
Characteristic numbers from 2-cocycles on formal groups

Gerd Laures

Abstract. We give explicit polynomial generators for the homology rings of
BSU and BSpin for complex oriented theories. Using these we are able to

provide an alternative proof of the result of Hopkins, Ando and Strickland for
symmetric 2-cocycles on formal group laws.

1. Introduction and statement of results

Hopkins, Ando and Strickland have recently shown (see [AHS98][Hop95]
[HMM98]) that for any complex oriented theory E the ring E∗BSU carries the
universal symmetric 2-cocycle on the formal group of E. In this paper we give an
alternative proof of their result which is based on the following choice of polyno-
mial generators for E∗BSU : Let L be the canonical line bundle over CP∞ and let
βi ∈ E2iCP

∞ be dual to c1(L)i. Let

f : CP∞ × CP∞ −→ BSU

be the map which classifies the product (1−L1)(1−L2). For each natural number
k and 1 ≤ i ≤ k − 1 choose integers nik such that

k−1∑
i=1

nik

(
k

i

)
= g.c.d.{

(
k

1

)
, . . . ,

(
k

k − 1

)
}.(1)

Then our first result is

Theorem 1.1. Define elements

dk =
k−1∑
i=1

nikf∗(βi ⊗ βk−i) ∈ E2kBSU.(2)

Then for any complex oriented E we have

E∗BSU ∼= π∗E[d2, d3, d4, . . . ].(3)

It must be emphasized that the conceptual basis and the proof of the above
theorem owes many ideas to the work of [AHS98]. However, the present approach
is more elementary and does not use the language of schemes. We also show how
the generators relate to the map from E∗BSp.

Next we investigate the homology ring of BSpin for mod 2 K-theory. Our
main result is

Theorem 1.2. Let ω be the canonical quaternian line bundle over HP∞ and
let zk ∈ K∗(HP∞;F2) be dual to c2(ω)j. Setting d′2k = d2k + zk ∈ K∗(BSpin;F2)
for all k we have

K0(BSpin;F2) ∼= F2[d2k|k 6= 2s]⊗ F2[d′4, d
′
8, d
′
16, . . . ].
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Moreover, each zk is decomposable in K0(BSpin;F2).

As a consequence, we are able to give a new proof of the result of [HAS99]
that the ring K∗(BSpin;F/2) carries the universal real symmetric 2-cocycle for the
multiplicative formal group.

2. The homology of CP∞ and binomial coefficients of formal group laws

Recall from [Ada74] that for any complex oriented ring theory E we are given
a class x ∈ Ẽ2

CP∞ such that

E∗CP∞ ∼= π∗E[[x]].

The H-space structure of BS1 ∼= CP∞ induces a comultiplication

µ∗ : E∗CP∞ −→ E∗CP∞⊗̂E∗CP∞; x 7→ x+F y

and a ring structure map

E∗CP
∞ ⊗ E∗CP∞ −→ E∗CP

∞ × CP∞ µ∗−→ E∗CP
∞.

Let β0 = 1, β1, β2, . . . be the additive basis of E∗CP∞ dual to x0, x1, x2, . . . .

Definition 2.1. The binomial coefficients of the formal group law F(
k

i, j

)
F

∈ π2(i+j−k)E

are defined by the equation

(x+F y)k =
∑
i,j

(
k

i, j

)
F

xiyj .

With this notation we easily see

Lemma 2.2.

βiβj =
i+j∑
k=0

(
k

i, j

)
F

βk.

Example 2.3. Let E be integral singular homology. Then F is the additive
formal group law Ĝa and(

k

i, j

)
Ĝa

=
{ (

k
i

)
if i+ j = k

0 else
.

Hence HZ∗CP∞ is the divided power algebra Γ[β1].
Next let E be K-theory with its standard orientation F = Ĝm. Then

(x+Ĝm
y)k = (x+ y − v−1xy)k =

k∑
s=0

s∑
t=0

(
k

s

)(
s

t

)
(−v)s−kxk−s+tyk−t

and hence (
k

i, j

)
Ĝm

=
(

k

2k − i− j

)(
2k − i− j
k − j

)
(−v)k−i−j

=
k!

(i+ j − k)! (k − j)! (k − i)!
(−v)k−i−j

Finally, let E be complex bordism MU . The coefficients of the universal formal
group law FGL are the Milnor hypersurfaces Hi,j of type (1, 1) in CP i ×CP j and
hence (

k

i, j

)
FGL

=
∑

i1···+ik=i
j1+···jk=j

k∏
l=1

Hil,jl .
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We close this section with an observation which will help finding the binomial
coefficients in the situation of positive characteristic. Let F be a formal group law
with coefficients in an Fp-algebra. Then we define

x+pF y =
∑
i,j

(
1
i, j

)p
F

xiyj .

Since xp +pF y
p = (x+F y)p we obtain a new formal group law pF , i.e. it satisfies

the associativity condition. The group law pF carries the name Frobenius of F . Be
aware that the grading has changed∣∣∣∣∣

(
k

i, j

)
pF

∣∣∣∣∣ = 2p(i+ j − k)

Example 2.4. Let Hn be the Honda formal group law of height n. Then the
[p]-series of pHn read

[p](xp) = xp +pHn . . .+pHn x
p = (x+Hn · · ·+Hn x)p = (vnxp

n

)p = vpnx
pn+1

.

Hence pHn again is the Honda group law of height n over the ring Fp[v±pn ].

Lemma 2.5. Let k =
∑n
i=0 kip

i be the p-adic expansion of k. Then mod p(
k

i, j

)
F

=
∑

i0p0+···+inpn=i
j0p0+···jnpn=j

n∏
s=0

(
ks
is, js

)
psF

In particular (
pk

pi, pj

)
F

=
(
k

i, j

)
pF

.

Proof.

(x+F y)k =
n∏
s=0

(xp
s

+psF y
ps)ks =

n∏
s=0

∑
is,js

(
ks
is, js

)
psF

xisp
s

yjsp
s

=
∑

i0p0+···+inpn=i
j0p0+···+jnpn=j

n∏
s=0

(
ks
is, js

)
psF

xiyj

3. The homology ring of BSU and symmetric 2-cocycles on formal
groups

In the following let f : CP∞ × CP∞ −→ BSU be the map which classifies
(1−L1)(1−L2). Even though f is not a map of H-spaces we may use it to produce
interesting classes in E∗BSU . Let aij ∈ E2(i+j)BSU be the image of βi⊗βj under
the induced map f∗.

Lemma 3.1. The following relations hold for all i, j, k

a0,0 = 1 ; a0i = ai0 = 0 for all i 6= 0(4)
aij = aji(5) ∑

l,s,t

(
l

s, t

)
F

aj−s,k−tail =
∑
l,s,t

(
l

s, t

)
F

alkai−s,j−t(6)
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Proof. The first relation is obvious. Let τ be the self map of CP∞ × CP∞
which switches the two factors. Then the second relation immedately follows from
the fact that fτ is homotopic to f . To do the last consider the two maps g, h from
(CP∞)×3 to (CP∞)×4 given by

g(x, y, z) = (y, z, x, y z)
h(x, y, z) = (x y, z, x, y)

Their effect on our generators is

g∗(βi ⊗ βj ⊗ βk) =
∑
l,s,t

(
l

s, t

)
F

βj−s ⊗ βk−t ⊗ βi ⊗ βl(7)

h∗(βi ⊗ βj ⊗ βk) =
∑
l,s,t

(
l

s, t

)
F

βl ⊗ βk ⊗ βi−s ⊗ βj−t(8)

This can be verified by pairing the left hand side with the cohomological monomials
in the the xi’s.The maps g and h become homotopic in BSU when composed with
µ(f × f) since

(µ(f × f)g)∗ξuniv = (1− L2)(1− L3) + (1− L1)(1− L2L3)
= (1− L1L2)(1− L3) + (1− L1)(1− L2) = (µ(f × f)h)∗ξuniv

The desired relation now follows from the above by applying µ(f × f)∗ to the right
hand side of (7) and (8).

There is another way to look at the classes aij and the relations of 3.1. First note
that E ∧BSU+ is itself a complex oriented ring theory with

xE∧BSU+ = (1 ∧ η)∗xE
In abuse of the notation we will simply denote this orientation by x in the following.
Hence, we may view

(CP∞ × CP∞)+
f+−→ BSU+

η∧1−→ E ∧BSU+

as a power series

f(x, y) = 1 +
∑
i,j≥1

bijx
iyj ∈ (E ∧BSU+)0(CP∞ × CP∞)

for some bij ∈ E2(i+j)BSU . Of course, we have

bij =
∑
k,l

bij(1 ∧ η)∗
〈
βi ⊗ βj , xkyl

〉
=

〈
(1 ∧ η)∗βi ⊗ (1 ∧ η)∗βj , 1 +

∑
k,l

bklx
kyl

〉
= 〈(1 ∧ η)∗(βi ⊗ βj), f∗(η ∧ 1)〉 = (µf(1 ∧ η))∗(βi ⊗ βj) = aij .

The power series f is a symmetric 2-cocycle or 2-structure on the fomal group law
F in the sense of [AHS98]3.1.[HAS99]1.2: This means that the relations

f(x, 0) = f(0, y) = 1(9)
f(x, y) = f(y, x)(10)

f(y, z)f(x, y +F z) = f(x+F y, z)f(x, y).(11)

hold. In fact, one easily checks that these are equivalent to 3.1.
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Remark 3.2. There is another way to look at symmetric 2-cocycles: any such
f defines a commutative central extension

Gm −→ E −→ F

of F by the multiplicative formal group. Here, E is the product F × Gm and the
group structure is given by the formula

(a, λ) · (b, µ) = (a+ b, f(a, b)λµ).

The equation 11 is then equivalent to the associativity of the multiplication. These
objects have been extensively studied; for example Lazard’s symmetric 2-cocycle
lemma classifies central extensions of the additive formal group by itself

Ga −→ E −→ Ga.

Definition 3.3. For any complex oriented E let C2(E) be the graded ring freely
generated by symbols aij’s subject to the relations of 3.1. We write α for the canon-
ical map from C2(E) to E∗BSU .

Here, we denoted the generators of C2(E) and E∗BSU by the same letters
to simplify the notation. We will see below that the map α is an isomorphism.
Equivalently, given any 2-cocycle f ′ on the formal group F over an π∗E-algebra S
then there is a unique algebra homomorphism

ϕ : E∗BSU −→ S

with ϕf = f ′. Hence, E∗BSU carries the universal symmetric 2-cocycle on F
which is the result of [AHS98].

Consider the canonical map of H-spaces ι : BSU −→ BU . Writing g for the
map from CP∞ to BU which classifies 1−L we see from the homotopy equivalence

ι+ g : BSU × CP∞ −→ BU

that ι is an inclusion in homology. It is well known [Ada74] that E∗BU is a
polynomial algebra with generators bi = g∗βi. Alternatively, let g′ be the map
which classifies L− 1. Then the classes g′βi = b′i again give polynomial generators
of E∗BU . Since the map µBU (g × g′)∆ is null the generators bi and b′i are related
by the equation

∞∑
i=0

b′ix
i = (

∞∑
i=0

bix
i)−1.

Proposition 3.4. We have the formula

ι∗aij =
∑

s=0,... ,i; t=0,... ,j
k=0,... ,s+t

(
k

s, t

)
F

b′kbi−sbj−t

In particular, modulo decomposables in Ẽ∗BU

ι∗aij =
i+j∑
k=0

(
k

i, j

)
F

b′k.

Proof. Decompose f by writing

f∗ξuniv = 1− L1 − L2 + L1L2 = (L1L2 − 1) + (1− L1) + (1− L2)
= (g′µCP∞ + g p1 + g p2)∗ξuniv



CHARACTERISTIC NUMBERS FROM 2-COCYCLES ON FORMAL GROUPS 6

and calculate

ι∗aij = ι∗f∗(βi ⊗ βj)

= µBU∗ (g′µCP
∞

∗ ⊗ g p1∗ ⊗ g p2∗)
∑

i1+i2+i3=i
j1+j2+j3=j

βi1 ⊗ βj1 ⊗ βi2 ⊗ βj2 ⊗ βi3 ⊗ βj3

=
∑

i1+i2=i
j1+j3=j

i1+j1∑
k=0

(
k

i1, j2

)
F

b′kbi2bj3

Now choose nik and dk as in 1.1 and set

ε(k)
def
=

k−1∑
i=1

nik

(
k

i

)
= g.c.d.

{(
k

1

)
, . . . ,

(
k

k − 1

)}
=
{
p for k = ps

1 else .

For a graded ring R we write R+ for the elements in positive degrees and

Q(R) = R/R2
+.

Corollary 3.5. In Q(E∗BU) we have ι∗dk = ε(k)b′k.

Proof. Using the identity(
s+ t

s, t

)
F

=
(
s+ t

s

)
we compute with the proposition

ι∗dk =
∑
i+j=k

nikι∗aij =
k−1∑
i=1

nik

(
k

i

)
b′k = ε(k)b′k.

Before proving 1.1 we need two more lemmas.

Lemma 3.6. For all s, t we have

ast =

(
s+t
s

)
ε(s+ t)

ds+t ∈ Q2(s+t)(C2(E)).

Proof. The third relation of 3.1 reads modulo C2(E)2
+(

n

n− t

)
amn =

(
s

m

)
ast

for all m+ n = s+ t, m ≤ s. We conclude(
s+t
s

)
ε(s+ t)

ds+t =
∑

m+n=s+t

nms+t

(
s+t
s

)
ε(s+ t)

amn

= ast
∑

m+n=s+t

nms+t

(
s+t
m

)
ε(s+ t)

= ast

Lemma 3.7. (i) For all s ≥ 0 and prime numbers p the map

Q2psι∗ : Q2ps(H∗(BSU ;Fp)) −→ Q2ps(H∗(BU ;Fp))

is null.
(ii) Let ρt denote the Poincaré series of a graded vector space. Then we have

ρt(Q(H∗(BSU ;Fp)) = (1− t2)−1 − t2.
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Proof. (i) For a Hopf algebra A let us write P (A) for the group of prim-
itives. It is enough to show the dual statement that the map

P2psι
∗ : P2ps(H∗(BU ;Fp)) −→ P2ps(H∗(BSU ;Fp))

vanishes. The ps-power of the first Chern class generates the source since

cp
s

1 (ξ ⊕ η) = cp
s

1 (ξ) + cp
s

1 (η)

and the dual is one dimensional. This class obviously vanishes in
H∗(BSU ;Fp).

(ii) As in [Sin67] 1.4 and 1.5 one sees

ρt(Q(H∗(BSU ;Fp))) = ρt(P (H∗(BSU ;Fp))) = ρt(Q(H∗(BSU ;Fp)))

= ρt(Q(Fp[c2, c3, . . . ])) = (1− t2)−1 − t2

Proof of 1.1. The proof will fall into several steps: First consider the case
when E is rational ordinary homology. Then by 3.5 the composite

Q[d2, d3, . . . ] −→ H∗(BSU,Q) ι∗−→ H∗(BU,Q) −→ Q[b′1, b
′
2, . . . ]/b

′
1

is a surjection and consequently is an isomorphism. Thus there cannot be any
relation between the monomials in the di’s and the statement follows from the
homotopy equivalence

ι+ g : BSU × CP∞ ∼= BU.

by counting dimensions in each degree.
Next observe that the class dk must generate Q2k(H∗(BSU ;Fp)) for all k ≥ 2:

by 3.7(ii) this vector space is one dimensional for any prime p. Pick a generator e
of the latter. Then a multiple n of e coincides with dk. If k is not a prime power
the integer n is invertible since the element dk is sent to the generator bk under the
map to BU . For prime power degrees the integer n again can not be a multiple
of p since else a multiple of e is mapped to bk by 3.5 which contradicts 3.7 (i). In
particular, we have shown that the canonical map

Fp[d2, d3, . . . ] −→ H∗(BSU ;Fp)

is a surjection which in turn means that it is an isomorphism. The theorem now
holds for integral singular homology.

Next let E be complex bordism MU . Since the Atiyah Hirzebruch spectral
sequence collapses we may choose an isomorphism of π∗MU -modules

MU∗BSU∼=E∞ = E2 = H∗(BSU ;π∗MU).

It is enough to show that a monomial in the dk’s reduces to the corresponding
monomial on the 0-line of the E2-term H∗(BSU ;Z) since then the canonical map

π∗MU [d2, d3, . . . ]
∼=−→MU∗BSU

is an isomorphism. This follows from the fact that the map induced from the
complex orientation from MU∗BSU to H∗(BSU ;Z) respects the dk’s and is the
projection onto the 0 line of the spectral sequence.

Finally, for arbitrary complex oriented E we may simply tensor the isomorphism

π∗MU [d2, d3, . . . ]
∼=−→MU∗BSU

with π∗E and the result follows from the universal coefficients spectral sequence
[Ada69].

Corollary 3.8. The map α : C2(E) −→ E∗BSU is an isomorphism.



CHARACTERISTIC NUMBERS FROM 2-COCYCLES ON FORMAL GROUPS 8

Proof. Consider the obvious map ϕ : π∗E[d2, d3, . . . ] −→ C2(E). Since its
composite with α is an isomorphism ϕ must be injective. Moreover, 3.6 tells us that
the aij can be written as polynomials in the di’s. Consequently ϕ is an isomorphism
and so is α.

It is hard to give an explicit formula for the nik. However, in the situation of
positive characteristic we are better off.

Lemma 3.9. (i) It is possible to choose nips = 0 mod p for all i not equal to
ps−1.

(ii) If n is not a prime power it is possible to choose nin = 0 mod p for all i not
equal to pνp(n). Here, νp(n) is the exponent of p in the prime decomposition
of n.

Proof. ps!/(ps − ps−1)! is once more divisible than ps−1!. Hence
(
ps

ps−1

)
/p is

not divisible by p and we find a, b ∈ Z such that

a

(
ps

1

)
+ b

(
ps

ps−1

)
p

= 1.

Hence we take n1
ps = pa and np

s−1

ps = b.
A similar argument works for the second statement: Since

(
n

pνp(n)

)
is not divis-

ible by p we find natural numbers a0, a1, . . . , an−1 such that

a0

(
n

pνp(n)

)
+

∑
i=1,... ,n−1; i 6=pνp(n)

aip

(
n

i

)
= 1

which gives the result.

4. The homology ring of BSp

In this section we are going to determine the canonical map from BSp to BSU
in E-homology for complex oriented theories. The calculations will prove useful in
things to come.

The (trivial) fibration det : U(n) −→ S1 with fibre SU(n) allows an identifica-
tion of E∗BSU(n) with E∗BU(n) = π∗E[[c1, · · · , cn]] divided by the ideal generated
by the first E-Chern class c1 of the determinant bundle. The determinant restricted
to the standard maximal torus of U(n) is just the multiplication map. Hence in
formal Chern roots we compute

c1(det) = x1 +F . . .+F xn.

In particular, for the E-cohomology of HP∞ ∼= BSU(2) we have

c1(det) = x1 +F x2 = c1(ω) + terms of higher order

Here, ω is the canonical quaternian line bundle over HP∞. This gives the

Proposition 4.1. E∗HP∞ ∼= π∗E[[c2(ω)]].

Observe that in general c1(ω) does not vanish: for K-theory we get

x1 +Ĝm
x2 = x1 + x2 − x1x2 = c1(ω)− c2(ω)

and the first two Chern classes hence coincide.
Let zi ∈ E4iHP

∞ be dual to c2(ω)i. Abusing the notation denote the image of
zi under the canonical map

E∗HP
∞ = E∗BSp(1) −→ E∗BSp.

by the same letter. Then one easily verifies

Proposition 4.2. E∗BSp ∼= π∗E[z1, z2, . . . ].



CHARACTERISTIC NUMBERS FROM 2-COCYCLES ON FORMAL GROUPS 9

We next consider the standard fibration p : CP 2k+1 −→ HP k with fibre CP 1.
The quaternian line bundle ω splits on the total space

p∗ω ∼= L⊕ jL.
Here, L is the canonical complex line bundle. Moreover, since i anti commutes with
j we see that

jL ∼= L̄.

When passing to infinity the fibration fits into the commutative diagram

HP∞
h // BSU

CP∞
(1∧1̄)∆ //

p

OO

CP∞ × CP∞
(1−L1)(1−L2)

OO

because

(1 ∧ 1̄)∗∆∗(1− L1)(1− L2) = 1− L− L̄+ LL̄ = (1− L) + (1− L̄).

Hence, in homology the map

E∗CP
∞ −→ E∗HP

∞ −→ E∗BSU

sends βk to the kth coefficient of the power series

f(x,−Fx) =
∑
i,j

aijx
i(−Fx)j .

Here, f(x, y) is the universal symmetric 2-cocycle on the formal group law F . It is
not hard to see that p is a surjection in homology. Thus we should be able to lift
each zk to E∗CP∞and compute its image from there. In fact, we have the following
nice formula:

Theorem 4.3. The map p : CP∞+ −→ HP∞+ ∧ E is given by the power series

p(x) =
∞∑
j=0

zjx
j(−Fx)j .

As a consequence, the map h is determined by the equality of power series∑
i,j

aijx
i(−Fx)j = f(x,−Fx) = hp(x) =

∑
j

zjx
j(−Fx)j .

Proof. It remains to compute the image of βi under p∗:〈
p∗βi, c

j
2

〉
=

〈
βi, p

∗cj2

〉
=
〈
βi, c2(L+ L̄)j

〉
=
〈
βi, (x(−Fx))j

〉
.

Hence, βi is sent to
∑
j

〈
βi, x

j(−Fx)j
〉
zj and the claim follows.

Let us see how this formula works for K-theory. Setting y = −Fx the left hand
side becomes the symmetric polynomial∑

i,j

aijx
iyj =

∑
i

aii(xy)i +
∑
i<j

aij(xiyj + xjyi)(12)

Let Qk be the Newton polynomial expressing the power sum in terms of the ele-
mentary symmetric functions e1, e2. That is,

tk1 + tk2 = Qk(e1, e2)

and set qk(a) = Qk(a, a). Then since

x+ (−Fx) = c1(ω) = c2(ω) = x(−Fx)
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we have

xk + yk = qk(c2(ω)).

The polynomials qk satisfy the Newton identities

qk = a(qk−1 − qk−2) for all k > 2, q1 = a, q2 = a2 − 2a

and a simple induction shows

qk =
∑
s

(−1)k+s(
(

s− 1
k − s− 1

)
+
(

s

k − s

)
)as.

Hence equation (12) reads∑
i,j

aijx
iyj =

∑
k

akkc
k
2 +

∑
i<j

aijc
i
2qj−i(c2)

=
∑
r

(arr +
∑
i<j

(−1)j−i(
(
r − i− 1
j − r − 1

)
+
(
r − i
j − r

)
)aij)cr2

We have shown

Corollary 4.4. The map h∗ : K∗BSp −→ K∗BSU is given by the formula

zr 7→ arr +
∑
i<j

(−1)j−i(
(
r − i− 1
j − r − 1

)
+
(
r − i
j − r

)
)aij

5. The K-homology ring of BSpin and real symmetric 2-cocycles

In this section we are going to prove 1.2. First we need

Theorem 5.1 ([Sna75]8.4 8.11). (i) The canonical map

K∗(BSpin;F2) −→ K∗(BSO;F2)

is an algebra isomorphism.
(ii) The composite of

K∗(pt;F2)[b2, b4, b6, . . . ] −→ K∗(BU ;F2)
ρ∗−→ K∗(BSO;F2)

is an algebra isomorphism. Moreover, each ρ∗b2k+1 lies in the image of
K∗(pt;F2)[b2, b4, . . . , b2k].

Lemma 5.2. The composite

K∗(HP∞;F2) h−→ K∗(BSU ;F2) ι∗−→ K∗(BSO;F2)

sends zj to b2j modulo the ideal generated by b21, b
2
2, . . . , b

2
j−1. Hence zj is decom-

posable in K∗(BSpin;F2).

Proof. Since the diagram

CP∞
1̄ //

��

CP∞

��
BU // BSO

commutes we get

g(x) = g(−Ĝmx) ∈ K∗(BSO,F2)[[x]].

Hence using 3.4 we compute

f(x,−Ĝmx) = g′(x+ (−Ĝmx))g(x)g(−Ĝmx) = g(x)2 =
∑
i

b2ix
2i
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and with 5.2

f(x,−Ĝmx) =
∑
i

zix
i(−Ĝmx)i.

Hence the assertion follows by induction since xj(−Ĝmx)j = x2j + o(x2j+1). The
last claim is a consequence of 5.1(ii).

Definition 5.3. For any natural number i let 1i be the set of indices of the
1-digits of i in its binary decomposition. Declare a new product n ? m of natural
numbers n,m by

1n?m = 1n ∪ 1m.

Example 5.4. Let i =
∑
j ij2

j be the 2-adic expansion of i. Then by its
definition ν2(i) is the minimum of the set 1i and hence

i = (i− 2ν2(i)) ? 2ν2(i).

The importance of the ?-product comes from the

Lemma 5.5. For the multipicative formal group law we have modulo 2(
k

i, j

)
= 1 iff k = i ? j.

Proof. Since (
1

1, 1

)
=
(

1
0, 1

)
=
(

1
1, 0

)
=
(

0
0, 0

)
= 1

and (
0

1, 0

)
=
(

0
0, 1

)
=
(

0
1, 1

)
=
(

1
0, 0

)
= 0

the lemma holds for k = 0, 1. Hence for arbitrary k we see with 2.5 that the
binomial coefficient is non zero iff ks = is ?js for all s and the assertion follows.

It is interesting to note

Corollary 5.6. Modulo decomposables we have

aij =
{
d2s+1 for i = j = 2s

di?j else .

Proof. Modulo decomposables (6) gives

ai,j?k =
∑
l

(
l

j, k

)
ail =

∑
l

(
l

i, j

)
alk = ai?j,k.

In particular if i ∗ j 6= 2s

aij = a2ν2(i?j),i?j = a2ν2(i?j),i?j−2ν2(i?j) = di?j .

Here we used 3.9.

Proof of 1.2. We may assume that we have chosen the nki as in 3.9. By 5.1
it remains to show that the map

F2[dk|k 6= 2s]⊗ F2[d′4, d
′
8, . . . ] −→ F2[b2, b4, . . . ]; dk 7→ ι∗(dk), d′2k 7→ ι∗(d2k + h∗zk)

is an isomorphism. By 3.4 and 5.5 we have

ι∗d2r+1 = ι∗a2r,2r =
2r∑

s,t=0

b′s?tb2r−sb2r−t =
2r∑
s=0

b′sb
2
2r−s

and hence with 5.2

ι∗d
′
2r+1 = b′2r mod (b2, b4, . . . , b2r−2).
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The claim follows since a similar relation holds for the other dk’s by 3.5:

ι∗dk = ι∗a2ν2(k),k−2ν2(k) = b′k mod (b1b2, . . . , bk−1) for k 6= 2s.

Since the composite

CP∞ × CP∞ f−→ BSU
V−V̄−→ BSpin

is null we have for any complex oriented E the relation

f(x, y) = f(−Fx,−F y) ∈ E∗BSpin[[x, y]](13)

Example 5.7. Explicitly, the relations (13) read for F = Ĝm∑
s,t

(
i

s− 1

)(
j

t− 1

)
ast = aij for all i, j

as one checks easily.

Recall from [HAS99] the

Definition 5.8. For any complex oriented E let Cr2(E) be the ring which car-
ries the universal real symmetric 2-cocycles on F . That is, Cr2(E) is the quotient
of the graded ring C2(E) by the relations implied by the equation 13. We write β
for the canonical map from Cr2(E) to E∗BSpin.

We are going to show that β is an isomorphism for mod 2 K-theory. Note that
this statement is wrong for mod 2 singular homology. However, for general E we
have

Lemma 5.9. The map

(ι+ g)∗ : E∗BSU ⊗π∗E E∗CP∞ −→ E∗BSU × CP∞ −→ E∗BU

is an isomorphism of E∗BSU -modules.

Proof. The diagram

BSU ×BSU × CP∞
ι×ι×g //

µ×1

��

BU ×BU ×BU
1×µ //

µ×1

��

BU ×BU
µ

��
BSU × CP∞

ι×g // BU ×BU
µ // BU

commutes.

A complex 1-structure on F simply is a power series g(x) with leading term
1. The universal ring C1(E) of these objects can be identified with E∗BU in the
obvious way. A real 1-structure is such a power series g which satisfies the real
relation

g(x) = g(−Fx).

Let us write Cr1(E) for the universal ring of real 1-structures. That is Cr1(E) is
C1(E) subject to the real relation. It is clear that the map ι : C2 −→ C1 for which

ι(f(x, y)) = g(x+F y)g(x)−1g(y)−1

induces a map on the real universal rings which we denote with the same letter.
For mod 2 K-theory we have

Proposition 5.10. The obvious map from Cr1 to K∗(BSO,F2) is an isomor-
phism.
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Proof. This is an immediate consequence from 5.1 as the composite

F2[b2, b4, . . . ] −→ C1(KF2) −→ Cr1(KF2)

is easily checked to be surjective with the real relations.

There is a ring inbetween Cr1 and Cr2 which will be useful in the sequel: let T (x)
be the power series g(x)g(−Ĝmx)−1 and let Cr

′

1 be the quotient ring of C1 subject
to the relation generated by the set I ′ consisting of the coefficients of

T (x+Ĝm
y) = T (x)T (y).(14)

Then we have

Lemma 5.11. (i) The canonical map ι′ : Cr2 −→ Cr
′

1 is an injection.
(ii) T is an even power series.

Proof. For (i) observe that we have

ι′
f(x+ y)
f(−x,−y)

=
g(x+ y)g(x)g(y)

g(−x− y)g(−x)g(−y)
=

T (x+ y)
T (x)T (y)

when ommiting the formal addition from the notation. Hence it suffices to check
that the ideal IC2 generated by f(x, y)f(−x,−y)−1 is the intersection of the ideal
I ′C1 with C2. By 5.9 there exists a retraction homomorphism

ρ : C1
∼= K∗(BU ;F2) −→ K∗(BSU ;F2) ∼= C2

of C2-modules. Hence any

a =
∑
k

iksk ∈ C2

with sk ∈ Cr
′

1 and ik ∈ I ′ satisfies

a = ρ(a) =
∑
k

ik ρ(sk) ∈ IC2

and the first part of the lemma follows.
For the second we have with T (x) =

∑
tix

i and 5.5

T (x+ y) =
∑
i,j,k

ti

(
i

j, k

)
xjyk =

∑
j,k

tj?kx
jyk

and hence with T (x+ y) = T (x)T (y) for each odd n

tn = t1?n = t1tn = 0

since t1 = 0.

Lemma 5.12. The power series S(x) = f(x,−x)f(x, x)−1 with coefficients in
Cr2 satisfies the relation

f(x2, y2) =
S(x)S(y)
S(x+ y)

.

Proof. The cocylce relation (11) gives
S(x)S(y)
S(x+ y)

=
f(x+ y, x+ y)f(x,−x)f(y,−y)f(−x,−y)

f(−x, x+ y)f(y,−y)f(x, x)f(y, y)

=
f(x+ y, x+ y)f(x, y)f(−x,−y)

f(x, x)f(y, y)
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and

f(x2, y2) =
f(x2 + y, y)f(x2, y)

f(y, y)
=
f(x, y)f(x+ y, x+ y)f(x, y)f(x, x+ y)

f(y, y)f(x+ y, x)f(x, x)

=
f(x, y)f(x+ y, x+ y)f(x, y)

f(y, y)f(x, x)
Hence the claim follows from the real relation f(x, y) = f(−x,−y).

Corollary 5.13. β : Cr2(KF2) −→ K∗(BSpin;F2) is an isomorphism.

Proof. The composite of

π∗KF2[dk|k 6= 2s]⊗π∗KF2 π∗KF2[d′4, d
′
8, d
′
16, . . . ] −→ Cr2(KF2)

with β is an isomorphism. Hence, β must be surjective. It remains to check that
the map ι from Cr2 to Cr1 is an injection. First we claim that the power series S(x)
of 5.12 is even. Since f(x, x) is even we only need to investigate f(x,−x). Using
the injection ι′ of 5.11 we get

ι′f(x,−x) = g(x)g(−x)−1 = T (x)g(−x)−2.

Since T (x) was even by 5.11(ii) the assertion follows. Next define the ring homo-
morphism κ from Cr1 to Cr2 by demanding

κg(x2) = S(x)−1.

Then we see with 5.12

κιf(x2, y2) =
κg(x2 + y2)

κ(g(x2))κ(g(y2))
=
S(x)S(y)
S(x+ y)

= f(x2, y2).

Thus the universal property of Cr2 shows that we have constructed a left inverse to
the map ι.
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