⊗ . . .⊗ Tin −→ Ti1+i2+...+in .
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These maps should satisfy certain associativity axioms. A pointed operad is an

operad together with a map I −→ T1 which behaves like a unit when composed

with structure maps.

Instead of dealing with the details here we give the most important class

of examples of pointed operads: the endomorphism operad End(X) for each

object X in M. Its n’th object is the morphism set M(X⊗n, X) and the

structure maps are given by compositions

fn ⊗ fi1 ⊗ · · · ⊗ fin 7→ fn(fi1 ⊗ · · · ⊗ fin).

IfM is enriched overM′ we obtain an operad inM′. For instance, the linear

isometry operad L = End(U) is an operad of spaces and so is End(X) for any

spectrum X indexed over U . Moreover, the canonical projection

p : End(X) −→ L

is a map of pointed operads, meaning a collection of maps which is compatible

with all structure maps. It associates to a map of spectra f : X(n) −→ X the

underlying isometry p(f) : U (n) −→ U .

An operad T over L is called an E∞-operad if each of the spaces is con-

tractible and the symmetric groups act in a free fashion. This way, the operad

L becomes an E∞ operad itself. An E∞-ring spectrum is a spectrum X to-

gether with a map T −→ End(X) of pointed operads over L.

There is another way to decribe the action of T on X which will proof

useful later. Let G be a group which acts on U and X be a G-spectrum. Then

for any G-equivariant map A −→ L(U ,V) let A oG X be the coequalizer of

the two maps

(A×G)oX
µ×1−→ AoX and (A×G)oX ∼= Ao (GoX)

1oµ−→ AoX.

The spectrum

TX =
∨
n≥0

Tn oΣn X
(n)

is the free E∞-algebra generated by X over the operad T . This way, T becomes

an endofunctor of SU . More precisely, T is a triple (or a ‘monad’) since it comes

with a unit η : id −→ T and a natural transformation µ : T 2 −→ T . The latter

is built from the structure maps data of the operad T . An algebra over T is a



2. OPERADS AND E∞-SPECTRA 17

spectrum X together with a morphism ξ : TX −→ X making the diagrams

T 2X
Tξ

//

µX
��

TX

ξ
��

TX
ξ

// X

X
ηX //

= !!DDDDDDDD TX

ξ
��
X

commute. An E∞-map between E∞-spectra is a map of spectra which com-

mutes with the action of T . Later we will also use the notion of an H∞-

spectrum which is defined in the same way but the diagrams need only to

commute up to homotopy.

Examples 2.1. (i) The sphere spectrum is an E∞-spectrum since it is

the free object T (∗) generated by a point.

(ii) Let G be one of the classical groups O,SO, P in, Spin or one of their

complex analogues U, SU, Spinc or Sp ect. Then the geometric bar con-

struction [May77] gives simplicial toplogical spaces B∗(GV, SV ) and

B∗(GV ) for each V ⊂ U . Their geometric realizations BGV (B(GV, SV )

resp.) allow multiplication maps

µ : BGV ×BGW −→ B(GV ×GW ) −→ BG(V ⊕W )

which are commutative and associative on the nose. The spectification

of

Th : V 7→ B(GV, SV )/BGV

is called the Thom spectrum MG. For f ∈ Ln and for subspaces

V1, V2, . . . , Vn define the structure maps

Th(V1) ∧ . . . ∧ Th(Vn)
Thµ−→ Th(V1 ⊕ . . .⊕ Vn)

Th(f)−→ Th(f(V1 ⊕ . . .⊕ Vn))

and spectify to obtain an E∞-structure on MG.

(iii) Other examples are less elementary. An investigation of the infinite loop

spaces shows that connective real and complex K-theory ko and k are

represented by E∞-ring spaces and hence are E∞-ring spectra. More-

over, the stable Adams operations ψr act as E∞-maps after completion.

Recently it was proved that the periodic theories KO and K are com-

mutative S-algebras in [EKMM97] and symmetric spectra in [Joa01].

Since we work in a different category we will go through an argument

below.
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We write STU for the category of E∞-spectra. The free functor T is left

adjoint to the forgetful functor U : STU −→ SU . Hence, inverse limits in STU are

inherited from SU . Colimits are more difficult. It can be shown that for any

diagram (Xα) of T -algebras the ordinary coequalizer of

T (colimUTXα)
d0 //

d1

// T (colimUXα)

admits a T -algebra structure which satisfies the universal property of a colimit

in STU . Here, d0 is induced by the T -algebra structure on each Xα whereas d1

comes from the natural transformation µ. The argument uses the fact that UT

preserves reflexive coequalizers which can be checked spacewise. Alternatively,

the existence of colimits follows from a general fact about categories of algebras

over a triple (compare [BW85]).

The E∞-category STU admits a closed model category structure with the

following data: a map is fibration (resp. weak equivalence) if and only if Uf is

one.

Finally, note that for E∞-spectra E and F the product E ∧ F ∈ SU×U is

an E∞-spectrum in the following way: E ∧ F is an algebra over the product

E∞-operad T × T via

(Ln × Ln)oΣn (E ∧ F )n ∼= (Ln o En ∧ Ln o F n)/Σn

−→ Ln oΣn E
n ∧ Ln oΣn F

n −→ E ∧ F.

3. The Bousfield localization with respect to K(1)

The concept of localization comes up in various branches of mathematics

as an instrument of simplification. It can be applied to problems which itself

are local in nature. For example, an abelian group G may be localized at a

prime p if one is only interested in the p-torsion of G. Also, sometimes it

happens that a non local problem can be localized in different ways and the

local solutions lead to a global solution of the original problem. In this section

we consider the localization with respect to some homology theory E. It is

devoted to attack problems in stable homotopy which can be solved by means

of the theory E.

A map f : X −→ Y is called an E-equivalence if the induced map f∗ in

E-homology is an isomorphism. Since E does not distinguish between honest
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isomorphisms and E-equivalences it is useful to have a category in which E-

equivalences are invertible and no other information is lost. The existence of

this E-local category was proved by Bousfield in [Bou79]. He even showed

that it can be realized as a full subcategory of the stable category HoSU .

In detail, a spectrum Z is E-local if each E-equivalence f induces a bijection

in cohomology f ∗ : Z∗Y −→ Z∗X. The inclusion functor of the full subcat-

egory C of E-local objects in HoSU admits a left adjoint LE : HoSU −→ C,
called the Bousefield localization functor. Hence, the unit of the adjunction

η : X −→ LEX is an E-equivalence and associates an E-local spectrum to any

spectrum X.

The Bousfield localization has the following elementary properties:

(i) LE takes E-equivalences to isomorphisms.

(ii) LE is idempotent: LE LE ∼= LE.

(iii) LE preserves homotopy inverse limits.

(iv) LE preserves cofibre sequences.

(v) If E is a ring spectrum and X is a module spectrum over E then X is

E-local: X ∼= LEX.

We want to take E to be the first Morava K-theory. At the prime 2 the theory

K(1) coincides with mod 2 K-theory KZ/2 = K ∧ SZ/2 for the following

reason: the 2-typicalization of the multiplicative formal group law Ĝm is the

Honda formal group as the 2-series are the same. Hence, the localization with

respect to K(1) can be obtained as a process in two stages:

LK(1)
∼= LSZ/2LK(2)

.

Note that for the localization it makes no difference to work with complex or

real K-theory ([Mei79]). The latter was investigated by Adams, Baird and

Ravenel. They showed that the KO-local sphere is closely related to the image

of J spectrum: Let J(2) be the fibre of

ψ3 − 1 : KOZ(2) −→ KOZ(2).

Here, ψ3 is the third stable Adams operation. Then there is a fibration of the

form

LKOZ(2)
S −→ J(2) −→ Σ−1SQ.

The rational part vanishes once we localize with respect to the Moore spec-

trum SZ/2: for any X the localization LSZ/2X is the function spectrum
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F (Σ−1SZ/2∞, X). One should think of the localization with respect to SZ/2

as a completion since there is an exact sequence [Bou79]

0 −→ Ext(Z/2∞, π∗X) −→ π∗LSZ/2X −→ Hom(Z/2∞, π∗−1X) −→ 0.

Summarizing, we see that the K(1)-local sphere coincides with the completed

image of J-spectrum LSZ/2J(2). Moreover, we get the fibration

LK(1)S −→ LK(1)KO
ψ3−1−→ LK(1)KO.

which enables us to calculate the homotpoy groups of the K(1)-local sphere. In

addition, it turns out that KO(2)-theory is smashing. This means that for any

X the spectrum LKO(2)
S ∧ X is a KO(2)-localization of X. Hence, smashing

the sequence above with X gives the fibre sequence

X −→ KO ∧X ψ3−1−→ KO ∧X

in the K(1)-local category.

4. E∞-structures on localizations

We now show that the localization functor with respect to an arbitrary

theory E can be chosen to preserve E∞-structures. For the category of S-

modules this fact can be found in [EKMM97]. Since for the category SU it

is not available in the literature we sketch a proof here.

To make the statement plausible let E be a spectrum. Then one usually

constructs LE as follows: Let {iα : Xα −→ Yα} be the set of stable CW-

inclusions such that each iα is an E∗-equivalence and the number of cells of Yα

is smaller or equal to the number c of elements in the coefficients of E. Then

the first approximation of LE is the pushout

∨
α

∨
f :Xα→X Xα

(f)
//

(iα)
��

X

��∨
α

∨
f :Xα→X Yα

// L1
EX

If L1
E is applied often enough we set LEX = (L1

E)tX. More precisely, we

have to take colimits when passing through limit ordinals and let t be the first

cardinality greater than c.
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Now if X is an E∞-ring spectrum we simply replace the maps iα by the

free E∞-maps Tiα and take all colimits in the E∞-category. In order to see

that this strategy works we need the

Lemma 4.1. (i) T preserves E∗-equivalences.

(ii) T preserves h-cofibrantly generated maps between h-cofibrantly generated

spectra.

The second statement means the following: given a map g : A −→ B of

prespectra with the property that each of the maps gU and each of the structure

maps of the prespectra A and B are h-cofibrations. Then the application of

T to the spectification of g is generated by a map of prespectra with the

same properties. An h-cofibration is a map which has the homotopy extension

property up to homotopy for all spaces.

Sketch of a proof. We may assume that T is the linear isometry op-

erad. For (i) let f : X −→ Y be an E∗-equivalence. Then clearly Ln o f∧n

is so. Moreover, the projection onto the second factor EΣn × Ln −→ Ln is a

Σn-equivariant homotopy equivalence. Hence, we have natural equivalences

Ln oΣn X
∧n ∼= (EΣn × Ln)oΣn X

∧n ∼= EΣn+ ∧Σn (Ln oX∧n)

The Lerray-Serre spectral sequence applied to the right (relative) bundle over

BΣn shows that Tnf = Ln oΣn f
∧n is an E∗-equivalence.

For (ii) observe that a map f : X −→ Y is a h-cofibration iff the projection

p from the mapping cylinder Mf to Y is a homotopy equivalence under X

[tDKP70]. Hence we see that Tnp : TnMg −→ TnB is a homotopy equivalence

under TnA. We are left to show that

TnMg = colim(Tn(A ∧ I+)←− TnA −→ TnB)

is homotopy equivalent under TnA to

MTng = colim(TnA ∧ I+ ←− TnA −→ TnB)

This is provided by the maps

TnA ∧ I+
∼= Tn(A ∧ I+)

(f, x1, . . . , xn, t) → (f, x1, t, . . . , xn, t)

(f, x1, . . . , t1 · · · tn) ← (f, x1, t1, . . . , xn, tn)

which are homotopy inverse to each other under TnA ∧ {0}+.
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Let D be the above diagram with Tiα instead of iα. Then each of the maps Tiα

is h-cofibrantly generated and an E∗-equivalence. Hence the usual pushout in

SU is a homotopy pushout. Thus the new localization map

η : X −→ L1
EX
∼= colim

STU
D

is an E∗-equivalence as it is a direct summand of

TX −→ T colim
SU

D = colim
SUT

TD.

The latter is an E∗-equivalence by the lemma and excision. Similarly, pass-

ing through limit ordinals will preserve E∗-equivalences since it does so after

appying T .

We are left to show that LEX is E∗-local. Let us be given an extension

problem

Y
g

//

f
��

Z

|z
z

z
z

LEX

in which g bs an E∗-equivalence. Without loss of generality we may assume

g is a CW-inclusion of a subcomplex Y in a CW-spectrum Z. Consider first

the case that the number of cells of Z is not greater than c. Then one verifies

that f already maps to LsEX for some s < t. Moreover, Tg is part of the

glueing maps for Ls+1
E X. Hence there is an obvous extension. For the general

case one decomposes the map g into smaller pieces and uses Zorns lemma as

in [Bou79] to get the desired result.

The construction actually shows a bit more: if a map g : Y −→ Z is an

E∞-map between E∞-ring spectra then clearly LEg is so.

Example 4.2. In order to show that KO is an E∞-spectrum in the K(1)-

local category we merely observe that the map

ko −→ ko[β−1] = KO

is a K(1)-equivalence (compare 3.1.3) and the completed KO is K(1)-local.

Here β ∈ π8ko is the Bott class. Furthermore, the stable Adams operations

act on KO by E∞-maps. A similar result holds for the complex K-theory.



CHAPTER 2

θ-Algebras

This chapter is devoted to the algebraic objects which come up as the

homotopy of K(1)-local E∞-ring spectra. A θ-algebra is an algebra together

with a single operation θ. The classical theory of such θ-algebras goes back

to Grothendieck and Atiyah who investigated the exterior power operations in

the representation theory and in K-cohomology rings. These power operations

were later generalized by McClure and Hopkins to Dyer-Lashof operations

for arbitrary K(1)-local E∞-spectra. Their general properties were recently

studied by Bousefield in [Bou99][Bou96b][Bou96a] from an axiomatic point

of view.

We first review Atiyah’s and Hodgkin’s work on power operations. Then

we give a new proof of McClure’s result on the structure of TS0. Finally, we

turn to the spectrum Tζ and work out the computations of Hopkins. There

is hardly any new result in this chapter. However, the new treatments and

proofs provide a convenient framework for things to come.

We work in the category C of K(1)-local spectra and omit the localization

functor from the notation.

1. The K-homology ring of TS0

Since Atiyah’s work on power operations we know that there is a close

relationship between operations in K-theory and the K-homology ring of

TS0 '
∞∨
n=0

BΣn+.

The latter can be computed.

Theorem 1.1. There is an isomorphism of rings

π∗K ∧ TS0 ∼= π∗K[θ1, θ2, θ4, . . . ]

The ring of the right hand side is to be understood as object in the category

of 2-complete π∗K-algebras. For instance, the power series
∑

n θ2n2n is a valid

23
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class. The proof of the theorem uses the following result of Hodgkin which can

be found in [Hod72]:

Proposition 1.2. Let RΣn be the represenation ring and IΣn the aug-

mentation ideal. Equip RΣn ⊂ RΣ∧n with the IΣn-adic topology. Then we

have

π∗KZ/2
r ∧BΣn+

∼= Homcts(RΣn, π∗KZ/2
r)

π∗KZ/2
r ∧ TS0 ∼= π∗KZ/2

r[θ1, θ2, θ4, . . . ].

Here, Homcts denotes the group of continuous homomorphisms.

Hence, the theorem follows from the

Lemma 1.3.

π∗K ∧BΣn+
∼= lim

r
π∗KZ/2

r ∧BΣn+
∼= Homcts(RΣn, π∗K)

π∗K ∧ TS0 ∼= lim
r
π∗KZ/2

r ∧ TS0

Proof. For any spectrum X the K(1)-local K ∧X can be written as the

homotopy inverse limit of the sequence

KZ/2 ∧X ←− KZ/4 ∧X ←− KZ/8 ∧X ←− . . .

Hence, there is a short exact sequence

0→ lim
r

1π∗+1KZ/2
r ∧X → π∗K ∧X → lim

r
π∗KZ/2

r ∧X → 0

and it suffices to show that the lim1-term vanishes. This is obvious for the

case X = TS0 from Hodgkin’s result and follows for the classifying spaces

since they are direct summands of TS0.

We are going to describe the elements θk in more detail. The class θ1 comes

from the unit of the operad T

S0 ' T1S
0 −→ TS0 ' S0 ∧ TS0 −→ K ∧ TS0.

For the others we consider the dual representation ring Hom(RΣn,Z2) of all

homomorphisms. It admits an interpretation as the group of elements of degree

n in the ring of symmetric polynomials in indeterminants ti of degree 1: let

∆k,n ∈ Z2[t1, t2, . . . , tk]
Σk
n ⊗RΣn
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be the function

∆k,n(t1, t2, . . . , tk, g) = Trace(gT⊗n).

In this notation we regard RΣn as the character ring and g lies in Σn. The

letter T denotes here the diagonal matrix (t1, t2, . . . , tk) acting on Ck. Atiyah

showed that the map

∆ :
∑
n≥0

Hom(RΣn,Z2) −→
∑
n≥0

lim
k

[t1, t2, . . . , tk]
Σk
n

given by
∑
fn 7→

∑
(1⊗ fn)∆k,n is a ring isomorphism.

Example 1.4. Σ2 admits two irreducible representations: the trivial 1 and

the sign representation σ. One readily verifies

∆k,2 = e2 ⊗ σ + (e2
1 − e2)⊗ 1

for all k ≥ 2. Here, the ei’s denote the elementary symmetric functions. The

augmentation ideal of RΣ2 = Z[σ]/σ2 − 1 is generated by 1 − σ. We claim

that all homomorphisms are continuous. Obviously e2
1 is so. Hence it suffices

to check e2:

e2(1− σ)n = −
∑
k odd

(
n

k

)
= −2n−1

In these terms, we can inductively define the θi’s by declaring the powers

sums σ2k =
∑
t2
k

i to be the k-th Witt polynomial in the θi’s

σ2k = θ2k

1 + . . .+ 2kθ2k

or, equivalently,
∞∏
i=0

(1− tix) =
∞∏
i=0

(1− θnxn).

Atiyah explained how such an element θk leads to an operation

θk : KX
()⊗n−→ KΣnX

∼= KX ⊗ RepΣn
1⊗θk−→ KX

For instance, the power sums σk give rise to the Adams operation ψk. Hence,

the formula for θ2 may be interpreted as

ψ2(x) = x2 + 2θ2(x)

for all x ∈ KX. This was the first topological example of what is called a

θ-algebra. Later McClure [BMMS86] has shown how the θi come up by an

operation of Dyer-Lashof type.
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2. The category of θ-algebras

We now turn to the algebraic picture and work in the category of 2-complete

groups.

Definition 2.1. A θ-algebra is a commutative algebra A over a ring R

with unit together with a function θ : A −→ A such that

θ(1) = 0

θ(a+ b) = θ(a) + θ(b)− a b

θ(a b) = θ(a)b2 + a2 θ(b) + 2θ(a)θ(b).

For a θ-algebra A we define the operation ψ : A −→ A by the equation

ψ(x) = x2 + 2θ(x). One easily checks the

Proposition 2.2. ψ is a ring homomorphism and commutes with θ.

Examples 2.3. (i) Z2 is a θ-algebra via

θ(x) =
x− x2

2
and ψ(x) = x.

Similarly, the ring C = T (Z2,Z2) of continuous functions on the 2-adics

is a θ-algebra with ψ(f) = f .

(ii) There is not any θ-algebra of characteristic 2: when setting (a, b) = (1, 1)

(and (1, 0) resp.) in the addition formula we see that 1 equals 0 for any

of such.

(iii) For any space X the ring KX is a θ-algebra via the operation θ2 as

explained before. The properties of θ immediately follow from the nat-

urality and the fact that the Adams operation ψ2 = ψ is a ring homo-

morphism. We will see more examples from topology below.

The following observation carries the name Wilkerson criterion [Bou96a]:

Proposition 2.4. Let A be torsion free and ψ an algebra endomorphism

of A with the property that ψ(a) = a2 mod 2. Then A has a unique θ-algebra

structure with ψx = x2 + 2θx for all x ∈ A.

The forgetful functor from θ-algebras F to complete p-modules admits a

left adjoint T : if M is free on one generator x we define

TM = R[x, x1, x2, . . . ]
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and set θ(xi) = xi+1, θ(x) = x1. This algebra will be denoted by R⊗ T{x} in

the sequel. If M is free on generators {xi}i∈I we set

TM = R⊗
⊗
i∈I

T{xi} ∼= R⊗ T{xi}i∈I .

For the general case we first observe that F has coequalizers and tensor prod-

ucts and thus colimites: if f, g : A −→ B are θ-maps, then the ideal generated

by the set

{f(a)− g(a) ; a ∈ A}

is closed under the operation of θ:

θ(f(a)− g(a)) = (f(θa)− g(θa)) + (f(a)− g(a))g(a).

Hence, the quotient ring is a coequalizer in F . Tensor products of θ-algebras

are obtained by choosing free representations and taking cokernels successively.

Similarly, the free functor T of a general module M is obtained by presenting

M as the cokernel of a map of free modules.

The free algebra T{x} has another basis which is constructed as follows.

In each θ-algebra A there is family of natural operations θn which satisfies

ψna = (θ0a)2n + 2(θ1a)2n−1

+ · · ·+ 2nθna

Here, ψn is the iteration of ψ. These operations can be inductively defined by

the equations (compare [Bou96a])

θna = θ∼n(θ0a) + θ∼n−1(θ1a) + · · ·+ θ∼1(θn−1a).

θ∼na =
2n−1∑
i=1

(−1)i+12i−n
(

2n−1

i

)
(ψa)2n−1−i(θa)i.

For instance, for our θ-ring KX the classes θn coincide with Hodgkin’s opera-

tions θ2n considered earlier.

Lemma 2.5. θ(θk) = θk+1 + ε with a polynomial ε depending only on

θ0, θ1, . . . , θk. In particular, we have

T{θ} ∼= Z2[θ0, θ1, θ2, . . . ]

Proof. Compute

k+1∑
i=0

2iθ2k+1−i

i = ψ(
k∑
i=0

2iθ2k−i

i ) =
k∑
i=0

2i(ψθi)
2k−i =

k∑
i=0

2i(θ2
i + 2θ(θi))

2k−i
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3. Dyer-Lashof Operations for K(1)-local E∞-spectra

We have seen that the ring π0K∧TS0 carries a free θ-algebra structure in a

generator θ1 by interpreting the elements as operations in K-theory. There is a

more intrinsic description of the θ-algebra structure which works for arbitrary

K(1)-local E∞-spectra E.

An E∞-structure ξ on E determines a power operation

P : E0X −→ E0TnX

by setting

P (x) : TnX −→ TX
Tx−→ TE

Tξ−→ E

for each x ∈ E0X. For X = S0 and n = 2 this gives a map P (x) : BΣ2+ −→ E

for each x ∈ π0E. The classifying space BΣ2+ reduces to two copies of S0 in

the K(1)-local world. To see this, consider the map

(ε, T r) : BΣ2+ −→ pt+ ∨ (EΣ2)+
∼= S0 ∨ S0

which consists of the constant map ε = const+ and the transfer Tr. It is

a weak equivalence in C: the transfer of a one dimensional trivial bundle is

the bundle corresponding to the representation in which Σ2 acts on C2 by

permuting coordinates. Since this bundle comes from 1 + σ we obtain the

isomorphism

(1 ∧ ε, 1 ∧ Tr)∗ : π0K ∧BΣ2+
∼= Z2σ2 ⊕ Z2e2

1−→ Z2 ⊕ Z2.

as one easily checks.

We follow the lines of [Hop98b] and define maps

θ, ψ : S0 −→ BΣ2+

by requiring (
Tr

ε

)(
θ ψ

)
=

(
−1 0

0 1

)
.

For e : S0 ∼= Be+ −→ BΣ2+ we have εe = 1, Tr e = 2 and thus

e = ψ − 2θ.

With θ(x) = P (x) θ and ψ(x) = P (x)ψ the last equation gives

ψ(x)− 2θ(x) = P (x) e = x2
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which is Atiyah’s equation. This also justifies the sign in the definition of θ.

It is needless to mention that θ is natural with respect to E∞-maps.

Proposition 3.1. The operation θ turns π0E into a θ-algebra.

Proof. First assume that π0E is torsion free. Then it suffices to check

that ψ is a ring homomorphism. Recall from [BMMS86] the formulae

P (x+ y) = Px+ Py + Tr∗(x y)

P (x y) = PxPy.

Thus we must show that ψ induces a ring map in E-cohomology. That is, the

stable map ψ should commute with the diagonal map

∆+ψ = (ψ ∧ ψ)∆+ ∈ π0BΣ2+ ∧BΣ2+.

Since ε commutes with ∆+ we have

(ε ∧ ε)∆+ψ = ∆+εψ = ∆+ = (ε ∧ ε)(ψ ∧ ψ)∆+.

Moreover, the map f = (Tr ∧ Tr)∆+ψ is null: in K-theory we have

f ∗1 = ψ∗(Tr(1)2) = ψ∗((1 + σ)2) = ψ∗(2(1 + σ)) = 2ψ∗Tr(1) = 0.

Also the composite ∆+Tr ψ vanishes for trivial reasons. Since (ε, T r) is a

K(1)-equivalence and E is local we have established the commutativity of ψ

and ∆+. This finishes the proof for the torsion free case.

For general E let x, y be classes in π0E. Consider the E∞-map

T (x, y) : T (S0 ∨ S0) −→ E.

In order to establish the addition and multiplication laws it suffices to show

that π0T (S0∨S0) is torsion free. There are many ways to see that the Hurewicz

map

π0T (S0 ∨ S0) −→ π0K ∧ T (S0 ∨ S0) ∼= π0K ⊗ T{x, y}

is injective. For instance, the computation in the Adams-Novikov spectral

sequence based on K at the end of this section gives an argument.

With 2.3 we have

Corollary 3.2. Any K(1)-local E∞- spectrum with coefficients in a F2-

algebra is trivial.
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Example 3.3. For a pointed space X consider the function spectrum KX .

Since it is an E∞-ring spectrum we have a θ-algebra structure on π0X = KX.

From the definition of the power operations we see that the operations ψ and

θ coincide with the second Adams operation ψ2 and Atiyah’s operation θ2.

The ring of all operations contains the subring π0K ∧ TS0 as explained

earlier. Its θ-algebra structure is determined by the

Theorem 3.4. In π0K ∧ TS0 we have the equality ψ(σ2k) = σ2k+1. In

particular, π∗K ∧ TS0 is the free θ-algebra in θ1.

Proof. The equation looks like the relation among Adams operations

ψ2ψ2k = ψ2k+1
. Indeed the formula will follow once we have established

(ψf)(x) = ψ2(f(x))

for all x ∈ KX and f ∈ π0K ∧ BΣn+. In this context f is regarded as an op-

eration as explained earlier. The equality is part of the following commutative

diagram

X

ψ∧1

��

��

�
�

�
�

�
�

�
�
 

"
#

%
&

(
)

BΣ2+ ∧X
∆ //

1∧f∧1
��

EΣ2+ ∧
Σ2

X2 1∧(fx)2

//

1∧(f∧1)2

��

EΣ2+ ∧
Σ2

K2





(
&

%
#

"
 

�

�
�

�
�

�
�

�

EΣ2+ ∧
Σ2

BΣ2
n+ ∧X 1∧∆ //

ξ

��

EΣ2+ ∧
Σ2

(BΣn+ ∧X)2

1∧∆
��

EΣ2+ ∧
Σ2

(EΣn+ ∧
Σn
Xn)2 1∧x2n

//

ξ
��

EΣ2+ ∧
Σ2

(EΣn+ ∧
Σn
Kn)2

ξ
��

ξ

OO

BΣ2n+ ∧X
1∧∆ // EΣ2n+ ∧

Σ2n

X2n 1∧x2n
// EΣ2n+ ∧

Σ2n

K2n

ξ

��
K

Here, we assumed that f lies in the K-Hurewicz image which is allowed by

induction. Then the composite over the left curved side of the outer square

is (ψf)(x) whereas the right side gives ψ2(f(x)) by what we said earlier. The

last statement is immediate from 1.1 and 2.5.
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An alternative proof of the proposition is given in [BMMS86]. McClure used

the ordinary Dyer-Lashof operations in singular homology instead of represe-

nation theory to obtain the result.

Corollary 3.5. For every K(1)-local E∞-spectrum π∗E ∧TS0 is the free

θ-algebra on the generator θ1.

Before proving the corollary we need a lemma which is easily checked.

Lemma 3.6. Suppose E,F are E∞-ring spectra and x ∈ π0E ∧ F lies in

the Hurewicz image of π0E. Then we have

θEx = θE∧Fx ∈ π0E ∧ F.

Proof of 3.5: The case E = K of the corollary was shown in the theo-

rem. For E = S0 we consider the Adams-Novikov spectral sequences

ExtK∗K(π∗K, π∗K) =⇒ π∗S
0

ExtK∗K(π∗K, π∗K ∧ TS0) =⇒ π∗TS
0

They converge by the theorem 6.10 of [Bou79]. To compute the E2-term of

the second observe that for the isomorphism

π∗K ∧ TS0 ∼= π∗K ⊗ T{θ1}

all classes θn are spherical by the lemma. Hence, the spectral sequence for

π∗TS
0 takes the form

ExtK∗K(π∗K, π∗K)⊗ T{θ1} =⇒ π∗S
0 ⊗ T{θ1}

and we are done.

Finally, the general statement follows from the Kuenneth isomorphism:

π∗E ∧ TS0 ∼= π∗E ⊗π∗S0 (π∗S
0 ⊗ T{θ1}) ∼= π∗E ⊗ T{θ1}

for arbitrary K(1)-local E∞-spectra E.

The corollary can be found without proof in [Hop98b].
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4. The spectrum Tζ

In the last paragraph we computed the θ-algebra structure associated to

the homotopy of the free spectrum generated by the sphere. Now we proceed

with our basic calculations and investigate the sphere spectrum with one more

E∞-cell attached to. The cone is taken over a class in the homotopy of S0

which plays an important in many contexts in topology.

Recall from section 1.3 that we have a cofibre sequence

S0 −→ KO
ψ3−1−→ KO.

Since ψ3 acts trivially in π0KO the element 1 ∈ π0KO ∼= Z2 gives rise to a

non trivial class ζ ∈ π−1S
0. Obviously, ζ topologically generates π−1S

0 ∼= Z2.

Remark 4.1. The class ζ = ζ1 belongs to a family of homotopy classes

ζn : S−1 −→ LK(n)S
0

which play an important role in the reassembling of spectra from their

monochromatic parts, that is, in Hopkins’ chromatic splitting conjecture. The

higher ζn correspond to the determinant map on the Morava stabilizer group

Sn under the homotopy fixed point spectral sequence

E2 = H∗,∗(Sn;En∗)
Z/n =⇒ π∗LK(n)S

0.

The interested reader is referred to [Hov95].

Definition 4.2. We define Tζ to be the homotopy pushout of the diagram

TS−1
T∗ //

ζ
��

T∗ = S0

��

S0 // Tζ

The theory Tζ corepresents the functor which associates to any E in CT

the set of all null homotopies of ζ in E. This set is non empty for KO-theory.

A choice of a null homotopy defines a map of cofibre sequences

S0
γ

//

1
��

Cζ
δ //

ι

��

S0

1
��

S0
1 // KO

ψ3−1
// KO

This diagram immediately gives
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Lemma 4.3. HoCT (Tζ , KO) ∼= Z2

Proof. Any two choices of a map ι can only differ by a multiple of 1 δ.

We assume from now on that we made a choice of a map ι. Then this map

defines a splitting (ι∗, ι
′
∗) of the exact sequence

0 −→ π0KO
γ∗−→ π0KO ∧ Cζ

δ∗−→ π0KO −→ 0.

Let b be the image of 1 ∈ π0KO under the composite

π0KO
ι′∗−→ π0KO ∧ Cζ

ηCζ ∗−→ π0KO ∧ TCζ
ξS0∗−→ π0KO ∧ Tζ

Corollary 4.4. (compare [Hop98b]) The KO-linear extension of b

b∗ : π∗KO ∧ TS0 −→ π∗KO ∧ Tζ

is an isomorphism of θ-algebras. Thus π∗KO ∧ Tζ is the free θ-algebra in the

generator b.

Proof. Our choice of a null homotopy defines an E∞-map from Tζ to

KO∧TS0. Its KO-linear extension is the inverse of b∗ as one easily checks.

The class f = ψ(b)− b is fixed under ψ3 since

ψ3(ψ(b)− b)) = ψ3ψ(b)− ψ3(b)

= ψψ3(b)− ψ3(b)

= ψ(b+ 1)− (b+ 1) = ψ(b)− b.

In fact, it turns out that f is represented by a unique spherical class and we

have

Theorem 4.5. (compare [Hop98b]) There is an isomorphism of θ-

algebras

π∗Tζ ∼= π∗KO ⊗ T{f}.

This result will not be used for the splitting theorem. For the proof the

reader is referred to the work of Hopkins. He also shows in [Hop98b] how the

Bott class behaves under the KO-Hurewicz map

i : π∗KO ⊗ T{f} ∼= π∗Tζ −→ π∗KO ∧ Tζ ∼= π∗KO ⊗ T{b}.

We have

i(v4) = v49−2b = v4

∞∑
n=0

(
−2b

n

)
23n ∈ T{b}.
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In particular,

i(v4) ≡ v4 mod 2

Note that the image of η is clear since it is spherical.



CHAPTER 3

The ABP-splitting and 2-adic functions

In this chapter we construct an E∞-map from the cone Tζ to the K(1)-local

spin cobordism theory MSpin and investigate its behaviour in KO-homology.

Using the Anderson-Brown Peterson splitting we determine the 2-adic func-

tions associated to the class b and to generators of the KO-homology ring of

MSpin. The established formulae will play an important role in the proof of

the multiplicative structure of MSpin.

1. The 2-adic functions associated to the class b

As a start we remind ourselves of the definition of the KO-characterstic

classes. The first KO-characteristic class of a complex line bundle L over a

space X is defined by

π1(L) = L− 2 ∈ K̃O(X).

This class is only part of a series of characteristic classes

πs(ξ) =
∞∑
s=0

πj(ξ)sj ∈ KO(X)[[s]]

which are naturally defined for arbitrary oriented stable bundles and which

are multiplicative:

πs(ξ + η) = πs(ξ)πs(η)

For the complex bundle L we have πs(L) = 1+sπ1(L). In fact, these properties

determine πs because the group KOBSO(m) injects into K(BT[m
2

]) under the

complexification of the map which is induced by the restriction to the maximal

torus T[m
2

] (compare [ABP66]).

It is possible to express πj(ξ) in the exterior powers of ξ. Explicitly, the

equation

πs(ξ) =
∞∑
i=0

Λi(ξ − dimξ)ti = (1 + t)−dim ξ

∞∑
i=0

(Λiξ)ti

35
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is easily verified for the new generator t of KO(X)[[s]] which is given by the

equation s = t/(1 + t)2.

We write πj ∈ KOBSpin for the jth KO-characteristic class of the uni-

versal stable Spin bundle. Without changing the notation we also consider the

same class as an object of K̃OMSpin via the Thom isomorphism. For any

non ordered sequence of positive numbers (partition) J = (j1, . . . , jn) we set

πJ = πj1 · · ·πjn : MSpin −→ KO.

In these terms the Anderson-Brown Peterson splitting says

Theorem 1.1. (compare [ABP66]) There is a countable set of cohomol-

ogy classes zi ∈ H∗(MSpin,Z/2) such that the map

(πJ , zi) : MSpin −→
∨

n(J)even
1 6∈J

ko 〈4n(J)〉 ∨
∨

n(J)odd
1 6∈J

ko 〈4n(J) + 2〉 ∨
∨
i∈I

Σ|zi|HZ/2

is a 2-local homotopy equivalence.

Corollary 1.2. The map (πJ) : MSpin
∼=−→

∨
1 6∈J KO is a K(1)-

equivalence.

Proof. This is an immediate consequence of the the unlocalized ABP-

splitting, 1.3 below and the vanishing of the group K(1)∗HZ/2 [Ada74].

Proposition 1.3. The (n− 1)-connected cover ko 〈n〉 −→ KO is a K(1)-

equivalence for all n ∈ N.

Proof. We first look at complex K-theory and set n = 0. Then 2-locally

we may equip k with the BP -orientation which induces the 2-typicalization of

the multiplicative formal group law. The BP -formula (compare [Rav86])

ηR(v1) = ηL(v1) + 2t1

may be transported via the orientation map from π2BP ∧BP to π2K(1) ∧ k.

Hence, v1 coincides with the Bott class v in π2K(1) ∧ k. Since v1 is invertible

we conclude

K(1) ∧ k ∼= K(1) ∧ k[v−1] ∼= K(1) ∧K.

Next we turn to the real case. It is not hard to check that the well known

cofibre sequence [Mei79]

ΣKO
η−→ KO −→ K
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also exists in the connective world. Furthermore, observe that the Hurewicz

map from π1S
0 to π1K(1) ∧ ko factorizes over the complexification map

π1KO → π1K and hence annihalates η. Thus we obtain a commutative dia-

gram

π∗K(1) ∧ ko // //

��

π∗K(1) ∧ k // //

∼=
��

π∗−2K(1) ∧ ko

��
π∗K(1) ∧KO // // π∗K(1) ∧K // // π∗−2K(1) ∧KO

in which the first vertical arrow is injective and the last one surjective.

For a general n just observe that the fibre of ko 〈n〉 → ko 〈n− 1〉 is a

suitably suspended copy of the integer or mod 2 Eilenberg-MacLane spectrum

and hence vanishes K(1)-locally.

Corollary 1.4. ζ is null in π−1MSpin.

Proof. 2-locally the ABP-splitting gives a map from ko to MSpin which

induces an isomorphism in π0. Hence it suffices to show that ζ vanishes in ko.

The latter coincides with the periodic KO in the K(1)-local category by what

we said before. In KO the class ζ vanishes by its definition.

In the last section we have chosen a null homotopy ι of ζ in KO. Hence the

last corollary supplies us with an E∞-map

ϕ : Tζ −→MSpin

which will be the object of study for the rest of this section. We are interested

in the image of the class b under the induced map

ϕ∗ : π∗KO ∧ Tζ −→ π0KO ∧MSpin ∼=
⊕
1 6∈J

π∗KO ∧KO.

To describe each component of its image we recall the

Proposition 1.5. [Rav84][Hop98b] Let Φ be the map

π∗KO ∧KO −→ T (Z×2 /± 1, π∗KO)

which associates to a class f ∈ πkKO ∧KO the continuous 2-adic function

f(λ) : Sk
f−→ KO ∧KO 1∧ψλ−→ KO ∧KO µ−→ KO.

Then Φ is an isomorphism.
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Remark 1.6. The map Φ even becomes an isomorphism of θ-algebras if

we set ψ = id for the ring of continuous functions as we did before.

We are now able to state the result.

Proposition 1.7. The 2-adic function πJϕ∗b is the unique continuous ho-

momorphism h which sends 3 to 1 for J = ∅ and vanishes for all other J .

Proof. The commutative diagram

Cζ
ι //

}}{{{{{{{{

��

KO

��

1

$$HHHHHHHHHH

TCζ // Tζ
ϕ

// MSpin
π∅ // KO

tells us that all πJϕ∗b must vanish except for J 6= ∅. For J = ∅ we compute

with a = ι′∗(1)

Φ(π∅∗ϕ∗b)(3
n) = Φ((1 ∧ ι)a)(3n) = µ(1 ∧ ψ3n)(1 ∧ ι)a

=
〈
ψ3nι, a

〉
= 〈ι+ n(1 δ), a〉 = n

Since ϕ induces a map of θ-algebras the last result completely determines its

behaviour in KO-homology. Unfortunately, the ABP-splitting does not tell

us anything about the θ-algebra structure of the spin bordism. Hence other

methods are required in things to come.

2. The KO-homology ring of BSpin

We now provide polynomial generators of the real and complex K-

homology of MSpin. We first need the Thom isomorphism for homology.

Lemma 2.1. Let E be one of the theories ko, k,KO,K,KZ/2r. Then the

Thom isomorphism in cohomology induces the ring isomorphism

τ∗ : π∗E ∧MSpin
∼=−→ π∗E ∧BSpin+.

Proof. Since the homology commutes with direct limits it is enough to

show that

τ∗ : π∗+8nE ∧MSpin(8n) −→ π∗E ∧BSpin(8n)+

is an isomorphism. This is well known for the connective theories and follows

for the non connective by inverting the Bott class.
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Hence, it suffices to look at the classifying space BSpin. A further simplifica-

tion is given by the following result of Snaith.

Lemma 2.2. (compare [HS75]) The canonical map from BSpin to BSO

is a K(1)-equivalence.

Let L be the canonical line bundle over CP∞. Equip K-theory with the

orientation in the way that the Euler class of a line bundle L is given by

x = v−1(1 − L∗) 1. As usual, define additive generators βi ∈ π2iK ∧ CP∞+ as

the dual of the classes xi.

Lemma 2.3. Let f : S1 −→ S1 be the map which sends a complex number

z to its square. Then Bf : BS1 −→ BS1 has the following impact on the

generators:

Bf∗(βk) =
∑
j

(−1)k−j
(

j

2j − k

)
22j−kβj.

Here, we omitted the Bott class from the notation.

Proof.〈
Bf∗βk, x

j
〉

=
〈
βk, Bf

∗xj
〉

=
〈
βk, [2](x)j

〉
=
〈
βk−j, (2− x)j

〉
=

〈
βk−j,

j∑
i=0

(−1)j−i
(
j

i

)
2ixj−i

〉
= (−1)k−j

(
j

2j − k

)
22j−k

The main result of this paragraph is the

Proposition 2.4. Let S1 be the maximal torus of Spin(2) and let uj be

the image of βj in π0K ∧BSpin. Then

π∗K ∧BSpin+
∼= π∗K[u4, u8, u12, . . . ].

1There is quite an ambiguity about the standard orientation in K-theory in the liter-

ature. Many authors prefer taking 1 − L rather than its dual. We use Bott’s definition

[Bot69] here and let v = L∗−1 ∈ π2K be the periodicity class. Since we are only interested

in real bundles the difference is not essential in the sequel. Our approach merely has the

advantage that the Todd series then describes the change of orientations: when surpressing

the Bott class from the notation we have

td(xH) =
xH

1− e−xH
=

xH
ch xK

=
xH

expĜm xH
.
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Moreover, let bk ∈ π0K ∧ BSO+
∼= π0K ∧ BSpin+ be the image of the class

βk ∈ π0K ∧BSO(2)+. Then we have

uk =
∑
j

(−1)k−j
(

j

2j − k

)
22j−kbj

Hence, π∗K ∧BSpin+ is a polynomial algebra in b2, b4, b6 . . . . Finally, since

π0KO ∧BSpin+
∼= π0K ∧BSpin+

the same classes also freely generate π∗KO ∧BSpin+.

Before proving 2.4 we need some preperation. A 2-adic number λ can be

written in its 2-adic expansion

λ =
∑
k

αk(λ) 2k.

This way, each αk becomes a continuous function with values in {0, 1} ⊂ Z2.

It turns out

Lemma 2.5. (compare [Hop98b]) The map

Z2[α0, α1, . . . ]/(α
2
k − αk) −→ T (Z2,Z2)

is an isomorphism of rings.

Hence one readily verifies with 1.2 and 1.5 the

Lemma 2.6. (i) π∗K ∧MSpin ∼= limr π∗KZ/2
r ∧MSpin.

(ii) The Bockstein sequences

π∗KZ/2
i ∧MSpin // // π∗KZ/2

i+1 ∧MSpin // // π∗KZ/2
i ∧MSpin .

are short exact for all i ≥ 1.

Proof of 2.4. By the first part of the lemma it suffices to check the

corresponding result mod 2i for all i > 0. Using the second part of the lemma

and the 5-lemma we only need to show the statement for mod 2 K-theory.

This is a well known result of Snaith [HS75]8.5 .

The second statement follows from 2.3 and the commutative diagram

Spin(2) ⊃ S1 z2
//

��

S1 ∼= SO(2)

��
Spin // SO
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We mention another set of generators which by birth comes with a lift to the

ring π∗K ∧ BSU+. The hasty reader my skip to the next section since these

generators will not be needed for the proof of the main theorem. Let

f : CP∞ × CP∞ −→ BSU

be the map which classifies the product (1 − L1)(1 − L2). For each natural

number k and 1 ≤ i ≤ k − 1 choose integers nik such that

k−1∑
i=1

nik

(
k

i

)
= g.c.d.{

(
k

1

)
, . . . ,

(
k

k − 1

)
}.

Then we show in the appendix

Theorem 2.7. For any complex oriented E define elements

dk =
k−1∑
i=1

nikf∗(βi ⊗ βk−i) ∈ π2kE ∧BSU+.

Then we have

π∗E ∧BSU+
∼= π∗E[d2, d3, d4, . . . ].

It is interesting to note

Theorem 2.8. (compare [Lau00]) Let ω be the canonical quaternian line

bundle over HP∞ and let zk ∈ π∗K ∧ HP∞+ be dual to c2(ω)j. Set d′2k =

d2k + zk ∈ π∗K ∧BSpin+ for all k. Then we have

π∗K ∧BSpin+
∼= π∗K[d2k|k 6= 2s]⊗π∗K π∗K[d′4, d

′
8, d
′
16, . . . ].

Moreover, each zk is decomposable in π0K ∧BSpin+.

3. Stable canabalistic classes in KO

In order to express the class ϕ∗b in any set of generators of π0KO∧MSpin

we are going to compute the 2-adic functions associated to each generator

explicitly. Recall from [Bot69] the definition of the canabalistic classes θk(ξ) ∈
KX. They are defined for complex vector bundles ξ over compact spaces X.

These classes are characterized by the following two properties

(i) θk(L) = 1 + L∗ + · · ·+ (L∗)k−1 = 1−(L∗)k

1−L∗ for all line bundles L

(ii) θk(ξ × ξ′) = θk(ξ) θk(ξ′) for all complex bundles ξ, ξ′.
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In particular, we have the equality

θk(ξ + n) = knθk(ξ).

Assume in the following that k is an odd number. Then we can turn each θk

into a stable operation by setting

θ̂k(ξ)
def
=

θk(ξ)

kdimCξ
∈ KX

The formulae for line bundles and sums of vector bundles stay the same. The

complex classes θk do have a real counterpart for spin bundles ξ which we also

denote by θk(ξ) ∈ KOX. If the underlying spin bundle admits a reduction

to the special unitary group then the complexification of these real classes

coincide with the complex classes [Bot69]p.87f.

In the following we write θ̂k ∈ K̃OBSpin for the universal canabalistic

classes. We will see in a moment that they come up in the ABP-splitting map.

Lemma 3.1. The diagram

π0KO ∧MSpin

(1∧πJ )∗
��

Ξ // Homcts(K̃OMSpin,Z2)

πJ
∗

��

π0KO ∧KO
Φ // T (Z×2 /± 1,Z2)

commutes. Here, the upper horizontal arrow is the duality map. The right

horizontal arrow takes a homomorphism α : K̃OMSpin −→ Z2 to the map

λ 7→ α(MSpin
πJ−→ KO

ψλ−→ KO).

The lemma is easily checked. The above diagram may be composed with

the diagram of Thom isomorphisms

π0KO ∧BSpin+
Ξ // Homcts(KOBSpin,Z2)

π0KO ∧MSpin

∼=

OO

Ξ // Homcts(K̃OMSpin,Z2)

∼=

OO

Consider the J-component of the ABP-splitting map

ΘJ
def
= πJ

∗
(τ ∗)−1Ξ = Φ(1 ∧ πJ)∗τ

−1
∗ : π0KO ∧BSpin+−→T (Z×2 /± 1,Z2).

Proposition 3.2. For all a ∈ π0KO ∧BSpin+ we have

ΘJ(a)(k) =
〈
a, θ̂kψk(πJ)

〉
.
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Proof. Let ξ8n be the universal spin bundle over BSpin(8n). Then we

have the well known relation

ψk(zn) = θk(ξ8n)zn

between the Adams operations and the canabalistic classes (compare [Bot69]

p.89.) Here, zn ∈ K̃OMSpin(8n) is the Thom class. Let β ∈ π8KO be the

Bott class and for any a ∈ π0BSpin(8n) set g = τ ∗−1Ξ(a). Then compute

ΘJ(a)(k) = πJ
∗
(g)(k) = g(ψk(β−nznπ

J(ξ8n)))

= g(k−4nβ−nθk(ξ8n)znψ
k(πJ(ξ8n)))

= τ ∗g(θ̂k(ξ8n)ψk(πJ(ξ8n))

=
〈
a, θ̂k(ξ8n)ψk(πJ(ξ8n))

〉
.

Thus the claim follows after stabilization.

We are now well prepared to compute the 2-adic functions which correspond

to the generators un defined in the last section.

Theorem 3.3. The 2-adic function ΘJ(un) vanishes for all non empty J

which do not contain 1. For Θ = Θ∅ we have the formula

k
∑
n

Θ(un)(k)xn =
(1− x)k − (1− x)−k

(1− x)− (1− x)−1

or, equivalently,

Θ(un)(k) =
(−1)n

k

k∑
i=1

(
2i− k − 1

n

)
.

We first need the

Lemma 3.4. Let L be the canonical line bundle over CP∞. Then the com-

plexified real canabalistic classes satisfy

k θ̂k(L2 − 1)⊗ C =
(1− x)k − (1− x)−k

(1− x)− (1− x)−1
.

Proof. We decompose the spin bundle 1−L2 into a sum of bundles which

admit a reduction to the special unitary group by writing

(1− L2) = (L− L̄) + 1− L2 = (1− L)(1− L̄)− (1− L)2
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To determine the real canabalistis classes of the latter we compute the complex

canabalistic classes in K CP∞ × CP∞ ∼= Z2[[x, y]]

θ̂k((1− L1)(1− L2)) = θ̂k(1− L1 − L2 + L1L2)

=
θ̂k(L1L2)

θ̂k(L1)θ̂k(L2)
=

(1− L∗1)(1− L∗2)(1− (L∗1L
∗
2)k)

(1− L∗1k)(1− L∗2k)(1− L∗1L∗2)
=
qk(x+Ĝm

y)

qk(x)qk(y)

Here, qk(x) is the polynomial

qk(x) =
1− (1− x)k

x
= (1− x) + (1− x)2 + · · ·+ (1− x)k−1

Thus we obtain

θ̂k(1− L2)⊗ C =
k

qk(x)qk(−Ĝmx)
(
qk([2](x))

qk(x)
)−1 = k

qx(x)

qk(−Ĝmx)qk([2](x))
.

An elementary calculation finishes the proof.

Proof of 3.3: The proposition gives

ΘJ(un)(k) =
〈
un, θ̂

kψk(πJ)⊗ C
〉

=
〈
βn, θ̂

k(L2 − 1)ψk(πJ(L2 − 1))⊗ C
〉
.

Hence, ΘJ vanishes for all non empty J which do not contain 1. Moreover, for

J = ∅ we get with the lemma∑
n

Θ(un)(k)xn =
∑
n

〈
βn, θ̂

k(L2 − 1)⊗ C
〉
xn = k−1 (1− x)k − (1− x)−k

(1− x)− (1− x)−1
.

Using our calculations we can determine the 2-adic functions which correspond

to the other generators very easily. For instance, consider the map

f : CP∞ × CP∞ −→ BSU −→ BSpin

which classifies the product (1−L1)(1−L2). Then we have for the generators

aij = f∗(βi ⊗ βj) ∈ π2(i+j)K ∧BSpin+

Corollary 3.5. ∑
i,j

Θ(aij)(k)xiyj =
qk(x+Ĝm

y)

qk(x)qk(y)
.
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Proof. Compute

Θ(aij)(k) =
〈
aij, θ̂k ⊗ C

〉
=
〈
βi ⊗ βj, f∗θ̂k ⊗ C

〉
=

〈
βi ⊗ βj, θ̂k((1− L1)(1− L2))⊗ C

〉
=

〈
βi ⊗ βj,

qk(x+Ĝm
y)

qk(x)qk(y)

〉
.

The computations of the KO-homology of the ABP-map enable us to com-

pare the generators to the class ϕ∗b. At this point, the reader may easily verify

that ϕ∗b corresponds to u4 and to a1,2 modulo 2. We will not go through the

calculation here since we will work out a closer relationship later.
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CHAPTER 4

The θ-algebra structures of bordism theories

In this chapter we determine the θ-algebra structure of the unitary, special

unitary and spin bordism theories. This problem was partially answered by

Snaith in [HS75] who used group theoretical methods to compute the action

of θ modulo 2 for the classifying spaces. However, in order to give a complete

description of the θ-algebra structure we need integral information: each time

when applying θ we loose a power of 2. That is, the image of θ on a mod 2n

class is only well defined modulo 2n−1. Hence, in order to show that a class

generates a free summand we must know θ integrally. Unfortunately, Snaith’s

(and Priddy’s [Pri75]) method does not generalize that easily to the integral

situation. So we use a completely different approach here.

1. The θ-algebra structure of π0K ∧MU

We start by investigating the H∞-structure of the spectrum (K ∧MU)BS
1
+

by computing the value of x̃MU = v xMU under the operation

P : π0(K ∧MU)BS
1
+ = (K ∧MU)0BS1 −→ (K ∧MU)0BΣ2 ×BS1.

Here, xMU denotes the MU -Euler class and v ∈ π2K is the Bott class. In this

section it is important not to surpress the Bott class from the notation.

Our strategy is to calculate the operation on each factor of the product x̃MU

separately. This means the following: the complex bordism theory and the

K-theory admit H2
∞-structures or, equivalently, H∞-structures on the wedge∨

i Σ
2iMU and

∨
i Σ

2iK respectively. Hence so do the corresponding function

spectra. The associated operation P is the well known tom Dieck-Steenrod

operation

P : MUnBS1 −→MU2nBΣ2 ×BS1.

for complex bordism and the Atiyah power operation for K-theory

[BMMS86]. Hence, we know how to compute the operation on each factor

and only have to relate their product to the class Px̃MU . To state the result,

47
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we use the standard notation and write DX for the gadget EΣ2 ∧Σ2 X
2. We

also write

δ : D(X ∧ Y ) −→ DX ∧DY

for the diagonal map. Then we have the following “change of suspension”

formula:

Lemma 1.1. Suppose E is a Hd
∞-ring spectrum and F is a H∞-ring spec-

trum. Then for any based space X, α : X −→ ΣdE and β : ΣdX −→ F we

have

yE P (α (Σ−dβ)) = P (α) Σ−dP (β) : X ∧BΣ2+ −→ ΣdE ∧ F

with yE = P (Σd1) ∈ EdBΣ2+.

Proof. It is easy to check that the diagram

DΣdX

DΣd∆X
��

BΣ2+ ∧ ΣdX
∆Xoo Σd∆ // BΣ2+ ∧X ∧BΣ2+ ∧ ΣdX

∆∧∆

��
D(X ∧ ΣdX)

δ // DX ∧DΣdX

commutes. Moreover, when we write P for the external Steenrod operation

and give E ∧F the Hd
∞-ring structure which is induced from the isomorphism∨

i Σ
d i(E ∧ F ) ∼= (

∨
i Σ

d iE) ∧ F.

then we get

yE P (αΣ−dβ) = P (Σd(αΣ−dβ)) = P (Σd∆∗X(α ∧ Σ−dβ))

= ∆∗P((Σd∆X)∗(α ∧ β)) = ∆∗(DΣd∆X)∗P(α ∧ β)

= ∆∗(DΣd∆X)∗δ∗(P(α) ∧ P(β))

= (Σd∆BΣ2+∧X)∗(∆ ∧∆)∗(P(α) ∧ P(β))

= P (α) Σ−dP (β)

In the first and third line we used [BMMS86] p.250f.

Lemma 1.2. Let E be a H2
∞-ring spectrum which is complex oriented by

a H2
∞-map f : MU −→ E. Then P (Σ21) is the Euler class yE of the sign

representation.

Proof. This immediately follows from [BMMS86]p.257.
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We next show how the operation works in complex bordism.

Lemma 1.3. For all n > r > 0 we have the formula

yn−1
MUP (xMU) = yn−1

MU xMU(xMU +Ĝu
yMU) ∈MU2n+2BΣ2 × CP r.

Here, Ĝu is the universal formal group law.

Proof. For the sake of simplicity we omit the index MU from the nota-

tion. Choose s arbitrary and recall from [Qui71]3.17) the formula

yn−1P (x) =
∑
l(α)≤n

yn−l(α)a(y)αsα(x) ∈MU2n+2
RP s × CP r

which relates the tom Dieck-Steenrod operation to the Landweber-Novikov

operations sα. Here, α is a sequence of non negative integers and l(α) =
∑
αi.

The power series aα = aα1
1 a

α2
2 · · · are defined by the equation

x+Ĝu
y = x+

∑
j≥1

aj(x) yj.

Let i : CP r−1 ↪→ CP r be the inclusion and ct be the total Conner-Floyd Chern

class. Then we have for the Euler class z = e(L∗)

st(z) = st(i!(1)) = i!ct(L
∗) = i!(

∑
j≥1

tjz
j) =

∑
j≥1

tjz
j+1.

Since the Landweber-Novikov operations are natural the same formula holds

for x instead of z. Hence we get

yn−1 P (x) = yn x+ yn−1
∑
j≥1

aj(y)xj+1

= yn x+ yn−1 x ((x+Ĝu
y)− y) = yn−1x (x+Ĝu

y).

The claim follows by passing to the limit

MU∗CP r ×BΣ2 = lim
s
MU∗CP r × RP s.

In the following let g(x) be the invertible power series

g(x) =
∞∑
i=0

bix
i; b0 = 1
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with coefficients in π0K ∧MU ∼= Z2[b1, b2, . . . ] . It is well known (compare

[Ada74]) that the two Euler classes x̃MU and x = x̃K are related in (K ∧
MU)0BS1 by the formula

x̃MU = x g(x).

A similar relation holds for ỹMU and y = ỹK in (K ∧MU)0BΣ2. Observe that

in the notation of 2.1.4, the class y corresponds to 1−σ under the isomorphism

K0BΣ2
∼= RΣ∧2

∼= (Z2[σ]/σ2 − 1)∧ ∼= Z2 ⊕ Z2(1− σ).

Lemma 1.4. The power sum σ2 =
∑
t2i ∈ π0K ∧BΣ2+ satisfies

〈σ2, y
n〉 = 2n.

Proof. Since yn+1 = 2ny the formula follows from

〈σ2, y〉 =
〈
e2

1 − e2, 1− σ
〉
− 〈e2, 1− σ〉 = 2

Here we used the explicit description of ∆k,2 in 2.1.4.

We are now able to state the main result.

Theorem 1.5. The θ-algebra structure of π0K ∧MU is determined by the

equations ∑
i≥0

ψ(bi)x
i(2− x)i = ψ(g(x)) =

g(x)g(2− x)

g(2)
.

Proof. The first equation is clear since for K-theory the operation ψ

coincides with the second Adams operation and

ψ2x = [2]Ĝm(x) = 2x− x2.

To do the second consider the curve b(x) = x g(v x) and regard K ∧MU as a

H2
∞-ring spectrum via the equivalence K∧

∨
i Σ

2iMU ∼=
∨
i Σ

2iK∧MU . Then

we have the formula

Sublemma 1.6. ψ(xMU) = b(xK) b(2v−1 − xK).

Proof. First note that b(xK) is the MU Euler class. Moreover, the K-

Hurewicz map π∗MU −→ π∗K ∧ MU classifies the formal group law bĜm

since

eMU(L1 ⊗ L2) = b(eK(L1 ⊗ L2)) = b(eK(L1) +Ĝm
eK(L2))

= b(b−1(eMU(L1)) +Ĝm
b−1(eMU(L2)) = eMU(L1) +bĜm

eMU(L2)
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Hence when pairing the equality of 1.3 with σ2 we get with 1.4

b(2v−1)n−1 ψ(xMU) =
〈
yn−1
MU P (xMU), σ2

〉
=

〈
yn−1
MU xMU(xMU +bĜm

yMU), σ2

〉
= b(2v−1)n−1xMU(xMU +bĜm

b(2v−1))

= b(2v−1)n−1b(xK) b(2v−1 − xK).

Since the coefficient ring π∗K ∧ MU is a division algebra and the module

(K ∧ MU)∗BΣ2 ∧ CP r is free we may cancel the term b(2v−1)n−1 on both

sides. The claim follows by passing to the limit.

Our change of suspension formula 1.1 reads for X = BS1
+, α = xMU and

β = Σ2v

yMUP (v xMU) = P (xMU)P (Σ2v) = P (xMU) yKP (v) = P (xMU) yK v
2

In the last two equations we used [BMMS86] p.274f. Hence we obtain with

the sublemma

ψ(x)ψ(g(x)) = ψ(x̃MU) = ψ(xMU)

〈
yK
yMU

v2, σ2

〉
= b(xK)b(2v−1 − xK)

2v−1

b(2v−1)
v2 = ψ(x)

g(x)g(2− x)

g(2)
.

The result follows by canceling ψ(x) on both sides.

Corollary 1.7. In π0K ∧MU we have the formula mod 2

θ(br) = (1 + b1)b2
r +

r∑
i=0

bi(b2r−i + b2r−i+1)

In particular, for r > 0 this gives modulo 2 and decomposables

θ(br) = b2r + b2r+1

Proof. Since π0K ∧ MU is torsion free and 2θ(x) = ψ(x) − x2 it is

enough to compute the action of ψ on the generators. Let Dk be the operator

(dk/k! dxk)|x=0. Then we get mod 4

(−1)rψ(br) = D2rψ(g(x)) = D2r
g(x)g(2− x)

g(2)

= (1 + 2b1)(
∑
i+j=2r

(−1)jbibj + 2
∑

i+j−1=2r

j bibj)

The result follows after some elementary transformations which are left to the

reader.
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The last formula was already obtained by Snaith for the θ-algebra π0K ∧BU+

modulo 2 and decomposables in [HS75] 6.3.6. To get his result from the above

one we need the

Proposition 1.8. The Thom isomorphism

τ∗ : π0K ∧MU
∼=−→ π0K ∧BU+

is a map of θ-algebras.

Proof. Consider BU as the direct limit of all BU(V ) for finite dimensional

subspaces V of the universe. Then the diagonal map

Th(V )
∆−→ Th(V ) ∧BU(V )+ −→ Th(V ) ∧BU+

induces a map of spectra ∆ : MU −→ MU ∧ BU+ which is an E∞-ring map

by its construction. Moreover, the Thom class

τ : MU −→MSpinc −→ K

is well known to be an H∞-ring map by [BMMS86]p.280. Thus the composite

K ∧MU
1∧∆−→ K ∧MU ∧BU+

1∧τ∧1−→ K ∧K ∧BU+
µ∧1−→ K ∧BU+

is anH∞-ring map. This map induces the Thom isomorphism in homotopy.

2. The θ-algebra structure of π0K ∧MSU

We next turn to the special unitary bordism theory. The result will not be

needed for the proof of the splitting theorem. Once more let

f : CP∞+ ∧ CP∞+ −→ BSU+ −→ K ∧BSU+

be the map which classifies (1− L1)(1− L2) and

f(x, y) =
∑
i,j

aijx
iyj

be the associated power series.

Theorem 2.1. The θ-algebra structure of π0(K ∧MSU+) is determined

by the equations∑
i,j

ψ(aij)(x(2− x))i(y(2− y))j = ψf(x, y) =
f(x, y) f(2− x, y)

f(2, y)
.
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Proof. The first equation is clear. To see the second, observe that the

decomposition (1− L1)(1− L2) = (L1L2 − 1) + (1− L1) + (1− L2) implies

ι∗ f(x, y) =
g(x) g(y)

g(x+Ĝm
y)
.

Here the map g : CP∞+ −→ K∧BU+ corresponds to 1−L and ι : BSU −→ BU

is the inclusion. Since ι∗ is an injection (compare appendix A) it may as well

be omitted from the notation. By naturality and 1.5 we compute

ψ(g(x+Ĝm
y)) = µ∗ψ(g(x)) =

g(x+Ĝm
y) g(2− (x+Ĝm

y))

g(2)
.

and hence

ψf(x, y) =
ψg(x)ψg(y)

ψg(x+Ĝm
y)

=
g(x)g(2− x)g(y)g(2− y)

g(2)g(x+Ĝm
y)g(2− (x+Ĝm

y))

= f(x, y) f(2− x, y)
g(2− y)

g(y)g(2)
=
f(x, y) f(2− x, y)

f(2, y)
.

Here we used the identities

2− (x+Ĝm
y)) = (2− x) +Ĝm

y; 2 +Ĝm
y = 2− y.

which are easily checked.

Corollary 2.2. In π0K ∧MSU we have modulo 2 and decomposables of

lower index

θ(aij) = a2i,2j + a2i+1,2j.

Proof. In view of the theorem it is clear how to proceed. We compute

mod 4 and decomposables

ψf(x, y) =
f(x, y)f(2− x, y)

f(2− y)

= (1 +
∑
i,j≥1

aijx
iyj)(1 +

∑
i,j≥1

(−1)iaijx
iyj + 2aijx

i−1yj)(1 + 2
∑
j≥1

a1jy
j))

= 1 +
∑
i,j≥1

((1 + (−1)i)aij + 2ai+1,j)x
iyj

The result follows by looking at the coefficient in front of x2iy2j.

Remark 2.3. It is not hard to give an explicit formula for the action of θ

on the nose but we will not go through the tedious calculations here.
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3. The θ-algebra structure of π0KO ∧MSpin

The θ-algebra structure of π0KO ∧MSpin is determined by 2.1 and the

surjective map of θ-algebras

π0K ∧MSU −→ π0K ∧MSpin ∼= π0KO ∧MSpin.

Alternatively, we may use the Thom isomorphism 1.8 and look at the surjective

θ-algebra map

π0K ∧BU+ −→ π0K ∧BSO+
∼= π0K ∧BSpin+

∼= π0K ∧MSpin.

In each case the analysis of the spin θ-algebra structure is ultimately based on

the θ-algebra π0K ∧MU . In 1.5 we found an implicit formula for the action of

θ on the free generators bi. To identify free θ-algebra summands we also need

to know the action of the powers θj which we do next.

Definition 3.1. For a monomial m = bi1 · · · bik in π0K ∧MU we define

its length l(m) to be the maximum of the set of indices {i1, . . . , ik}. For a

general element x of the form
∑

s∈Sms2
is with ms 6= ms′ whenever is = is′

and s 6= s′ we define lengths

l1(x) = sup{l(ms)− is| s ∈ S}

l2(x) = sup{l(ms)2
−is | s ∈ S}.

Lemma 3.2. The two lengths lk , k = 1, 2 have the following properties

(i) max{ls(a b), ls(a+ b)} ≤ max{ls(a), ls(b)} .

(ii) l2(a) ≤ l1(a) if l1(a) > 0

Proof. The easy proof is left to the reader.

Next we consider the action of θ and ψ on the generators. In 1.7 we have seen

that the l1-length of θ(bi) (and ψ(bi)) is at least 2i + 1 (and 2i respectively.)

In fact, the following result shows the equality.

Lemma 3.3. For each i we have

(i) l1(ψ(bi)) = 2i

(ii) l1(θ(bi)) = 2i+ 1

(iii) l2(θ(x)) < 2i if l2(x) < i.
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Proof. Since l(ψ(b0)) = l(1) = 0 we may assume that the equality is true

for all numbers lower than i. Then we have with 1.5

l1(2iψ(bi)) = l1(g(2)
∑
k+l=i

(
l

k

)
2l−kψ(bl))

= l1(
∑

k+l=i,j

(
j

k

)
2j−kblbj) = i

The second estimation follows from the first

l1(2θ(bi)) = l1(b2
i + 2θ(bi)) = l1(ψ(bi)) = 2i.

To show the last statement let x =
∑

sms2
is be an element with l2(x) < i.

Then there is a N > 0 with the property that the length of each ms is strict

smaller than 2is(i−2−N). Hence we have with the multiplication formula 2.2.1

for θ

l2(θ(ms)) ≤ l1(θ(ms)) ≤ 2is+1(i− 2−N).

Using θ(2a) = 2θ(a)− a2 we conclude

l2(θ(x)) ≤ supsl2(θ(ms2
is)) ≤ supsmax{l2(2isθ(ms)), 2i− 21−N}

= max{sups2
−isl2(θ(ms)), 2i− 21−N} = 2i− 21−N < 2i.

It is convenient to work with Landau symbols. We let oi(k) represent classes

whose li-length is strict smaller than k.

Lemma 3.4. For all i > 0 we have the formula

θ(bi + o2(i)) = b2i+1 + (1 + b1)b2i + o2(2i).

Proof. By 1.7 the class

a = θ(bi)− (b2i+1 + (1 + b1)b2i)

is a sum of monomials of length at most 2i − 1 modulo 2. Moreover, by the

previous lemma we have

l2(a) = l2(o2(2i) + 2o1(2i− 1)) < max{2i, 2i− 1

2
} = 2i.

Thus the claim follows from the third part of the lemma.
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The last formula is particularly nice when it comes to the spin groups. Before

stating the result we work out the relations that appear by passing from the

unitary to the special orthogonal groups.

Lemma 3.5. Let i : CP∞ −→ CP∞ be the map which classifies the conju-

gate tautological bundle L̄. Then we have the formula

i∗βs =
s∑
t=1

(−1)t
(
s− 1

t− 1

)
βt.

Proof. Compute〈
i∗βs, x

t
〉

=
〈
βs, (i

∗x)t
〉

=
〈
βs, x

t(x− 1)−t
〉

=

〈
βs−t, (−1)t

∑
k

(
t+ k − 1

k

)
xk

〉
= (−1)t

(
s− 1

s− t

)

Lemma 3.6. In π0K ∧BSO+ we have for all k

b2k+1 = k b2k + terms with lower index ∈ π0K ∧BSO+.

Proof. Since L and L̄ are isomorphic as stable oriented real bundles the

previous lemma gives

0 = i∗b2k+2 − b2k+2 =
2k+1∑
j=1

(−1)j
(

2k + 1

j − 1

)
bj

= −(2k + 1)b2k+1 + (2k + 1)kb2k + terms with lower index.

We have seen earlier that the map

Ψ : Z2[b2, b4, . . . ] −→ π0K ∧BU+ −→ π0K ∧BSO+

is an isomorphism. Hence we can define for all x ∈ π0K ∧BSO+

li(x) = li(Ψ
−1x).

Proposition 3.7. In π0K ∧BSO+ we have the formula for all i > 0

θj(b2i + o2(2i)) = b2j+1i + o2(2j+1i).

Proof. Since b1 vanishes in π0K ∧BSO+ the formula inductively follows

from 3.6 and 3.4.

Now we can state the
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Theorem 3.8. π0KO ∧MSpin is the free θ-algebra generated by the set

of all u8k+4 for k ≥ 0. Moreover, each generator u8k+4 can be altered by any

element of strict smaller l2-length.

Proof. It is enough to show that the ring homomorphism

Z2[θju8k+4| k, j ≥ 0] −→ Z2[b2, b4, b6, . . . ]

is an isomorphism modulo 2. We know from 3.2.4 that u4k coincides with b2k

up to a class of l2-length strict smaller than 2k. Hence, the proposition 3.7

gives

θju8k+4 = b2j+1(2k+1) + o2(2j+1(2k + 1)).

Since each even number can uniquely be written in the form 2 · 2j(2k + 1)

for some j, k there is an obvious correspondence of the highest terms of the

generators. This finishes the proof of the theorem.

Remark 3.9. We could have proved the theorem without using the Thom

isomorphism. For that we merely observe that the class b2k ∈ π0K ∧MSpin

can be lifted to a class of the form b2k + x ∈ π0K ∧MSU with l2(x) < 2k and

proceed as above.
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CHAPTER 5

The splitting theorem

In the previous chapters we computed the θ-algebra π0KO ∧MSpin and

determined the values of the free generators under the ABP-map. Now we

show that all except of one generator can be chosen to be spherical. The only

missing generator is hit by the class b under the map coming from the cone.

These results lead us to the proof of the splitting theorem.

1. Spherical classes

The spherical classes can be identified with the elements of π0KO∧MSpin

which are invariant under the action of the Adams operation with the help of

the exact sequence

0 −→ π0MSpin −→ π0KO ∧MSpin
ψ3−1−→ π0KO ∧MSpin −→ 0.

Note that it is enough to look for classes which are invariant under ψg for any

topological generator g of Z×2 /± 1 ∼= Z2.

Unlike the θ-operation the action of ψg is not compatible with the Thom

isomorphism. We denote the operation on the base π0KO∧BSpin+ by ψgB and

the one on the Thom spectrum π0KO ∧MSpin by ψgM in the sequel. Before

describing these we need the

Lemma 1.1. For all k ∈ Z×2 /±1 the two selfmaps ψk∧1 and k4n (1∧ψk−1
)

of π8nKO ∧KO coincide.

Proof. It is enough to check the corresponding statement for complex

K-theory. Since π2nK ∧K is torsion free we even may rationalize. A general

element of π2nK ∧ K ⊗ Q takes the form a =
∑

s asu
svn−s if u, v denote the

left and right Bott classes. Hence we compute

(ψk ∧ 1)(a) =
∑

s as(k u)svn−s = kn
∑

s asu
s(k−1v)n−s = kn (1 ∧ ψk−1

)(a).

59
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Lemma 1.2. The operation ψ3−1

B is given by the formula

ψ3−1

B ui =
i∑

j=0

∑
s+t=i−j

(
j

s

)(
s

t

)
3j−t(−1)i−juj.

Proof. It suffices to show the equation in π0K ∧BS1
+ after replacing the

classes uk with βk. The previous lemma tells us that for all i, j the equality〈
ψ3−1

βi, x
j
〉

=
〈
βi, ψ

3xj
〉

holds. Hence we obtain〈
ψ3−1

βi, x
j
〉

=
〈
βi, (1− (1− x)3)j

〉
=
〈
βi−j, (x

2 − 3x+ 3)j
〉

=

〈
βi−j,

j∑
s=0

(
j

s

)
3j−sxs(x− 3)s

〉
=

∑
s+t=i−j

(
j

s

)(
s

t

)
(−1)i−j3j−t

Proposition 1.3. We have the formula

ψ3−1

M ui =
i∑

j=0

ajψ
3−1

B ui−j.

Here the numbers aj are determined by the equation

∞∑
j=0

ajx
j =

3− 6x+ 7x2 − 4x3 + x4

3− 6x+ 3x2
.

Proof. Since the map

π0KO ∧MSpin
Ξ−→ Homcts(K̃OMSpin,Z2)

(πJ )∗−→
∏
1 6∈J

T (Z×2 /±,Z2)

is injective by 1.2, 1.5 and 3.1 of chapter 3 so is the duality map Ξ. Hence

it suffices to show the equality after pairing each side with an arbitrary class

a = τ ∗b ∈ K̃OMSpin. Let f : BS1 −→ BSpin be the inclusion of the

maximal torus of Spin(2). Then we compute with 3.3.4:〈
ψ3−1

M ui, a
〉

=
〈
ui, ψ

3
M(τ ∗b)

〉
=
〈
τ−1
∗ ui, θ̂

3 τ ψ3
B(b)

〉
=

〈
ui, θ̂

3 ψ3
B(b)

〉
=
〈
βi, (θ̂

3(L2 − 1)⊗ C)f ∗(ψ3
B(b))

〉
=

∞∑
j=0

aj
〈
βi−j, f

∗(ψ3
B(b))

〉
=

〈
∞∑
j=0

ajψ
3−1

B ui−j, b

〉
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It will prove useful to introduce another measure for the monomials of the ring

Z/2[u4k; k ≥ 1] ∼= Z/2[b2k; k ≥ 1].

Definition 1.4. Let the degree d of a monomial u4i1 ·u4i2 · · ·u4ik be
∑

k ik

and let the degree of a sum of such be the maximum degree of the monomials.

We will write o(n) for terms of degree strict smaller than n.

Proposition 1.5. We have modulo 2 for all i

(i) ψ3−1

B u4i = u4i + o(i− 1)

(ii) ψ3−1

M u4i = u4i + u4i−4 + o(i− 1)

Proof. Consider first the case that i = 2k is even. Then we obtain modulo

2 and o(i− 1) with 3.2.4 and 4.3.6

ψ3−1

B u8k = u8k +
∑
s+t=2

(
8k − 2

s

)(
s

t

)
u8k−2 +

∑
s+t=4

(
8k − 4

s

)(
s

t

)
u8k−4

= u8k + u8k−2 + u8k−4 = u8k.

Similarly, for i = 2k + 1 we get mod 2 and o(i− 1)

ψ3−1

B u8k+4 = u8k+4 +
∑
s+t=2

(
8k + 2

s

)(
s

t

)
u8k+2 +

∑
s+t=4

(
8k

s

)(
s

t

)
u8k

= u8k+4 + u8k+2 = u8k+4.

To see the second statement observe that
∑∞

j=0 ajx
j = 1 + x4 + . . . and hence

with the previous lemma

ψ3−1

M u4i = ψ3−1

B u4i + ψ3−1

B u4i−4 + o(i− 1) = u4i + u4i−4 + o(i− 1).

Now we are well prepared to show the

Theorem 1.6. For each odd k > 1 there exists a zk ∈ π0KO ∧MSpin

which is invariant under the action of the Adams operations and which coin-

cides with u4k modulo elements of strict smaller l2-length.

Proof. We first construct the class zk modulo 2. When we write ∆ for

the homomorphism ψ3−1

M − 1 then the previous lemma reads

∆u4i = u4i−4 + o(i− 1).
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Moreover, we have for all s, t

∆(u4s u4t) = ∆(u4s)∆(u4t) + ∆(u4s)u4t + u4s ∆(u4t)

= u4s−4u4t + u4s u4t−4 + o(s+ t− 1).

In particular, we obtain modulo terms which are the ∆-image of classes with

degree at most n+m+ 1 and with length at most 2 max(n,m+ j)

u4nu4m = u4n−4u4m+4 + o(n+m) = · · · = u4(n−j)u4(m+j) + o(n+m).

Setting n = k − 1,m = 0 and j = (k − 1)/2 we thus find a class x of length

strict smaller than 2k with the property that

∆(u4k + x) = u2
4j + o(k − 1).

We can get rid of the highest term by adding u2
4j+4:

∆(u4k + u2
4j+4 + x) = u2

4j + (∆u4j+4)2 + o(k − 1) = o(k − 1).

Now we have won since the remaining terms are of the form u4nu4m with degree

strict smaller than k − 1. They can be removed in the same fashion as above:

Setting j = n+ 1 we see inductively that u4nu4m lies in the ∆-image of classes

with length strict smaller than 2k.

Actually we have shown a bit more. Let Sr be the set of pairs (i, j) with

i+ j < k + r + 2. Then modulo 2 we can choose zk to be of the form

zk =
∑

(i,j)∈I0

u4iu4j = u4k + o2(2k)

for some I0 ⊂ S0. In the general situation it suffices to inductively construct

sets Is ⊂ Ss such that

z
(s)
k =

s∑
r=0

2r
∑

(i,j)∈Ir

u4iu4j

is invariant modulo 2s+1. Suppose that we have already found I0, . . . , Is−1.

Then ∆z
(s−1)
k is a sum of terms of the form 2tunum with n+m < 4k + 4t+ 3.

The lemma 1.8 below tells us that we may assume that n and m are multiples

of 4. Since the monomials in the generators u4i are linearly independent and

∆z
(s−1)
k vanishes modulo 2s we are left with terms of the form 2su4iu4j with

i+ j < k + s+ 1. These can be removed with the method above.
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Lemma 1.7. Let R be a complete, local ring with maximal ideal m and

a ∈ m be given. Let vk =
∑

s≥0 n
(k)
s wk+s be a convergent series in R[w1, w2, . . . ]

with n
(k)
0 ∈ R× and as | n(k)

s for all s, k. Then there are m
(k)
t such that

wk =
∑

s≥0 m
(k)
s vk+s and as divides m

(k)
s for all s, t.

Proof. Suppose the elements m
(k)
s are already constructed modulo mj

and let n
(k)
s = a l

(k)
s with as−1 | l(ks for all s > 0, k ≥ 0. Then we have modulo

mj+1

n
(k)
0 wk = vk − a

∑
s>0

l(k)
s wk+s = vk −

∑
r>0

(a
∑

s+t=r,s>0

l(k)
s m

(k+s)
t )vk+r.

Since the coefficients m
(k)
s are unique the claim follows.

Lemma 1.8. Each un can be written as a convergent series of the form∑
s asu4s with 24s−n | as for 4s ≥ n.

Proof. We know from 3.2.4 and 4.3.6 that we can write un in the form∑
j kjb2j with 24j−n | kj for 4j ≥ n. Hence, the previous lemma gives with

a = 16, vk = u4k and wk = b2k

un =
∑
s

(
∑
j+t=s

kjm
(j)
t )u4s and 24t | m(j)

t .

Note that the proof of the theorem created an algorithm which produces the

spherical classes zk. The first two ones can be chosen as follows modulo 2:

z3 = u12 + u2
8 + u8u4 + u8 + u4

z5 = u20 + u2
12 + u12u8 + u16u4 + u12u4 + u8u4 + u2

4

It is not possible to alter the class u4 by terms of strict smaller l2-length in a

way that it becomes a spherical class. However, the sum u4 + u2
4 happens to

be invariant modulo 2. Hence u4 behaves in the same way as the class b which

was defined earlier. A closer relationship between the two classes is established

in the next section.

2. Some 2-adic analysis and the proof of the splitting theorem

In chapter 3 we constructed an E∞-map ϕ : Tζ −→MSpin and investigated

its behaviour in KO-theory. In 3.1.7 we calculated the image of the θ-algebra
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generator b ∈ π0KO∧Tζ under the image of ΦπJ∗ϕ∗ for all 1 6∈ J . The resulting

continuous functions determine ϕ∗b since the map

π0KO ∧MSpin
Φ(1∧πJ )∗−→

⊕
1 6∈J

T (Z×2 /± 1,Z2)

is an isomorphism. In the same chapter we also calculated the 2-adic functions

which correspond to the algebra generators u4k. In this section we compare

the 2-adic functions and prove the

Theorem 2.1. ϕ∗b = u4 + o2(2).

A weaker statement is shown in the following

Lemma 2.2. Mod 4 the class ϕ∗b coincides with −u4.

Proof. With y = −2x+ x2 the formula 3.3.3 reads

k
∑
n

Θ(un)(k)xn = (1 + y)(1−k)/2 (1 + y)k − 1

y

=
∑
s,t

(
(1− k)/2

s

)(
k

t+ 1

)
ys+t.

Moreover, observe that for all integers n =
∑

s αs2
s we have mod 16

3n = 1 + 2α0 + 8α1

as one easily verifies. Thus we obtain for k = 3n mod 4

Θ(u4)(k) = k−1
∑
s+t=2

(
(1− k)/2

s

)(
k

t+ 1

)
=

(
(1− k)/2

2

)
+

1− k
2k

(
k

2

)
+

1

k

(
k

3

)
= α0 + 2α1 − α0 − α0 = −n.

The result now follows from 3.1.7.

It is clear that ϕ∗b is some convergent series in the u4k-monomials. One might

hope to get along with the indecomposable classes u4k itself. For this purpose,

we mention that the group of continuous functions has a simple basis which is

given by the binomial functions:
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Proposition 2.3. (compare Mahler [Sch84]) Let f : Z2 −→ Q2 be con-

tinuous. Then there is a convergent series of the form

f(x) =
∞∑
n=0

an

(
x

n

)
.

Moreover, the null series an ∈ Q2 is unique.

Another basis is given by the family x 7→
(

2x
2n

)
since it coincides with the

binomial basis modulo 2.

Proposition 2.4. Let f : Z×2 /±1 −→ Z2 be an even continuous function.

Then f admits an expansion of the form

f =
∞∑
n=0

anΘ(u4n)

for some null series an ∈ Z2. Moreover, the expansion is unique.

Proof. The continuous function g(x) = f(2x− 1)(2x− 1) : Z2 −→ Q2

admits a Mahler expansion

g(x) =
∑
m

am

(
2x

2m

)
=
∑
m

am(

(
2x− 1

2m

)
+

(
2x− 1

2m− 1

)
).

Hence, there is a null series a′m such that for all k ∈ Z×2

f(k) =
f(k) + f(−k)

2
=
∑
m

a′mk
−1(

(
k

m

)
−
(
−k
m

)
).

We claim that for each m the function

ϕm(k) = k−1(

(
k

m

)
−
(
−k
m

)
)

can be expressed in terms of the Θ(u4n). With t(x) = (2x− x2)(1− x)−1 the

formula 1.7 reads

t(x)
∑
j

Θ(uj)(k)xj = k−1((1− x)k − (1− x)−k) =
∑
m

ϕm(k)xm.

Using 1.8 we hence constructed an expansion of f with a null series an ∈ Q2.

Its intergrality and uniqueness now easily follows from the isomorphism of

groups

Z2[u4, u8, u12, . . . ] ∼=
⊕
1 6∈J

T (Z×2 /± 1,Z2).
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The proof of the proposition provides an algorithm for the coefficients in the

expansion of the function associated to b. Note that we may write the latter

in the form

b(x) =
log(x)

log(3)
: Z×2 /± 1 −→ Z2.

Here, the 2-adic logarithm is given by the formula

log(1 + x) =
∞∑
n=1

(−1)n+1x
n

n
for |x| < 1.

It is elementary to check that the logarithm always is divisible by 4 and that

log(3) = 4 modulo 8. Hence, the quotient log(x)/log(3) is well defined. By

3.1.7 it coincides with b(x) since the 2-adic logarithm satisfies the usual prop-

erties. Before carrying out the program of expanding b we observe

Lemma 2.5. l1(ϕs) ≤ [ s
2
]− 1 for all s ≥ 1.

Proof. It is easy to see with 1.7 that

ϕs = 2Θ(us−1) +
s−2∑
j=0

Θ(uj)

Hence the assertion follows from 2.4 and 1.8.

Proof of 2.1. Let α be the linear operator which takes a continuous

function f on Z×2 to the even function

α(f) : Z×2 /± 1 −→ Z2; k 7→ k−1(f(k)− f(−k)).

Then we have for all k = 2x− 1 ∈ Z×2

log(k) = 2−1α(k log(k))

=
∑
n≥1

(−1)n+1 2n−1

n

n∑
s=0

(−1)n−s
(
n

s

)
(2α(xs+1)− α(xs)).

It is well known that

xn =
∑
m≤n

amn

(
x

m

)
with amn = S(m,n)m!.

Here, S(m,n) is the Stirling number of the second kind. Furthermore, the

expansion (
2x

2m

)
=
∞∑
l=0

22l

(
m+ l

2l

)(
x

m+ l

)
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shows with 1.7, Pascal’s equality and the lemma that

l1(α(

(
x

m

)
)) ≤ l1(ϕ2m + ϕ2m−1) ≤ m− 1.

The number m! is divisible by 2m−σ(m). Here, σ(m) is the sum of the number

of digits in the 2-adic decomposition of m. This gives

l2(amnα(

(
x

m

)
)) ≤ 2−m+σ(m)(m− 1) ≤ 1

for all m. Since for n ≥ 5 the number 2n−1/n is divisible by 4 all summands

in the expansion have l2-length at most 1/4 or l1-length at most 2. Hence b

is an expression in terms with l2-length strict smaller than 2 and terms with

l1-length at most 4. Thus the assertion follows from 2.1.

Now we can show in its full glory the main

Theorem 2.6. The E∞-map

(ϕ, z3, z5, z7, . . . ) : Tζ ∧
∞∧
k=1

TS0 −→MSpin

is an isomorphism.

Proof. The map is a KO-equivalence by 1.6, 2.1, 2.3.5, 2.4.4 and 4.3.8.
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CHAPTER 6

The relations of spin bordism to real K-theory

1. The θ-algebra structure of π∗MSpin

A first consequence of the splitting formula is the

Corollary 1.1. Let f ∈ π0MSpin be the image of f ∈ π0Tζ. Then we

have an isomorphism of θ-algebras

π∗MSpin ∼= π∗KO ⊗ T{f, z3, z5, z7, . . . }.

Proof. This immediately follows from the theorem and 2.4.5.

Remark 1.2. The formula for the homotopy ring of spin bordism evokes

the hope that MSpin can be made into a KO-algebra spectrum. We have

seen earlier that MSpin splits into a sum of KOs and hence is a KO-module

spectrum (in contrary to the unlocalized MSpin [Sto94].) However, there

does not exist any map of ring spectra from KO to MSpin even in the K(1)-

local world: any such would give a self map of KO when composed with the

Â-map π∅. The induced map in KO-homology factorizes over the free ring

π0KO ∧MSpin and thus coincides with the augmentation

ε∗ : π0KO ∧KO −→ π0KO ⊂ π0KO ∧KO

by 3.1.5 and 3.2.5. Even rationally, there is no self ring map of KO which

induces the augmentation map in KO-homology.

2. The E∞-cellular structure of the Â-map

In the following we always assume that we have chosen zk in a way that

the constant Âzk is null. It is well known that the Â-map is an E∞-ring map.

It hence coincides with the E∞-map

MSpin ∼= Tζ ∧
∧

TS0 (ι,∗)−→ KO

since it does so when restricted to Cζ ∨
∨
TS0.

69
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Remark 2.1. The E∞-property of Â actually is a consequence of the split-

ting theorem and the H∞-property of Â: it is enough to show that the map

(ι, ∗) coincides with Â. In KO-homology they agree since they have the same

values on the θ-algebra generators b, z3, z5, . . . . Hence the claim follows from

the following proposition which is interesting in its own right.

Proposition 2.2. (i) There are no phantom cohomology operations in

KO-theory.1

(ii) KO0KO ∼= T (Z×2 /±,Z2)∧ ∼= Homcts(π0KO ∧KO, π0KO).

In particular, any self map of KO is determined by its behaviour in

KO-homology. That is, the map

KO0KO −→ Homcts(π0KO ∧KO, π0KO ∧KO)

is injective.

Proof. Let G# be the Pontrjagin dual Homcts(G,Z2∞) of a 2-profinite

abelian group G. Then the pairing

π0(K ∧KO,Z2∞)⊗K0KO −→ Z2∞

induces an isomorphism (compare 2.3 of [Bou99])

K0KO ∼= π0(K ∧KO,Z2∞)# ∼= T (Z×2 /± 1,Z2)∧.

Hence any map from KO to K is determined by its behaviour in K-homology

and there are no phantom maps. Thus it suffices to show that the complexifi-

cation

KO0KO −→ K0KO

is an isomorphism. It is well known that the real and the complex (completed)

representation ring of each group Spin(8k) are the same (compare [And64]).

Using 3.1.2 we just saw that the complex inverse system is lim1-free. Hence so

is the real and we have

KO0MSpin ∼= K0MSpin.

This gives the assertion.

The corollary 1.1 suggests how to obtain KO-theory by attaching E∞-cells

to MSpin.

1For the unlocalized version of this statement see [And83].
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Corollary 2.3. The diagram∧∞
i=1 TS

0 ∗ //

(f,z3,z5,... )

��

T∗

��
MSpin

Â // KO

is a homotopy pushout of E∞-spectra.

Before deducing the corollary from the splitting theorem we need a tool

which is basic in the calculation of homotopy pushouts.

Theorem 2.4. (Eilenberg, Moore)

Let P be the homotopy pushout of the diagram

Y ←− X −→ Z

in STU . Then there is a natural spectral sequence of the form

E2
p,q = Torπ∗Xp,q (π∗Y, π∗Z) =⇒ πp+qP.

Proof. The spectral sequence is well known. The construction in the

category of S-algebras [EKMM97] verbatim carries over to the category STU .

Alternatively, one may use theorem IV.6.2 [EKMM97] and observe that the

category STU is Quillen equivalent to the category of S-algebras.

Lemma 2.5. The T{f}-module T{b} is free2 with basis all monomials of

the form

(θi1b)(θi2b) · · · (θikb) with is 6= it for s 6= t.

Proof. Compute modulo 2, θb, θ2b, . . . , θk−1b with 2.2.5

θkf = θk(ψ(b)− b) = ψθk(b)− θkb = (θkb)2 + θkb

θkf = (θkb)
2 + θkb.

Hence, it is elementary to check that the map⊕
I⊂{1,... ,n}

F2[f, θ1f, . . . , θnf ] 〈θIb〉 −→ F2[b, θ1b, . . . , θnb]

is an isomorphism.

2In [Hop98b] Hopkins says that the map T{f} −→ T{b} is étale but the author is

unsure of the meaning of this property for the map between infinitely generated rings.
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Proof of 2.3: Let P be the homotopy pushout of the diagram. We

prove that the induced map from P to KO is a K-equivalence. The Eilenberg-

Moore spectral sequence

Torπ∗K∧
∧
TS0

p,q (π∗K ∧MSpin, π∗K) =⇒ πp+qK ∧ P

collapses since by the splitting theorem and the lemma π∗K ∧MSpin is flat.

This gives

π∗K ∧ P ∼= π∗K ∧MSpin⊗π∗K∧∧TS0 π∗K ∼= π∗K ⊗ T{b} ⊗T{f} Z2.

Hence it suffices to show that the latter is the algebra

π∗K ∧KO ∼= T (Z×2 /±, π∗K) ∼= T (Z2, π∗K).

Observe that in the ring of continuous functions we have for all n
∞∑
k=0

2kαk = ϕb = ψnϕb =
n∑
k=0

2k(θkϕb)
2n−k

and hence by induction on n modulo 2

θnϕb = αn.

Hence the claim follows from 3.2.5 and the calculation made in the proof of

the lemma.

There is a more direct proof of the corollary which uses a result of Hopkins:

he shows that the right square of the diagram

TS0 ∧
∧
TS0 1∧∗ //

(f,(z3,z5,... ))

��

TS0 ∧ T∗
f

��

∗ // T∗

��
MSpin // Tζ // KO

is a homotopy pushout. In fact, this is clear by the same argumentation as

above. The splitting theorem gives the homotopy pushout property of the left

square and hence furnishes the result.

3. Another additive splitting and the Conner-Floyd isomorphism

We have seen earlier that MSpin additively splits into a sum of KO-

theories. Using the multiplicative splitting theorem we are now able to write

down an additive splitting which recovers more structure.
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Corollary 3.1. For all spectra X there is a natural isomorphism of

π0MSpin-modules

π∗MSpin ∧X ∼= π∗KO ∧X ⊗ T{f, z3, z5, . . . }.

Here, the module structure of the right hand side is given by the isomorphism

of 1.1.

Proof. Choose a projection pr of the free T{f}-module T{b} onto the

summand T{f}. Then the composite

π∗Tζ ∧X −→ π∗KO ∧ Tζ ∧X ∼= π∗KO ∧ Tζ ⊗π∗KO π∗KO ∧X
∼= π∗KO ∧X ⊗ T{b}

1⊗pr−→ π∗KO ∧X ⊗ T{f}

is a natural transformation between cohomology theories. Hence the result

follows from the splitting theorem.

This result immediately implies the well known

Corollary 3.2. (Hopkins, Hovey [HH92])

For all spectra X the natural map

π∗MSpin ∧X ⊗π∗MSpin π∗KO −→ π∗KO ∧X

induced by the Â-orientation is an isomorphism.

Remark 3.3. Hopkins and Hovey prove the general Conner-Floyd isomor-

phism for MSpin and KO by localizing at each prime. The essential work is

done at the prime 2 since for odd primes the original method of Conner and

Floyd applies. Let β ∈ π8MSpin correspond to the Bott class of the first ko-

summand in the ABP-splitting. Then they show that β−1MSpin is K-local.

Hence there is a natural isomorphism

(MSpin ∧R)∗X ⊗(MSpin∧R)∗ (KO ∧R)∗

∼= (LKMSpin ∧R)∗X ⊗(LKMSpin∧R)∗ (KO ∧R)∗

for all ring spectra R. When setting R = SZ/2k we get with 3.1

(LKMSpin ∧ SZ/2k)∗X ⊗(LKMSpin∧SZ/2k)∗ (KO ∧ SZ/2k)∗
∼= π∗LK(1)MSpin ∧ SZ/2k ∧X ⊗π∗LK(1)MSpin∧SZ/2k π∗LK(1)KO ∧ SZ/2k

∼= π∗KO ∧ SZ/2k ∧X

The general statement now can be finished as in section 6 of [HH92].



74 6. THE RELATIONS OF SPIN BORDISM TO REAL K-THEORY



CHAPTER 7

The relations of spin bordism to tmf

This section deals with the applications of the splitting formula to the

K(1)-local topological modular forms. It is quite surprising that each result

of the previous chapter completely carries over from real K-theory to tmf : we

describe the Witten orientation by attaching E∞-cells to MO 〈8〉 and prove

the Conner-Floyd isomorphism as we did for the Â-orientation.

1. The ring of divided congruences

An elliptic curve over a field F is a non singular curve defined by a Weier-

straß equation

CW : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with a1, a2, a3, a4, a6 ∈ F . We will consider curves which are defined over rings

rather than fields and which have mild singularities. Unfortunately, the theory

of such generalized elliptic curves demands a great effort and becomes rather

abstract. At this moment we put up with the following two examples.

Example 1.1. (i) The curve

Cj : y2 + xy = x3 − 36

j − 1728
x− 1

j − 1728

is defined over Z2[j−1] since the series

1

j − 1728
=
∞∑
s=0

26s33sj−s−1

converges 2-adically. It is the universal curve with prescribed j-invariant:

for any elliptic curve over a field F in Weierstraß form there is a certain

rational function j in the ai which only depends on the isomorphism class

of that curve. Moreover, for any given 1728 6= j ∈ F this j-invariant of

Cj is j (compare [Sil86].)
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(ii) Another important curve is the Tate curve which is defined over Z[[q]]

by the equation

CTate : y2 + xy = x3 +B(q)x+ C(q).

Here,

B(q) = −1/48(E4(q)− 1)

C(q) = −1/496(E4(q)− 1) + 1/864(E6(q)− 1)

with the Eisenstein series

E2k = 1− 4k/B2k

∞∑
n=1

(
∑
d|n

d2k−1)qn

and the Bernoulli numbers B2k.

Consider the ring homomorphism

λ : Z2[j−1]−→Z2[[q]]; j−1 7→ E3
4 − E2

6

1728E3
4

.

It has the following meaning: the rational functions in j are precisely the

modular functions of weight zero and the map λ gives their Fourier expansions.

We state for later purpose the

Lemma 1.2. The q-expansion map λ is an inclusion of a pure subgroup.

That is, its cokernel is torsion free.

Proof. It suffices to show that λ is injective modulo 2. Let us be given a

polynomial

p(j−1) =
∑
i≥0

αij
−i

whose q-expansion λp is divisible by 2. Then it inductively follows from

λj−1 = q +O(q2).

that all coefficients αi are even.

There are some more quantities for elliptic curves in Weierstraß form which

we are going to use (compare [Sil86]):

b2 = a2
1 + 4a2

b4 = 2a4 + a1a3

b6 = a2
3 + 4a6
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b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4

c4 = b3
2 − 24b4

c6 = −b3
2 + 36b2b4 − 216b6

∆ = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6

ω = dx/(2y + a1x+ a3) = dy/(3x2 + 2a2x+ a4 − a1y)

Two curves in Weierstraß form over a ring R define the same object iff there

is a change of variables of the form

x = u2x′ + r

y = u3y′ + u2sx′ + t

with r, s, t ∈ R and u ∈ R×. Under these transformations we have

u4c′4 = c4; u6c′6 = c6; u−1ω′ = ω.

Thus the quantities c4 and c6 are invariances of elliptic curves together with

their nowhere vanishing differentials ω. Such objects are called modular forms

over R. For instance, we have

c4(CTate) = E4; c6(CTate) = −E6

and

c4(λCj) = E3
4/E

2
6 ; c6(λCj) = −E3

4/E
2
6 .

Lemma 1.3. There is an isomorphism κ between the curves CTate and λCj

over Z2[[q]].

Proof. The q-expansion of E4 and E6 show that the quotient

E4/E6 ∈ 1 + 8qZ2[[q]]

admits a root

u =
√
E4/E6 ∈ 1 + 4qZ2[[q]].

Hence the quantities

r =
u2 − 1

12
, s =

u− 1

2
, t =

1− u2

24

lie in Z2[[q]]. Since

u = 4

√
c4(λCj)/c4(CTate) = 6

√
c6(λCj)/c6(CTate)

one easily verifies that this gives the desired isomorphism.
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It is well known that the Eisenstein series E4 and E6 generate the graded ring

of modular forms over the complex numbers. Over the 2-adic integers, the ring

of modular forms is given by

mf∗
def
= Z2[c4, c6,∆]/(1728∆− c3

4 − c2
6).

It is a subring of the ring D of divided congruences: the elements of D are

those 2-adically convergent series
∑
fi of (inhomogeneous) modular forms over

Q2 such that the q-expansion
∑
fi(q) = λ(

∑
fi) has coefficients in Z2

1. This is

the ring where all congruences between modular forms take place: for example,

the congruence

E4 ≡ 1 mod 240

corresponds to the class

(E4 − 1)/240 ∈ D.

The presence of congruences means that mf∗ is not a pure subgroup of D.

However, we can make it into one by introducing a new parameter v which

keeps track of the grading:

λ∗ : mf∗ −→ D[v±]; f 7→ f(v−1CTate, v dx/2y + x).

That is,

λ∗(c4) = E4/v
4; λ∗(c6) = −E6/v

6.

Moreover, λ∗ admits a factorization

λ∗ : mf∗
ι−→ Z2[j−1, w±]

λv−→ D[v±].

Here, we set

ι(c4) = w−4 ι(c6) = −
√

1− 1728/j w−6

λv(j
−1) = λ(j−1) λv(w) = v/ 4

√
E4.

Lemma 1.4. λv is pure.

1Katz shows in [Kat75] that D is the coordinate ring of the moduli problem, which is

given by elliptic curves together with isomorphisms of their formal groups with the multi-

plicative formal group. Its relation to the K(1)-local topological modular forms will become

apparent later.
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Proof. The composite of λv with the isomorphism

D[v±] −→ D[v±], v 7→ 4
√
E4 v

is the map λ[v±] and hence is pure by 1.2.

It is well known that an elliptic curve defines a formal group. If the curve is

given in Weierstraß form the addition close to the origin gives a formal group

law with coefficients in Z[a1, a2, . . . , a6]. The formula

F̂W (x, y) = x+ y − a1xy − a2(x2y + xy2)

−(2a3x
3y − (a1a2 − 3a3)x2y2 + 2a3xy

3) + · · ·

is taken from [Sil86]. In particular, there are group laws Ĝj and ĜTate attached

to the curves Cj and CTate, respectively.

Proposition 1.5. The formal groups associated to Cj and CTate admit

multiplicative reductions.

Proof. For the Tate curve this result is well known (compare [Sil86]): an

isomorphism over the power series ring Z[[q, u]] is given by

(u ∈ C∗/qZ) 7→

(
x =

∑
n∈Z q

nu/(1− qnu)2 − 2
∑

n≥1 nq
n/(1− qn)

y =
∑

n∈Z q
2nu2/(1− qnu)3 −

∑
n≥1 nq

n/(1− qn)

)
.

Let f : Ĝm −→ ĜTate be the resulting strict isomorphism and set

χ(x) = x/λv(w) = 4
√
E4x/v, ρ(x) = 4

√
c4(Cj)x = x/ 4

√
1− 1728/j.

Then by 1.3 we have a strict isomorphism over D[v±]

χĜm
χ−→ Ĝm

f−→ ĜTate
κ−→ λĜj

λρ−1

−→ λ ρĜj.

Hence, the strict isomorphism over Q2[j−1, w±]

expρĜj logχĜm : χĜm

∼=−→ ρĜj

q-expands integrally. Thus the result follows from the lemma 1.4.
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2. Elliptic cohomology theories and Artin-Schreier classes

In this section we are interested in complex oriented theories whose formal

group laws come from elliptic curves. We first recall some basic notions from

[Qui71] or [Ada74].

Let E be a multiplicative cohomology theory. Then E is called complex

orientable if there is a class x ∈ Ẽ2
CP∞ which restricts to Σ21 ∈ Ẽ2S2 under

the inclusion map of the bottom cell. Any choice of x is a complex orientation

of E. An orientation of E supplies a system of Thom and Euler classes for

complex vector bundles. The Euler class of a tensor product of line bundles

defines a formal group law

ĜE(x, y)
def
= e(L1 ⊗ L2) ∈ E∗CP∞ × CP∞ ∼= π∗E[[x, y]]

with x = e(L1),y = e(L2).

Definition 2.1. (Hopkins)

An elliptic spectrum is a triple (E,C, κ) consisting of

(i) a ring spectrum E with πoddE = 0 and for which there is a unit in π2E.

(These assumptions guarantee that E is complex orientable as one can

verify with the Atiyah-Hirzebruch spectral sequence.)

(ii) a generalized elliptic curve C over π0E

(iii) an isomorphism κ of the formal completion of this curve with the formal

group GE associated to E.

Example 2.2. There are elliptic spectra K[j−1] and KTate for which the

elliptic curves Cj and CTate and the isomorphisms from 1.5 are part of the

data:

K[j−1]∗X
def
= K∗(X,Z2[j−1]) ∼= Z2[j−1, w±]⊗MU∗ MU∗X

KTate∗X
def
= K∗(X,D) ∼= D[v±]⊗MU∗ MU∗X.

Note that the spectra come to us together with their real companians KO[j−1]

and KOTate which are similarly defined with real K-theory.

There is another theory we like to mention. The 2-series of the formal

group law associated to the universal Weierstraß curve CW takes the form

[2](x) = 2x− a1x
2 +O(x3)
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and hence satisfies the Landweber exactness conditions (compare f.i.[Fra92])

if a1 is inverted. Hence we obtain the theory

W∗X
def
= Z[a1, . . . , a6][a−1

1 ]⊗MU∗ MU∗X

Note that here the coefficients ai of the curve CW have the degree 2i and the

transformation

x = a2
1x
′, y = a3

1y
′

gives a curve over π0W .

Let E be any elliptic theory and assume that its elliptic curve is given in

Weierstraß form. Then similarly, we can choose a unit u ∈ π2E and transform

the curve C over π0E into a curve over π∗E with ai ∈ π2iE. The [2]-series of

the formal group law then shows the relation

a1 ≡ v mod 2 ∈ π2K ∧ E.

Hence the localization map

E −→ E[a−1
1 ]

is a K(1)-equivalence. Thus in the K(1)-local category a1 becomes a unit and

gives rise to the class

j−1 =
∆

c3
4

∈ π0E

which will prove useful in things to come.

Definition 2.3. Let E be a K(1)-local theory. A class b ∈ π0KO ∧ E is

an Artin-Schreier element if ψ3b = b+ 1.

In [Hop98b] Hopkins constructs an Artin-Schreier class for any elliptic E

as follows: he first looks at complex K-theory and sets

b
def
= − log(c4/v

4)

log(81)
∈ π0K ∧ E.

The 2-adic logarithm is well defined by the relation

v ≡ a4
1 ≡ c4 mod 8 ∈ π8K ∧ E
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which is easily verified. In fact, for the theory W the class b gives rise to a

unique real class and hence it does so for any E. Moreover, it is an Artin-

Schreier element:

ψ3b = − log(c4/(81v4))

log(81)
= − log(c4/v

4)

log(81)
+

log(81)

log(81)
= b+ 1.

3. E∞-elliptic spectra and the Atkin-Lehner operator

An E∞-structure on a complex oriented theory E provides unstable oper-

ations (compare [Hop98b]:) let

f : π0E −→ R

be a ring map and H ⊂ f ∗GE be a closed finite subgroup. Then there is a new

map

ψH : π0E −→ R

and an isogeny f ∗GE −→ ψ∗GE with kernel H. If the formal group is isomor-

phic to the multiplicative and H is the canonical subgroup of order 2 then we

may take f to be identity map. In this case ψH coincides with the operator ψ

defined earlier.

Definition 3.1. (Hopkins)

An E∞-elliptic spectrum is an E∞-spectrum E with the following data and

properties:

(i) E is an elliptic theory

(ii) each isogeny described above extends to an isogeny of the elliptic curve

associated to E.

We would like to make the elliptic theories K[j−1] and KTate into E∞-

elliptic theories. Consider the quotient Cj/H of Cj by the subgroup scheme H

of 2-torsion points. It is well known that Cj/H is an elliptic curve and there

is an isogeny

π : Cj −→ Cj/H

with kernel H. This gives a ring map

ψ : Z2[j−1] −→ Z2[j−1]
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which sends j−1 to j−1(Cj/H). This map carries the names Atkin-Lehner

operator [AL70] or Frobenius operator [Kat77][Gou88]. For the Tate curve

we can describe the operation ψ more explicitly: the isogeny π is given by

Tate(q) ∼= Gm/q
Z −→ Gm/q

2Z ∼= Tate(q2); x 7→ x2

and hence ψ(q) = q2. It is obvious that there is a power series l with

ψ(j−1)(q) = j−1(q2) = l(j−1)(q).

Its geometric interpretation shows the 2-adic convergence of l 2.

Lemma 3.2. The formulae

ψ(j−1) = l(j−1) and ψ(q) = q2

impart the structure of θ-algebras to Z2[j−1], D and Z2[[q]].

Proof. For any power series a with coefficients in Z2 we have mod 2

ψa =
∑

aiq
2i ≡

∑
a2
i q

2i ≡ a2.

Hence the assertion follows from 1.2 and the Wilkerson criterion.

In [Hop98b] Hopkins constructs a universal relation which must hold in the

homotopy of any K(1)-local E∞-elliptic theory E. This relation can be incor-

porated into an E∞-cellular complex M which maps into E. It turns out that

the K-theory of this complex imparts an E∞-structure to KTate in a way that

the associated θ-algebra is the one given above.

To construct M and the universal relation consider the element

f = ψb− b ∈ π0K ∧ E.

Since it is invariant under the Adams operations it is a modular function.

Hence we may consider f as a 2-adic analytic function in j−1 which maps to

the original f under the canonical map

Z2[j−1] −→ π0E.

By the naturality of the Frobenius operator the value of ψ on f is determined

by the θ-algebra structure of Z2[j−1]..
2A alternative proof for the convergence will be given in the next section with the help

of formula 4.1.5.



84 7. THE RELATIONS OF SPIN BORDISM TO tmf

Lemma 3.3. (Hopkins)

The map

Z2[f ] −→ Z2[j−1]

is an isomorphism.

Proof. The beautiful proof given in [Hop98b] is based on well known

congruences for the Ramanujan τ -function.

Let h be the 2-adically convergent power series with

h(f) = θ(f) ∈ Z2[j−1].

Then this gives a universal relation for the θ-algebra structure of any K(1)-

local E∞ ring spectrum.

Proposition 3.4. (Hopkins)

Set

y = θ(f)− h(f) ∈ π0Tζ

and let M be the E∞-homotopy pushout of the diagram

Tζ
y←− TS0 ∗−→ T∗ = S0.

Then we have isomorphisms of rings

π∗KO ∧M ∼= π∗KO ∧ Tζ ⊗π∗KO∧TS0;y π∗KO

and

π∗M ∼= π∗KO[j−1].

Proof. Hopkins shows that the map

y∗ : π0KO ∧ TS0 −→ π0KO ∧ Tζ

is flat. Hence the first claim follows from the Eilenberg-Moore spectral se-

quence. For the second the spectral sequence and the lemma give

Torπ∗S
0⊗T{y}(π∗KO ⊗ T{f}, π∗S0) ∼= TorT{y}(π∗KO ⊗ T{f},Z2)

∼= π∗KO ⊗ T{f} ⊗T{y} Z2
∼= π∗KO[f ] ∼= π∗KO[j−1]

Corollary 3.5. There is an additive K(1)-local homotopy equivalence be-

tween M and KO[j−1].
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Proof. Consider the natural transformation of homology theories

π∗M ∧X −→ π∗M ∧KO ∧X ∼= π∗KO ∧M ⊗π∗KO π∗KO ∧X
∼= π∗KO ∧ Tζ ⊗π∗KO∧TS0;y π∗KO ⊗π∗KO π∗KO ∧X
∼= π∗KO ∧X ⊗ T{b} ⊗T{f} T{f} ⊗T{y} Z2

1⊗pr+−→ π∗KO ∧X[j−1].

It is an isomorphism on the coefficients.

Corollary 3.6. The canonical map

π0K ∧M −→ D, b 7→ b(KTate)/v = 1

is an isomorphism of θ-algebras. Hence, KTate is an E∞-elliptic theory and

the map

KOTate = KO ⊗D −→ KO ∧M

is a homotopy equivalence.

Proof. Rationally, the inverse of

π0K ∧M ⊗Q ∼= Q2[j−1, w±]
λv−→ D[v±]⊗Q v=1−→ D ⊗Q

is given by

D ⊗Q ∼= mf∗ ⊗Q
ι⊗Q−→ π0K ∧M ⊗Q

as one easily checks with the formulae of the first section. Next consider the

diagram of left Z2[j−1]-modules

T (Z2,Z2)⊗ Z2[j−1]
µ(s⊗i)

//

1⊗λ
��

π0K ∧M

b7→b(KTate)
��

T (Z2,Z2)[[q]]
(nk)7→ck(KTate)

// T (Z2,Z2)[[q]]

.

Here,

s : T (Z2,Z2) −→ π0K ∧ Tζ −→ π0K ∧M

is the ψ3-equivaraint section of the projection

π0K ∧M −→ π0K ∧K ∼= T (Z2,Z2), f 7→ 0

constructed in [Hop98b]. It sends the Mahler basis to certain classes

ck ∈ π0KO ∧M ∼= T{b} ⊗T{y} Z2.
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The right vertical arrow is the map of θ-algebras which sends b to the Artin-

Schreier element of KTate. We claim that it is pure. This follows from the fact

that the left vertical map is so and the top and bottom arrows are isomor-

phisms. Hence, π0K ∧M consists of inhomogeneous modular forms
∑
fi with

the property that for each λ ∈ Z×2 the sum
∑
λifi q-expands integrally. How-

ever, it is well known that the ring of divided congruences is invariant under

these Adams operations (compare [Kat75]). This finishes the proof.

Remark 3.7. Let tmf be the homotopy inverse limit of all E∞-elliptic

spectra over all maps which preserve the E∞-elliptic structure. Then the

canonical E∞-map

M −→ tmf

is an E∞-homotopy equivalence. This follows from a calculation of the homo-

topy of tmf [Hop98a]. Hence we will write tmf instead of M in the sequel. It

might be possible to provide an E∞-elliptic structure to the theory K[j−1] and

to show the universal property of M by taking homomotpy fix points under

complex conjugation. Note however, that the equivalence

tmf ∼= KO[j−1]

is only additive. This follows for instance from the fact that the idempotents of

the ring D are trivial whereas the ring π0KO∧KO[j−1] has many idempotents.

Hence, the situation is similar to the one of the elliptic cohomology which was

defined by Kreck and Stolz in [KS93].

4. Witten’s map of θ-algebras

Next, we are looking for orientations which induce maps of θ-algebras. For

the theory K[[q]] we can do the following: let

θ(q, u) = (1− u)
∏
n≥1

(1− qnu)(1− qnu−1)

(1− qn)2

be the normalized θ-function. Then for xK = 1− u the power series

θ(q, u) ∈ π∗K[[q, xK ]] ∼= K∗CP∞[[q]]

defines a new orientation t of K[[q]].
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Lemma 4.1. Let Θt be the composite

π0K ∧MU
t∗−→ π0K ∧K[[q]] −→ T (Z×2 ,Z2)[[q]].

Then for all k ∈ Z×2 we have∑
i≥0

Θt(bi)(k)xi = θ(q, (1− x)k)/x

Proof. The proof is very close to the one of 3.3.3. So we only give a

sketch here. Let zK be the ordinary K-theoretical Thom class. Then for line

bundles zK is related to the new Thom class zt by the formula

zt = zKθ(q, 1− xK)/xK

and hence

ψk(zt) =
θ̂kzKθ(q, (1− xK)k)

1− (1− xK)k
.

This gives ∑
i≥0

Θt(bi)(k)xi =
∑
i≥0

〈
βi,

θ̂kθ(q, (1− xK)k)

1− (1− xK)k

〉
xi

= θ(q, (1− x)k)/x.

Proposition 4.2. The t-orientation induces a map of θ-algebras

π∗K ∧MU −→ π∗K ∧K[[q]].

Proof. We need to show that the diagram

π∗K ∧MU
ψ

//

t∗
��

π∗K ∧MU

t∗
��

π∗K ∧K[[q]]
q 7→q2

// π∗K ∧K[[q]]

commutes. Let

g(x) =
∞∑
i=0

bix
i ∈ π0K ∧MU [[x]]

be the power series considered earlier. Then with 4.1.5 it suffices to check the

equality ∑
i≥0

ψ(t∗bi)x
i = t∗(

g(1 +
√

1− x)g(1−
√

1− x)

g(2)
).
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With the last lemma this equation reads

θ(q2, (1− x)k)

x
=

θ(q,−
√

1− xk)θ(q,
√

1− xk)2
(1 +

√
1− x)(1−

√
1− x)θ(q,−1)

which is easily verified by expanding the θ-series.

Unfortunately, the t-orientation does not lift to KTate without further restric-

tions on the bundles. To see this, recall from [HBJ92] or [Sil98] the relation

of θ to the Weierstraß σ-function

σ(u, q) = e−G2x2

u−1/2θ(u, q)

where u = e2πix and

G2 = −B2/4 +
∞∑
n=1

(
∑
d|n

d)qn.

Moreover, the σ-function admits an expansion of the form

σ(u, q) = x exp(−
∞∑
k=2

2

(2k)!
G2kx

2k)

with the divided Eisenstein series

G2k = (−B2k/4k)E2k.

and hence expands in mf∗⊗Q[[x]]. We conclude that G2 is the only term which

keeps us from lifting t. Since this term disappears for bundles with vanishing

first Pontryagin class p1 we are lead to the following construction. Let ξ be a

real bundle and

Stξ =
∞∑
k=0

(Skξ)tk

be the formal sum of its symmetric powers. If ξ is spin we have a Thom class

z(ξ) ∈ K̃O Th(ξ) ⊂ K̃O Th(ξ)[[q]]

This Thom class can be altered by any unit. For instance,

zW (ξ)
def
= z(ξ)⊗

∞⊗
k=1

Sqk(dim ξ − ξ)

is another Thom class. Since zW is natural and multiplicative it defines a ring

map

W : MSpin −→ KO[[q]].
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The map W leads to the so called Witten genus in homotopy

W∗ : ΩSpin
4k = π4kMSpin −→ π4kKO[[q]]

which is by the topological Riemann-Roch formula

W∗(M)⊗ C ∼= v4k

∫
M

Â(TM)ch(
∞⊗
k=1

Sqk(TM − dimTM)⊗ C).

Lemma 4.3. The diagram

MSU //

��

MSpin
W // KO[[q]]

��

MU
t // K[[q]]

commutes.

Proof. This is readily verified with the Chern character (compare

[HBJ92].)

In particular, our calculation in Chern classes shows that W lifts to a map

MO 〈8〉 ∼= MSpin −→ KOTate

which we denote by the same letter.

Lemma 4.4. The map

W∗ : π0KO ∧MO 〈8〉 −→ π0KO ∧KOTate −→ π0KOTate
∼= π0KO ∧ tmf

is a map of θ-algebras. Moreover, the K(1)-local Witten genus

W : π0MO 〈8〉 −→ D

lifts to π0tmf .

Proof. The induced map from MSU to MSpin is surjective in K-

homology. Hence the map

W∗ : π0KO ∧MO 〈8〉 −→ π0KO ∧KOTate

is a map of θ-algebras by 4.2 and 4.3. This shows the first claim. For the

second, observe that the map

W : π0KO ∧MO 〈8〉 −→ π0KO ∧ tmf ∼= D

is compatible with the Adams operations.
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Remark 4.5. We will soon see that there is a (K(1)-local) O 〈8〉-manifold

with Witten genus j−1. Hence, the lemma shows the existence of the Atkin-

Lehner operator, or, equivalently, the 2-adic convergence of the series l.

5. The E∞-cellular decomposition of the Witten map

In this section the Witten orientation becomes a map of E∞-ring spectra.

For that, an explicit lift of the Artin-Schreier class of tmf to MO 〈8〉 is needed.

This requires some geometry.

The ABP -splitting map induces an isomorphism

(Â, π(2)) : π8MSpin ∼= Z⊕ Z.

Hence there are 8-dimensional Spin manifolds with Â-genus 1. We want to

make a convenient choice of such a Bott manifold. The quaternian projective

space HP 2 admits a metric of positive scalar curvature and so its Â-genus

vanishes. Hence any Bott manifold can be altered by a multiple of HP 2. Since

the signature sig(HP 2) is 1 we can find a Bott manifold B with vanishing

signature.

To make B explicit, consider the Kummer surface

K = {(z0, z1, z2, z3) ∈ CP 3| p(z) = 0}; p(z) =
3∑
i=0

z4
i .

The homogeneous polynomial p defines a section in (L∗)4 which transversally

intersects the 0-section in K. Hence this line bundle gives the normal bundle

of K in CP 3. The surface K intersects [CP 1] in 4 points. Thus the image of its

fundamental class [K] is 4β2 ∈ H4CP
3 under the map induced by the inclusion.

With these data it is elementary to check that

Â(K) = 2, sig(K) = −16.

This gives the relation

B = K2/4− 64HP 2.

The following observation the author learned from Matthias Kreck.

Proposition 5.1. The sequence

π8MO 〈8〉 −→ π8MSpin
p2

1−→ Z



5. THE E∞-CELLULAR DECOMPOSITION OF THE WITTEN MAP 91

is exact. Moreover, any O 〈8〉-manifold is spin bordant to a multiple of

M
def
= B− 224HP 2.

Proof. It is elementary to check that

p2
1(K2) = 4608; p2

1(HP 2) = 4

and hence

p2
1(M) = 0; sig(M) = −224.

Kervaire and Milnor [KM63] showed the existence of an almost paralleliz-

able manifold M′ with signature 224. Hence, M is spin bordant to an O 〈8〉-
manifold. Since its Â-genus is 1 any other class in the kernel must be a multiple

of M and the claim follows.

Proposition 5.2. The class

bW = − log(M/v4)

log(81)
∈ π0KO ∧MSpin

is an Artin-Schreier element.

We first need to show that the quotient is well defined.

Lemma 5.3. The class v4 −M is divisible by 16 in π8KO ∧MSpin.

Proof. Compute for all λ ∈ Z×2

ψλµπ∅∗(v
4 −M) = (λ4 − 1) v4 ≡ 0 mod 16.

and

ψλµπ(2)
∗ (v4 −M) = π(2)(M).

To evaluate the latter we compute with the topological Riemann-Roch formula

π(2)(K2) =
〈
π(2)(νK2), [K2]KO

〉
=

〈
Â(TK2)ch(π(2)(νK2)⊗ C), [K2]

〉
= 2304.

This gives

π(2)(M) ≡ 576 ≡ 0 mod 16.

Hence, the assertion follows from the ABP -splitting and Adams’ description

of π∗KO ∧KO [Ada74].



92 7. THE RELATIONS OF SPIN BORDISM TO tmf

Proof of 5.2: Since the quotient is well defined by 5.3 we can compute

as before

ψ3bW = − log(M/(81v4))

log(81)
= − log(M/v4)

log(81)
+

log(81)

log(81)
= b+ 1.

Remark 5.4. Since the Kummer surface admits an SU -structure on its

stable tangent bundle one might hope to obtain an Artin-Schreier class in

π0KO ∧MSU this way. For that, consider K as an object of

π∗K ∧MSU ⊂ π∗K ∧MU ∼= π∗K[b1, b2, . . . ].

To determine the polynomial we can first work out its Chern numbers to obtain

K = 18(CP 1)2 − 16CP 2.

Then Miscenko’s formula gives
∞∑
n=0

CP n

n+ 1
b(x)n+1 = logĜu(b(x)) = logĜm(x) = − log(1− vy)

v
.

A comparison of coefficients furnishes the equality

K = 48b2 − 24b2
1 − 24vb1 + 2v2 = −24a1,1 + 2v2 ∈ π4K ∧MSU.

Hence v4 − K2/4 is divisible by 8 and so

M ≡ v4 mod 8 ∈ π8K ∧MSU.

Thus we can set up the logarithm and lift the Artin-Schreier class to MSU .

As a consequence of the splitting formula of MSpin and the lemma below we

have

Corollary 5.5. Tζ is a direct E∞-summand in the K(1)-local MSU .

At the prime 2 the theory MSU additively splits into a sum of suspensions

of Pengelley’s indecomposable theories BoP s [Pen82] and BP s. One sum-

mand BoP contains the unit and comes with a map into ko which is surjective

in homotopy. It would be interesting to know the precise relationship between

the K(1)-local BoP and the theory Tζ .

Lemma 5.6. Let b and b′ be two Artin Schreier elements of π0KO∧MSpin.

Then there is an E∞-self homotopy equivalence κ of MSpin which carries b to

b′.
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Proof. We may assume that b is the Artin-Schreier element considered

earlier. The short exact sequence

0 −→ π0MSpin −→ π0KO ∧MSpin
ψ3−1−→ π0KO ∧MSpin −→ 0

tells us that b and b′ can only differ by a class a ∈ π0MSpin. Let κ be the

E∞-self map of

MSpin ∼= Tζ ∧
∧

TS0

which is the identity on each TS0 and restricts to

ι+ a δ : Cζ −→MSpin

on Tζ . Then its inverse is defined in the same way with a replaced by −a.

Corollary 5.7. The Witten orientation can be realized as an E∞-ring

map

W : MO 〈8〉 −→ tmf.

Moreover, there is a choice of classes z3, z5, . . . ∈ π0MO 〈8〉 such that the

diagram ∧∞
i=1 TS

0 ∗ //

(y,z3,z5,... )
��

T∗

��
MO 〈8〉 W // tmf

is a homotopy pushout of K(1)-local E∞-ring spectra.

Proof. The lemma gives a splitting

(ϕ̃, (z̃k)) : Tζ ∧
∧

TS0 ∼=−→MO 〈8〉

for which the Artin-Schreier class b ∈ π0KO∧Tζ maps to bW . Let dk ∈ π0tmf

be the images of the free generators under the Witten genus. Consider the

E∞-map

MO 〈8〉 ∼= Tζ ∧
∧

TS0 −→ tmf

which is the canonical map on Tζ and is given by dk on the free components.

Its induced map of θ-algebras in KO-homology coincides with the Witten map

on the generators. We have seen in 4.4 that W gives a map of θ-algebras and

so the two coincide. Since any such map is determined by its behaviour in

KO-homology (compare 2.2) we proved the first claim.
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For the second one, observe that W induces a surjection by 3.3

ϕ̃∗ : π0Tζ −→ π0MO 〈8〉 W∗−→ π0tmf.

Hence, there are classes tk ∈ π0Tζ with the property

ϕ̃∗(tk) = W∗(z̃k)

and the classes

zk
def
= z̃k − tk ∈ π0MO 〈8〉

are annihilated by the Witten genus. Thus the claim follows from 3.4 once we

have shown that the self map

(id, (zk)) : Tζ ∧
∧

TS0 −→ Tζ ∧
∧

TS0

is an isomorphism. This is clear since its inverse is given by (id, (z̃k + tk)).

Corollary 5.8. For all spectra X the natural map

π∗MO 〈8〉 ∧X ⊗π∗MO〈8〉 π∗tmf −→ π∗tmf ∧X

induced by the Witten orientation W is an isomorphism.

Proof. We have by 6.3.1, 3.3 and 5.7

π∗MO 〈8〉 ∧X ⊗π∗MO〈8〉 π∗tmf

∼= π∗KO ∧X ⊗ T{f, z3, z5, . . . } ⊗T{f,z3,z5,... } T{f}/{θ(f)− h(f)}
∼= π∗KO ∧X[f ]

Hence it is homology theory.

Remark 5.9. One may ask if the isomorphism of Conner-Floyd type still

holds if MO 〈8〉 is not localized. For that, one needs to know if M−1MO 〈8〉
is K-local. This question will be investigated somewhere else.



APPENDIX A

The homology ring of BSU and 2-structures on formal

groups

Let L be the canonical line bundle over CP∞ and let βi ∈ E2iCP
∞ be dual

to c1(L)i. Let

f : CP∞ × CP∞ −→ BSU

be the map which classifies the product (1 − L1)(1 − L2). For each natural

number k and 1 ≤ i ≤ k − 1 choose integers nik such that

k−1∑
i=1

nik

(
k

i

)
= g.c.d.{

(
k

1

)
, . . . ,

(
k

k − 1

)
}.(1)

Then we will show

Theorem 1.10. Define elements

dk =
k−1∑
i=1

nikf∗(βi ⊗ βk−i) ∈ E2kBSU.(2)

Then for any complex oriented E we have

E∗BSU ∼= π∗E[d2, d3, d4, . . . ].(3)

Recall from [Ada74] that for any complex oriented ring theory E we are

given a class x ∈ Ẽ2
CP∞ such that

E∗CP∞ ∼= π∗E[[x]].

The H-space structure of BS1 ∼= CP∞ induces a comultiplication

µ∗ : E∗CP∞ −→ E∗CP∞⊗̂E∗CP∞; x 7→ x+F y

and a ring structure map

E∗CP
∞ ⊗ E∗CP∞ −→ E∗CP

∞ × CP∞ µ∗−→ E∗CP
∞.

Let β0 = 1, β1, β2, . . . be the additive basis of E∗CP
∞ dual to x0, x1, x2, . . . .

95
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Definition 1.11. The binomial coefficients of the formal group law F(
k

i, j

)
F

∈ π2(i+j−k)E

are defined by the equation

(x+F y)k =
∑
i,j

(
k

i, j

)
F

xiyj.

With this notation we easily see

Lemma 1.12.

βiβj =

i+j∑
k=0

(
k

i, j

)
F

βk.

Example 1.13. Let E be integral singular homology. Then F is the addi-

tive formal group law Ĝa and(
k

i, j

)
Ĝa

=

{ (
k
i

)
if i+ j = k

0 else
.

Hence HZ∗CP
∞ is the divided power algebra Γ[β1].

Next let E be K-theory with its standard orientation F = Ĝm. Then

(x+Ĝm
y)k = (x+ y − v−1xy)k =

k∑
s=0

s∑
t=0

(
k

s

)(
s

t

)
(−v)s−kxk−s+tyk−t

and hence (
k

i, j

)
Ĝm

=

(
k

2k − i− j

)(
2k − i− j
k − j

)
(−v)k−i−j

Finally, let E be complex bordism MU . The coefficients of the universal formal

group law FGL are the Milnor hypersurfaces Hi,j of type (1, 1) in CP i×CP j

and hence (
k

i, j

)
FGL

=
∑

i1···+ik=i
j1+···jk=j

k∏
l=1

Hil,jl .

In the following let f : CP∞×CP∞ −→ BSU be the map which classifies

(1 − L1)(1 − L2). Even though f is not a map of H-spaces we may use it to

produce interesting classes in E∗BSU . Let aij ∈ E2(i+j)BSU be the image of

βi ⊗ βj under the induced map f∗.
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Lemma 1.14. The following relations hold for all i, j, k

a0,0 = 1 ; a0i = ai0 = 0 for all i 6= 0(4)

aij = aji(5) ∑
l,s,t

(
l

s, t

)
F

aj−s,k−tail =
∑
l,s,t

(
l

s, t

)
F

alkai−s,j−t(6)

Proof. The first relation is obvious. Let τ be the self map of CP∞×CP∞

which switches the two factors. Then the second relation immedately follows

from the fact that fτ is homotopic to f . To do the last consider the two maps

g, h from (CP∞)×3 to (CP∞)×4 given by

g(x, y, z) = (y, z, x, y z)

h(x, y, z) = (x y, z, x, y)

Their effect on our generators is

g∗(βi ⊗ βj ⊗ βk) =
∑
l,s,t

(
l

s, t

)
F

βj−s ⊗ βk−t ⊗ βi ⊗ βl(7)

h∗(βi ⊗ βj ⊗ βk) =
∑
l,s,t

(
l

s, t

)
F

βl ⊗ βk ⊗ βi−s ⊗ βj−t(8)

This can be verified by pairing the left hand side with the cohomological mono-

mials in the the xi’s.The maps g and h become homotopic in BSU when

composed with µ(f × f) since

(µ(f × f)g)∗ξuniv = (1− L2)(1− L3) + (1− L1)(1− L2L3)

= (1− L1L2)(1− L3) + (1− L1)(1− L2) = (µ(f × f)h)∗ξuniv

The desired relation now follows from the above by applying µ(f × f)∗ to the

right hand side of (7) and (8).

There is another way to look at the classes aij and the relations of 1.14. First

note that E ∧BSU+ is itself a complex oriented ring theory with

xE∧BSU+ = (1 ∧ η)∗xE

In abuse of the notation we will simply denote this orientation by x in the

following. Hence, we may view

(CP∞ × CP∞)+
f+−→ BSU+

η∧1−→ E ∧BSU+
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as a power series

f(x, y) = 1 +
∑
i,j≥1

bijx
iyj ∈ (E ∧BSU+)0(CP∞ × CP∞)

for some bij ∈ E2(i+j)BSU . Of course, we have

bij =
∑
k,l

bij(1 ∧ η)∗
〈
βi ⊗ βj, xkyl

〉
=

〈
(1 ∧ η)∗βi ⊗ (1 ∧ η)∗βj, 1 +

∑
k,l

bklx
kyl

〉
= 〈(1 ∧ η)∗(βi ⊗ βj), f∗(η ∧ 1)〉 = (µf(1 ∧ η))∗(βi ⊗ βj) = aij.

The power series f is a 2-structure on the fomal group law F in the sense of

[HAS98]3.1.: This means that the relations

f(x, 0) = f(0, y) = 1(9)

f(x, y) = f(y, x)(10)

f(y, z)f(x, y +F z) = f(x+F y, z)f(x, y).(11)

hold. In fact, one easily checks that these are equivalent to 1.14.

Definition 1.15. For any complex oriented E let C2(E) be the graded ring

freely generated by the aij’s subject to the relations of 1.14. We wirte α for the

canonical map from C2(E) to E∗BSU .

We will see below that α is an isomorphism. Equivalently, given any 2-

structure f ′ on the formal group F over an π∗E-algebra S then there is a

unique algebra homomorphism

ϕ : E∗BSU −→ S

with ϕf = f ′. Hence, E∗BSU carries the universal 2-structure on F which is

the result of [HAS98].

Consider the canonical map of H-spaces ι : BSU −→ BU . Writing g for

the map from CP∞ to BU which classifies 1 − L we see from the homotopy

equivalence

ι+ g : BSU × CP∞ −→ BU

that ι is an inclusion in homology. It is well known [Ada74] that E∗BU is

a polynomial algebra with generators bi = g∗βi. Alternatively, let g′ be the

map which classifies L − 1. Then the classes g′βi = b′i again give polynomial
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generators of E∗BU . Since the map µBU(g × g′)∆ is null they are determined

by the equation
∞∑
i=0

b′ix
i = (

∞∑
i=0

bix
i)−1.

Proposition 1.16. We have the formula

ι∗aij =
∑

s=0,... ,i; t=0,... ,j
k=0,... ,s+t

(
k

s, t

)
F

b′kbi−sbj−t

In particular, modulo decomposables in Ẽ∗BU

ι∗aij =

i+j∑
k=0

(
k

i, j

)
F

b′k.

Proof. Decompose f by writing

f ∗ξuniv = 1− L1 − L2 + L1L2 = (L1L2 − 1) + (1− L1) + (1− L2)

= (g′µCP∞ + g p1 + g p2)∗ξuniv

and calculate

ι∗aij = ι∗f∗(βi ⊗ βj)

= µBU∗ (g′µCP
∞

∗ ⊗ g p1∗ ⊗ g p2∗)
∑

i1+i2+i3=i
j1+j2+j3=j

βi1 ⊗ βj1 ⊗ βi2 ⊗ βj2 ⊗ βi3 ⊗ βj3

=
∑

i1+i2=i
j1+j3=j

i1+j1∑
k=0

(
k

i1, j2

)
F

b′kbi2bj3

Now choose nik and dk as in 1.10 and set

ε(k)
def
=

k−1∑
i=1

nik

(
k

i

)
= g.c.d.

{(
k

1

)
, . . . ,

(
k

k − 1

)}
=

{
p for k = ps

1 else
.

For a graded ring R we write R+ for the elements in positive degrees and

Q(R) = R/R2
+.

Corollary 1.17. In Q(E∗BU) we have ι∗dk = ε(k)b′k.

Proof. Using the identity(
s+ t

s, t

)
F

=

(
s+ t

s

)
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we compute with the proposition

ι∗dk =
∑
i+j=k

nikι∗aij =
k−1∑
i=1

nik

(
k

i

)
b′k = ε(k)b′k.

Before proving 1.10 we need two more lemmas.

Lemma 1.18. For all s, t we have

ast =

(
s+t
s

)
ε(s+ t)

ds+t ∈ Q2(s+t)(C2(E)).

Proof. The third relation of 1.14 reads modulo C2(E)2
+(

n

n− t

)
amn =

(
s

m

)
ast

for all m+ n = s+ t, m ≤ s. We conclude(
s+t
s

)
ε(s+ t)

ds+t =
∑

m+n=s+t

nms+t

(
s+t
s

)
ε(s+ t)

amn = ast
∑

m+n=s+t

nms+t

(
s+t
m

)
ε(s+ t)

= ast

Lemma 1.19. (i) For all s ≥ 0 and prime numbers p the map

Q2psι∗ : Q2ps(H∗(BSU ;Zp)) −→ Q2ps(H∗(BU ;Zp))

is null.

(ii) Let ρt denote the Poincaré series of a graded vector space. Then we have

ρt(Q(H∗(BSU ;Zp)) = (1− t2)−1 − t2.

Proof. (i) For a Hopf algebra A let us write P (A) for the group of

primitives. It is enough to show the dual statement that the map

P2psι
∗ : P2ps(H

∗(BU ;Zp)) −→ P2ps(H
∗(BSU ;Zp))

vanishes. The ps-power of the first Chern class generates the source

since

cp
s

1 (ξ ⊕ η) = cp
s

1 (ξ) + cp
s

1 (η)

and the dual is one dimensional. This class obviously vanishes in

H∗(BSU ;Zp).
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(ii) As in [Sin68] 1.4 and 1.5 one sees

ρt(Q(H∗(BSU ;Zp))) = ρt(P (H∗(BSU ;Zp))) = ρt(Q(H∗(BSU ;Zp)))

= ρt(Q(Zp[c2, c3, . . . ])) = (1− t2)−1 − t2

Proof of 1.10. The proof will fall into several steps: First consider the

case when E is rational ordinary homology. Then by 1.17 the composite

Q[d2, d3, . . . ] −→ H∗(BSU,Q)
ι∗−→ H∗(BU,Q) −→ Q[b′1, b

′
2, . . . ]/b

′
1

is a surjection and consequently is an isomorphism. Thus there cannot be any

relation between the monomials in the di’s and the statement follows from the

homotopy equivalence

ι+ g : BSU × CP∞ ∼= BU.

by counting dimensions in each degree.

Next observe that the class dk must generate Q2k(H∗(BSU ;Zp)): by 1.19(i)

this vector space is one dimensional for any prime p. Pick a generator e of the

latter. Then a multiple n of e coincides with dk. If k is not a prime power the

integer n is invertible since the element dk is sent to the generator bk under the

map to BU . For prime power degrees the integer n again can not be a multiple

of p since else e is mapped to bk which contradicts 1.19 (ii). In particular, we

have shown that the canonical map

Zp[d2, d3, . . . ] −→ H∗(BSU ;Zp)

is a surjection which in turn means that it is an isomorphism. The theorem

now holds for integral singular homology.

Next let E be complex bordism MU . Since the Atiyah Hirzebruch spectral

sequence collapses we may choose an isomorphism of π∗MU -modules

MU∗BSU∼=E∞ = E2 = H∗(BSU ; π∗MU).

It is enough to show that a monomial in the dk’s reduces to the corresponding

monomial on the 0-line of the E2-term H∗(BSU ;Z) since then the canonical

map

π∗MU [d2, d3, . . . ]
∼=−→MU∗BSU
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is an isomorphism. This follows from the fact that the map induced from the

complex orientation from MU∗BSU to H∗(BSU ;Z) respects the dk’s and is

the projection onto the 0 line of the spectral sequence.

Finally, for arbitrary complex oriented E we may simply tensor the iso-

morphism

π∗MU [d2, d3, . . . ]
∼=−→MU∗BSU

with π∗E and the result follows from the universal coefficients spectral sequence

[Ada69].
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