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École Doctorale MIPTIS
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Rapporteurs:
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Empirical Processes of Multiple Mixing Data

The present thesis studies weak convergence of empirical processes of multiple mixing data.

It is based on the articles Durieu and Tusche (2012), Dehling, Durieu, and Tusche (2012),

and Dehling, Durieu, and Tusche (2013). A process (Xi)i∈N is called multiple mixing if the

covariances of two products f(Xi0) · . . . · f(Xiq−1) and f(Xiq) · . . . · f(Xp) with 0 ≤ i0 ≤ . . . ≤ ip
can be bounded, for all f in some normed function space C with supx |f(x)| ≤ 1, by a term of the

type ‖f(X0)‖s ‖f‖`C Q(i0 − i1, . . . , ip − ip−1) θiq−iq−1 with `, s ≥ 1, θ ∈ (0, 1) and a polynomial

Q.

We follow the approximating class approach introduced by Dehling, Durieu, and Volný (2009)

and Dehling and Durieu (2011), who established empirical central limit theorems for dependent

R- and Rd-valued random variables, respectively. Extending their technique, we generalize

their results to arbitrary state spaces and to empirical processes indexed by classes of functions.

Moreover we study sequential empirical processes. Our results apply to B-geometrically ergodic

Markov chains, iterative Lipschitz models, dynamical systems with a spectral gap on the

Perron–Frobenius operator, and ergodic torus automorphisms. We establish conditions under

which the empirical process of such processes converges weakly to a Gaussian process.

As our limit theorems are stated in the general context of empirical processes indexed by

functions, they involve entropy conditions using adapted bracketing numbers. We present

a range of classes that satisfy these entropy conditions. Examples of those classes are the

indicators of finite and semi-finite rectangles, of ellipsoids, and some parametric class of

monotone functions.

Furthermore, we consider the empirical process of random variables of a slower type of

multiple mixing. Here the decay of the covariances is only of a polynomial instead of an

exponential rate, which is required in the concept of usual multiple mixing. We establish an

abstract empirical central limit theorem with applications to causal functions of i.i.d. processes

such as linear processes and time delay vectors.

Keywords: Limit theorems, Weak convergence, Multivariate empirical processes, Multivariate

sequential empirical processes, Empirical processes indexed by classes of functions, Dependent

data, Multiple mixing, Markov chains, Dynamical systems, Spectral gap, Ergodic torus auto-

morphism, Chaining, Change-point problems

Mathematics Subject Classification (2010): 60F05, 60F17, 60G10, 62G30, 60J05, 28D05
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Processus empirique avec données à mélange multiple

Cette thèse présente des résultats sur la convergence faible de processus empiriques avec

données à mélange multiple. Elle est basée sur les articles Durieu et Tusche (2012), Dehling,

Durieu et Tusche (2012) et Dehling, Durieu et Tusche (2013). On dit qu’un processus

(Xi)i∈N est à mélange multiple si la covariance des deux produits f(Xi0) · . . . · f(Xiq−1)

et f(Xiq) · . . . · f(Xp), avec 0 ≤ i0 ≤ . . . ≤ ip, peut être bornée par un terme du type

‖f(X0)‖s ‖f‖`C Q(i0 − i1, . . . , ip − ip−1) θiq−iq−1 avec `, s ≥ 1, θ ∈ (0, 1) et un polynôme Q pour

tout f dans un espace de fonctions normé C, avec supx |f(x)| ≤ 1.

Nous suivons l’approche utilisant des classes approximantes introduites par Dehling, Durieu

et Volný (2009) et Dehling et Durieu (2011) qui ont pu obtenir des théorèmes limites centraux

empiriques pour des variables aléatoires dépendantes à valeurs dans R et dans Rd, respectivement.

En développant leur technique, nous généralisons leurs résultats à des espaces d’états arbitraires

et au cas de processus empiriques indexés par une classe de fonctions. De plus, nous étudions

le cas de processus empiriques séquentiels. Nous donnons des conditions garantissant la

convergence en loi du processus empirique vers un processus gaussien. Nos résultats s’appliquent

aux processus de Markov B-géométriquement ergodiques, aux modèles itératifs lipschitziens,

aux systèmes dynamiques dont l’opérateur de Perron Frobenius prsente un trou spectral et

aux automorphismes ergodiques du tore. Comme nos théorèmes limite sont énoncés dans

le cadre général de processus empiriques indexés par des fonctions nous introduisons une

notion d’entropie avec crochets adaptée à cette situation. Nous présentons plusieurs classes

qui satisfont ces conditions d’entropie. Parmi ces classes, on trouve l’exemple des indicatrices

de rectangles finis et semi-finis, des indicatrices d’ellipsöıdes et une classe paramétrique de

fonctions monotones.

De plus, nous considérons le processus empirique de variables aléatoires avec un mélange

multiple plus lent. Ici, la covariance décrôıt avec un ordre polynomial au lieu d’un ordre

exponentiel. Nous établissons un théorème limite central empirique abstrait qui s’applique à

des fonctions causales de processus i.i.d., comme les processus linéaires et les vecteurs à temps

retardé.

Mots clés: Théorème limite, Convergence faible, Processus empiriques multivariés, Processus

empiriques séquentiels multivariés, Processus empiriques indexés par une classe de fonctions,

Données dépendantes, Mélange multiple, Châıne de Markov, Système dynamique, Trou spectral,

Automorphismes ergodiques du tore, Châınage, Points de ruptures

Classification AMS (2010): 60F05, 60F17, 60G10, 62G30, 60J05, 28D05
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Empirische Prozesse multipel mischender Zufallsvariablen

Die vorliegende Arbeit basiert auf den Arbeiten Durieu und Tusche (2012), Dehling, Durieu

und Tusche (2012) und Dehling, Durieu und Tusche (2013). Wir untersuchen die schwache

Konvergenz des empirischen Prozesses multipel mischender Zufallsvariablen. Ein Prozess heißt

multipel mischend, falls die Kovarianzen zweier Produkte f(Xi0) · . . . · f(Xiq−1) und f(Xiq) · . . . ·
f(Xp) mit 0 ≤ i0 ≤ . . . ≤ ip gleichmäßig für alle f mit supx |f(x)| ≤ 1 aus einem normierten

Funktionenraum C durch einen Term der Form ‖f(X0)‖s ‖f‖`C Q(i0 − i1, . . . , ip − ip−1) θiq−iq−1

mit `, s ≥ 1, θ ∈ (0, 1) und einem Polynom Q beschränkt sind.

Dehling, Durieu und Volný (2009) entwickelten eine Approximationsklassen-Technik um

empirische zentrale Grenzwertsätze abhängiger eindimensionaler und später multivariater

Zufallsvariablen (Dehling und Durieu (2011)) zu beweisen. Unter Zuhilfenahme dieser Tech-

nik erweitern wir ihre Ergebnisse auf funktionenklassenindizierte empirische und sequentielle

empirische Prozesse abhängiger Zufallsvariablen in beliebigen Ereignisräumen. Unsere Grenz-

wertsätze können auf B-geometrisch ergodische Markov-Ketten, iterative Lipschitz Modelle,

dynamische Systeme deren Perron–Frobenius Operator eine Spektrallücke aufweist und ergodis-

che Torusautomorphismen angewandt werden. Wir entwickeln Bedingungen für die schwache

Konvergenz des empirischen bzw. sequentiellen empirischen Prozesses solcher Prozesse gegen

einen Gauß’schen Prozess.

Da wir durch Funktionenklassen indizierte empirische Prozesse betrachten, beinhalten unsere

Grenzwertsätze bestimmte Entropie-Bedingungen. Diese verwenden eine angepasste Art von

Bracketing Zahlen. Wir stellen eine Reihe von passenden Funktionenklassen vor, darunter die

Klasse der Indikatoren von endlichen und halb-endlichen Rechtecken, von Ellipsoiden, sowie

eine parametrische Klasse monotoner Funktionen.

Weiterhin untersuchen wir empirische Prozesse von Zufallsvariablen mit einer langsameren

Mischungsrate. In dieser Situation ist der Abfall der Kovarianzen nur von polynomialer anstatt

von exponentieller Ordnung. Wir entwickeln einen abstrakten zentralen Grenzwertsatz der auf

kausale Funktionen unabhängig identisch verteilter Prozesse wie zum Beispiel lineare Prozesse

und Time Delay Vectors angewandt werden kann.

Stichworte: Grenzwertsätze, Schwache Konvergenz, Multivariate empirische Prozesse, Mul-

tivariate sequentielle empirische Prozesse, Funktionenklassenindizierte empirische Prozesse,

Abhängige Zufallsvariablen, Multiple Mischungseigenschaft, Markov-Ketten, Dynamische Sys-

teme, Spektrallücken, Ergodische Torusautomorphismen, Chaining, Strukturbruchprobleme

AMS Klassifikation (2010): 60F05, 60F17, 60G10, 62G30, 60J05, 28D05
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1. Introduction

1.1. Empirical Central Limit Theorems

This thesis is dedicated to the study of limit theorems for empirical processes of multiple

mixing data. Let (Xi)i∈N be a stationary real-valued process with marginal distribution µ.

The empirical measure µn is given by µn := n−1
∑n

i=1 δXi , where δx denotes the Dirac measure

given by δx(A) := 1A(x). For a fixed interval (−∞, x], x ∈ R, and an ergodic process (Xi)i∈N,

µn((−∞, , x]) converges almost surely to µ((−∞, , x]). This motivates the concept of a central

limit theorem for the empirical process or an empirical central limit theorem. We say that an

empirical central limit theorem holds if the empirical process Un =
(
Un(x)

)
x∈R given by

Un(x) :=
√
n
(
µn((−∞, x])− µ((−∞, x])

)
(1.1)

converges in distribution to a tight centred Gaussian process. Here, we consider Un as an

element of the càdlàg space D(R).1

Empirical CLTs find application in non-parametric statistics. For instance, the empirical CLT

can be used to derive the asymptotic distribution of the Kolmogorov–Smirnov goodness-of-fit

test. This test is used to determine if a stationary process has some given marginal distribution

µ0, that is to test the hypothesis

H0: “the process has marginal distribution µ0”,

against the alternative

HA: “the process has a marginal distribution different from µ0”.

The associated test statistic is

Dn = sup
x∈R

√
n
∣∣µn((−∞, x])− µ0((−∞, x])

∣∣.
By the continuous mapping theorem, the asymptotic null distribution of Dn is given by

supx∈R |W (x)|, where W denotes the limit distribution of Un.

Donsker (1952) showed that in the case of an independently uniformly distributed underlying

process (Xi)i∈N, the empirical process
(
Un(x)

)
x∈[0,1]

converges in distribution to a Brownian

bridge process W . An empirical CLT for dependent data was given by Billingsley (1968), who

considered ϕ-mixing (or uniformly strong mixing) processes.

Dudley (1966) and Bickel and Wichura (1971) were among the first to study empirical

process CLTs for multi-dimensional independent and identically distributed (i.i.d.) data. Here

1The space of right continuous functions with left limits from R on R.
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1. Introduction

Un is given by (1.1), where x ∈ Rd and (−∞, x] denotes the multi-dimensional rectangle

(−∞, x1]× . . .× (−∞, xd]. Philipp and Pinzur (1980), Philipp (1984), and Dhompongsa (1984)

treat weak convergence of multi-dimensional empirical processes of mixing data.

A process (Xi)i∈N is called α-mixing (or strongly mixing), if there is a sequence of non-negative

real numbers (α(n))n∈N∗ such that α(n)→ 0 as n→∞ and

∣∣P(A ∩B)−P(A) P(B)
∣∣ ≤ α(n)

for any k ∈ N∗ and every A ∈ σ(X0, . . . , Xk) and B ∈ σ(Xk+n, Xk+n+1, . . .).
2 ϕ-mixing is a

stronger version of α-mixing and corresponds to the case, where α can be replaced by ϕ(n) P(A)

with ϕ(n)→ 0 as n→∞.

Davydov (1970) showed that in the case of an α-mixing process, for every k ∈ N∗, the covari-

ance of every σ(X0, . . . , Xk)-measurable real-valued function ξ and every σ(Xk+n, Xk+n+1, . . .)-

measurable real-valued function η can be bounded by

10 (E |ξ|s)1/s (E |η|m)1/m α(n)1−(1/s+1/m) (1.2)

for all s,m ≥ 1 such that 1/s+ 1/m < 1 and E |ξ|s, E |η|m <∞.

We work with a different mixing property. We assume directly that a similar bound like

(1.2) with α(n) = θn, θ ∈ (0, 1) is satisfied for a very particular choice of ξ and η, namely

ξ = f(Xi0) · . . . · f(Xiq−1) with 0 ≤ i0 ≤ . . . ≤ iq−1 ≤ k and η = f(Xiq) · . . . · f(Xip) with

k+n ≤ iq ≤ . . . ≤ ip, q ≤ p ∈ N∗, where f is an element of some specific normed space (C, ‖ ·‖C)
of real-valued functions. We say that (Xi)i∈N is multiple mixing if there is a θ ∈ (0, 1) which

does not depend on p such that for every k, q ∈ N∗ the covariance |Cov(ξ, η)| can be bounded

by

(E |f(X0)|s)1/s ‖f‖`C Q(i1 − i0, . . . , ip − ip−1) θn (1.3)

with s, ` ≥ 1, uniformly for all f ∈ C with supx |f(x)| ≤ 1, where Q is a polynomial function

that depends only on p with total degree of Q not larger than some fixed d0 ≥ 0. This bound

is in many aspects weaker than the bound (1.2) with exponential α, since we strongly restrict

the choice of ξ and η and allow that (1.3) grows with the size of the gaps ik − ik−1 and the

C-norm ‖f‖C of the function f (in our applications, ‖f‖C is always large).

The multiple mixing property holds for instance in the setting of data arising from Markov

chains or dynamical systems with a spectral gap of the corresponding transfer operator on

some space of regular functions containing C. Durieu (2008a) established the multiple mixing

property of the ergodic torus automorphism.

Dehling, Durieu, and Volný (2009) developed a technique (cf. Section 1.3) to treat the

one-dimensional empirical processes of Markov chains with a spectral gap on the space of

bounded Lipschitz functions. Dehling and Durieu (2011) extend this result to multidimensional

data of multiple mixing data with applications to dynamical systems of ergodic automorphisms

2σ
(
{Xi : i ∈ I}

)
, I ⊂ N, denotes the σ-algebra generated by

{
Xi : i ∈ I

}
.

2



1.1. Empirical Central Limit Theorems

of the torus and Markov chains with a spectral gap on the space of bounded α-Hölder functions.

In Part II of this thesis, we provide results for processes that satisfy a weaker version of the

multiple mixing property which we call slow multiple mixing. This concept allows us to treat

processes that only have a polynomial decay in (1.3) instead of the exponential decay given by

θn. We establish an empirical CLT for slowly multiple mixing processes that can be applied to

causal functions of i.i.d. processes such as linear processes and time delay vectors.

Dudley (1978) initiated the study of generalized empirical processes, that is the study of

the process given by
√
n
(
µn(A)− µ(A)

)
, where A is an element of some specific subclass of

B(Rd).3 Ossiander (1987) used bracketing conditions to derive CLTs for empirical processes,

indexed by classes of L2 functions. Peškir and Yukich (1994) established function class indexed

Glivenko–Cantelli theorems for stationary processes using weighted random entropy conditions.

Let (Xi)i∈N be a stationary process in a measurable space (X ,A) with marginal distribution

µ and let F be a class of real-valued measurable functions on X . We denote the integral
∫
X f dµ

with respect to a measure µ by µf . The F-indexed empirical process Un =
(
Un(f)

)
f∈F is given

by

Un(f) :=
√
n
(
µn(f)− µf

)
, f ∈ F . (1.4)

In this setting, we consider Un as a random element in the space `∞(F) of bounded real-valued

functions on F .4 We say that an empirical CLT or a CLT for the F-indexed empirical process

holds, if Un converges in distribution in `∞(F) to some tight Gaussian process. Ossiander

(1987) established a CLT for the empirical process indexed by a class of functions for i.i.d. data.

An empirical CLT for α-mixing (or strongly mixing) data has been established by Andrews

and Pollard (1994). Doukhan, Massart, and Rio (1995) and Rio (1998) study the empirical

processes indexed by a class functions for β-mixing (or absolute regularly mixing) data. For

further results, see the survey article of Dehling and Philipp (2002).

In the setting of Markov chains and dynamical systems, the spectral gap method is a useful

tool to establish CLTs for processes (f(Xi))i∈N, where f is an element of the function class B
on which one has the spectral gap.

If F is contained in B, one can deduce the finite-dimensional CLT from the one-dimensional

CLT via the Cramér-Wold theorem. If further one has sufficient moment bounds of the partial

sums
∑n

i=1(f(Xi)− µf), f ∈ F , to establish the tightness of Un, one can apply the classical

“finite-dimensional convergence plus tightness” approach to prove the empirical CLT for (Un)f∈F .

Collet, Martinez, and Schmitt (2004) proved an empirical CLT for expanding maps of the unit

interval this way.

The technique of Dehling et al. (2009) and Dehling and Durieu (2011) can be applied to

situations, where the one-dimensional CLT and the moment bounds are not directly available

under the functions f ∈ F but for a different class of functions C. This is useful for instance

in the setting of a spectral gap on a space that does not contain the indexing class F . As an

3B(Rd) denotes the Borel σ-algebra, that is the σ-algebra, generated by the open sets in Rd.
4`∞(F) is equipped with the supremum norm ‖U‖∞ = supf∈F |U(f)|.
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1. Introduction

example, Gouëzel (2009) provides samples of dynamical systems that support a spectral gap

on the Lipschitz functions but not on the bounded variation functions.

Dehling et al. (2009) and Dehling and Durieu (2011) treat exclusively classical empirical

processes, that is the case, where F := {(−∞, x] : x ∈ Rd}. This thesis extends the techniques

developed by Dehling et al. (2009) to empirical processes indexed by classes of functions. We

establish a CLT for F -indexed empirical processes of multiple mixing data with applications to

the ergodic automorphism of the torus. The general results of this work have been used by

Durieu (2013) to establish an empirical CLT for iterative Lipschitz models that contract on

average.

1.2. Sequential Empirical Central Limit Theorems

Beyond empirical CLTs, Part III of this thesis studies so called sequential empirical processes

of multiple mixing data. In the classical case of R-valued data, the sequential empirical process

is defined as the R× [0, 1] indexed process Vn = (Vn(x, t))(x,t)∈R×[0,1] given by

Vn(x, t) =
[nt]√
n

[nt]∑
i=1

(
µ[nt]((−∞, x])− µ((−∞, x])

)
,

where [·] denotes the lower Gauss bracket, i.e. [x] := sup{z ∈ Z : z ≤ x}. The process Vn is

also known as the two-parameter empirical process.

The study of sequential empirical processes was initiated independently by Müller (1970) and

Kiefer (1972). Kiefer and Müller showed that for i.i.d. data, the sequential empirical process

converges in distribution to a mean zero Gaussian process K(x, t) with covariance structure

E (K(x, s)K(y, t)) = min{s, t}
(
µ((−∞,min{x, y}])− µ((−∞, x])µ((−∞, y])

)
.

The limit process K is called Kiefer process, or Kiefer-Müller process. In the style of the

preceding section, we say that a sequential empirical central limit theorem holds, if Vn converges

in distribution to a tight Gaussian process.

Sequential empirical CLTs play an important role in the statistical analysis of change-point

problems. Assume we have a sample X1, . . . , Xn of some stochastic process, say of i.i.d. random

variables. In most cases there will be some more or less strong oscillation around the expectation

of the corresponding random variables. It can happen that the mean value of Xi, . . . , Xk∗

differs notably from the mean value of Xk∗+1, . . . , Xn for some k∗ ∈ {1, . . . , n− 1}. A change

point test is used to test the hypothesis that this difference occurred only by chance against

the alternative that the underlying process has changed after the first k∗ realizations.

Let (Xi)i∈N be a stochastic process with marginal distributions (µi)i∈N. We want to test the

null hypothesis

H0: “the process is stationary”

against the alternative
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1.2. Sequential Empirical Central Limit Theorems

HA: “there exists a k∗ ∈ {1, . . . , n− 1} such that (X1, . . . , Xk∗) and (Xk∗+1, . . . , Xn) are

both stationary with different marginal distributions”.

For this change point problem, we propose the test statistic

Tn := max
0≤k≤n

sup
x

k

n

(
1− k

n

)√
n
∣∣µk((−∞, x])− µk+1,n(x)

∣∣,
where µk+1,n denotes the empirical distribution of Xk+1, . . . , Xn given by (n−k)−1

∑n
i=k+1 δXi

(for convenience, let µ0 and µn+1,n be the constant zero measure). In order to determine

the asymptotic null distribution of Tn, we study the `∞(R × [0, 1])-valued process Rn =

(Rn(x, t))(x,t)∈R×[0,1] given by

Rn(x, t) =
√
nt(1− t)

(
µ[nt]((−∞, x])− µ[nt]+1,n((−∞, x])

)
.

If the sequential empirical CLT holds, we obtain under the null hypothesis H0 that

Rn
d−→
(
K(x, t)− tK(x, 1)

)
(x,t)∈R×[0,1]

,

where K is the centred Gaussian process with covariance structure

Cov
(
K(x, t),K(y, s)

)
= min{s, t}

{ ∞∑
k=0

Cov
(
1{X0≤x},1{Xk≤y}

)
+

∞∑
k=1

Cov
(
1{X0≤y},1{Xk≤x}

)}
.

This process is also referred to as a Kiefer process. The proof is given in Chapter 12 (see

Lemma 12.1). Now, applying the continuous mapping theorem to the supremum-functional, we

obtain the asymptotic null distribution of the test statistic Tn, that is

Tn
d−→ sup

x∈R, t∈[0,1]
|K(x, t)− tK(x, 1)|.

In fact this result remains true for general F -indexed empirical processes, see Proposition 12.1.

Berkes and Philipp (1977) established a sequential empirical CLT for strongly mixing random

variables. In a recent paper Dedecker, Merlevède, and Pène (2013) proved a sequential empirical

CLT for dynamical systems given by an ergodic automorphism of the torus.

In Part III, we extend our empirical process techniques to the sequential case and develop

a general sequential empirical CLT for multiple mixing processes. As results, we present

sequential empirical CLTs for Markov chains and dynamical systems with a spectral gap and

for ergodic torus automorphisms. These results are given in the setting of a generalized version

of sequential empirical processes indexed by a class of functions in the style of (1.4).

5



1. Introduction

1.3. The Approximating Class Approach for Empirical CLTs

The standard approach to prove empirical process CLTs uses techniques that go back to

Prohorov (1956). Prohorov’s Theorem states that a tight family of probability measures

is relatively compact. Thus any subsequence Yn′ of a tight sequence of random variables

Yn contains a convergent subsequence Yn′′ . Assume now, that one can show that the finite

dimensional distributions of a sequence of processes Yn converge to the finite dimensional

distributions of some process Y . Then the finite dimensional distributions of the limit Z of the

convergent subsequence Yn′′ must coincide with those of Y and thus Z and Y are identically

distributed. We conclude that every subsequence of Yn has a convergent subsequence with

limit Y , which implies Yn
d−→ Y .

A sufficient condition for tightness of a process (Yn)n∈N∗ in the càdlàg space D([0, 1]) is e.g.

that for every ε, η > 0, there exist some a, δ > 0 and an integer n0 ∈ N∗ such that

sup
n≥1

P
(
|Yn(0)| > a

)
≤ η, (1.5)

sup
n≥n0

P

(
sup
|t−s|≤δ

|Yn(t)− Yn(s)| ≥ ε
)
≤ η, (1.6)

cf. Theorem 15.5 in Billingsley (1968).

The “finite-dimensional convergence plus tightness” technique can be applied to the case,

where the underlying process is i.i.d.. One of the first who applied this technique to dependent

data was Billingsley (1968), who considered the classical empirical process of ϕ-mixing processes

of [0, 1]-valued random variables. In this setting the finite dimensional convergence of the

empirical process (Un)n∈N∗ given by (1.1) is equivalent to a multidimensional CLT under the

class of indicator functions 1[0,t], t ∈ [0, 1], that is

1√
n

n∑
i=1

(
1[0,t1](Xi), . . . ,1[0,tk](Xi)

)
d−→ N(0,Σ) for all k ∈ N∗, t1, . . . , tk ∈ [0, 1]. (1.7)

Here N(0,Σ) is a k-dimensional normal distribution with covariance matrix Σ which may

depend on t1, . . . , tk. Since the application of a measurable function conserves the ϕ-mixing

property of a stochastic process, (1.7) can be directly deduced from the CLT for ϕ-mixing

random variables (cf. e.g. Ibragimov and Linnik (1971)) and the Cramér Wold device.

Billingsley (1968) verifies condition (1.6) to establish the tightness of (Un)n∈N∗ (note that

(1.5) is always satisfied for an empirical process). He uses the following fourth moment bound

for sums of ϕ-mixing random variables (Lemma 1 in Chapter 22 in Billingsley (1968)): If

(ξi)i∈N is a ϕ-mixing process with |ξ0| ∈ [0, 1] a.s., E ξ0 = 0, and mixing coefficients ϕk such

that
∑∞

k=1 k
2√ϕk <∞, then

E

(∣∣∣ n∑
i=1

ξi

∣∣∣4) ≤ K(n2(E ξ2
0)2 + nE ξ2

0

)
for some fixed K > 0. (1.8)
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1.3. The Approximating Class Approach for Empirical CLTs

Since his proof is given for uniformly distributed random variables—which suffices to establish

the empirical CLT for [0, 1]-valued random variables with continuous distribution functions—

(1.8) yields

E
(∣∣Un(t)−Un(s)

∣∣4) ≤ 2K1

ε
(t− s)2 for all ε > 0 such that ε < n|t− s|. (1.9)

As a result of some maximal inequality (Theorem 12.2 in Billingsley (1968)) which involves

an application of Markov’s inequality on the fourth moments of the increments of Un(t) with

respect to t, Billingsley shows that there is a δ > 0 and a n0 ∈ N∗ such that

P

(
sup

t∈[s,s+δ]

∣∣Un(t)−Un(s)
∣∣ ≥ 4ε

)
< ηδ

for s ∈ [0, 1] and all n ∈ N∗, which implies (1.6).

The Approximating Class Approach of Dehling, Durieu, and Volný

In the classical approach, one uses finite-dimensional convergence and bounds for increments

of the empirical process indexed by the class of indicators of rectangles. However, there are

situations where the aforementioned properties are not directly available, but where one can

establish a finite dimensional CLT and moment bounds under a class of regular functions. This

occurs e.g. in the case of data arising from Markov chains or dynamical systems, for which the

Markov or Perron–Frobenius operator, respectively, has a spectral gap on a specific class of

functions (cf. Section 2.1 and Section 10.2).

The technique of Dehling et al. (2009) is qualified for such situations. It is based on the

assumption that a CLT and specific moment bounds hold for functionals of the underlying

process under some class of regular functions. Using a modified theorem of Billingsley (1968)

(Theorem 4.2), they obtain the (classical) empirical CLT without having to establish the

finite-dimensional convergence and tightness of the empirical process directly.

Billingsley’s Theorem 4.2 applies to random variables ξn, ξ
(q)
n , ξ(q), ξ (where n, q ∈ N∗) with

values in a separable metric space (S, ρ) satisfying

(a) ξ
(q)
n

d−→ ξ(q) as n→∞, for all q ≥ 1,

(b) ξ(q) d−→ ξ as q →∞ and

(c) lim supn→∞P
(
ρ(ξ

(q)
n , ξn) ≥ δ

)
−→ 0 as q →∞ for all δ > 0.

It states that under these conditions ξn converges in distribution to ξ.

Dehling et al. (2009) proved that this result holds without condition (b), provided that S is

a complete separable metric space (cf. Theorem 2 in Dehling et al. (2009)). More precisely,

they could show that in this situation (a) and (c) together imply the existence of a random

variable ξ satisfying (b), and thus by Billingsley’s theorem ξn
d−→ ξ.
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1. Introduction

The theorem is illustrated by the following diagram.

ξn oo
(c): lim sup

n→∞
P(ρ(ξ

(q)
n , ξn)≥δ)−→0

q→∞

d n→∞

��

ξ
(q)
n

(a): d n→∞

��
∃ ξ ξ(q)d

q→∞
oo

Now, let (Xi)i∈N be a stationary process with values in a measurable space (X ,A) and let F
be a uniformly bounded class of real-valued measurable functions on X . Assume that Un is

measurable, and that there is a uniformly bounded class G of real-valued measurable functions

on X with the following properties.

(1.A) Un(f)
d−→ N(0, σ2

f ) for every f ∈ Vect(G).

(1.B) For every q ∈ N∗ there is a function πq : F −→ G with #πq(F) < ∞ such that

ξ
(q)
n = (Un(πqf))f∈F and ξn = (Un(f))f∈F satisfy (c).5

In this situation one can show that (a) holds for some piecewise constant Gaussian process ξ(q)

(cf. Proposition 3.1). By Dehling et al. (2009) if the state space S of ξ
(q)
n and ξn is separable

and complete this implies that ξ(q) converges in distribution and that ξn converges to the same

limit ξ as ξ(q). As the ξ(q) are Gaussian, their limit ξ must also be Gaussian and we conclude

that the empirical CLT holds (cf. Section 3.2).

An Approximating Class Approach for Empirical Processes Indexed by

Classes of Functions

Dehling et al. (2009) and Dehling and Durieu (2011) only consider classical empirical processes,

i.e. empirical processes indexed by a class F = {1[−∞,x] : x ∈ Rd} of semi-finite rectangles in

[−∞,∞]d. As in this case Un takes values in the space (D([−∞,∞]d), dS) of multidimensional

càdlàg6 functions on [−∞,∞]d equipped with the corresponding Skorokhod metric dS , they

can set (S, ρ) = (D([−∞,∞]d), dS). In this case, the separability of S and the measurability of

Un (w.r.t. the Borel σ-algebra on D([−∞,∞]d)) are always guaranteed.

In the present thesis however, we generalize to arbitrary uniformly bounded indexing sets

F and consider Un as a random element in the non-separable space S = `∞(F) of uniformly

bounded real functions on F equipped with the supremum norm ‖ · ‖∞. It is well known that,

in general, Un = (Un(f))f∈F is not measurable and thus the usual theory of weak convergence

5#A denotes the cardinality of a set A.
6 For definition of (D([−∞,∞]d), dS) see Neuhaus (1971, p.1286 ff.). Note that (D([−∞,∞]d), dS) is a complete

and separable space (more precisely, Neuhaus (1971) and Straf (1972) proved this for the space D([0, 1]d),
but—since [0, 1] and [−∞,∞] are homeomorphic—the metric on D([−∞,∞]d) can be naturally extended to
a metric on D([−∞,∞]d) which conserves all relevant properties (cf. Dehling and Durieu (2011, p.1081f.))).
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1.3. The Approximating Class Approach for Empirical CLTs

of random variables does not apply. We therefore use the theory based on convergence of outer

expectations; see van der Vaart and Wellner (1996).

We call any (not necessarily measurable) function on a probability space (Ω,S,P) a random

element . If it is also measurable we call it a random variable. For a real-valued random element

X, the outer expectation or outer integral E∗X is defined as

E∗X := inf
{
EY : Y is measurable, Y ≥ X, and, EY exists

}
.

By Lemma 1.2.1 in van der Vaart and Wellner (1996) for a random element X there exists a

measurable cover function X∗ satisfying X∗ ≥ X and E∗X = EX∗, provided that E∗X <∞.

The outer probability P∗ of a probability measure P is defined as

P∗(A) := inf
{
P(B) : B ∈ S, A ⊂ B,

}
A ⊂ Ω.

P∗ coincides with P on S and we have that P∗(A) = E∗(1A) for all A ⊂ Ω (cf. Lemma 1.2.3

in van der Vaart and Wellner (1996)).

Let (S, ρ) be a metric space equipped with the Borel σ-algebra generated by the open sets.

We say that a sequence of S-valued random elements (ξn)n∈N converges in distribution to a

measurable random element ξ (write ξn
d−→ ξ), if

E∗(ϕ(ξn))→ E(ϕ(ξ)), as n→∞

for all bounded and continuous functions ϕ : S → R.

For more details and properties of random elements see the book of van der Vaart and

Wellner (1996).

To deal with non-measurable processes in the setting of the theory of outer expectation, in

our paper Dehling, Durieu, and Tusche (2012) we established the following theorem which can

be seen as an extension of the theorem of Billingsley (1968) and its adaptation by Dehling et al.

(2009) discussed earlier.

Theorem 1.1. Let ξn, ξ
(q)
n , ξ(q) (where n, q ≥ 1) be random elements with values in a complete

metric space (S, ρ), and suppose that ξ(q) is measurable and separable, i.e. there is a separable

set S(q) ⊂ S such that P(ξ(q) ∈ S(q)) = 1. If the conditions

ξ(q)
n

d−→ ξ(q) as n→∞, for all q ≥ 1, (1.10)

lim sup
n→∞

P∗
(
ρ(ξn, ξ

(q)
n ) ≥ δ

)
−→ 0 as q →∞, for all δ > 0 (1.11)

are satisfied, then there exists an S-valued, separable random variable ξ such that ξ(q) d−→ ξ as

q →∞, and

ξn
d−→ ξ as n→∞.

The proof is postponed to the appendix (see Section A.4).
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In the classical approach, F-indexed empirical process CLTs require some control of the

size indexing class F to establish the tightness. This size is usually measured by covering or

bracketing numbers. Let (V, ‖·‖V) be a normed space of real-valued measurable functions defined

on a probability space (X ,A, µ). Usually, the covering number of F is defined as the minimum

number Nc(ε,F , ‖ · ‖V) of ‖ · ‖V -balls of radius ε needed to cover F . The classical bracketing

number N[](ε,F , ‖ · ‖V) is analogously defined as the smallest number of ‖ · ‖V -brackets of

size ε that cover F . Here, a ‖ · ‖V -bracket is defined a set [l, u] := {f : X → R : l ≤ f ≤ u}
with l ≤ u ∈ F and the ‖ · ‖V -size of [l, u] is given by ‖u − l‖V .7 Covering and bracketing

conditions are frequently formulated via the existence of the integral of certain functionals of

the corresponding covering or bracketing numbers, respectively. They are usually addressed to

as entropy conditions. For instance, van der Vaart and Wellner (1996) provide an empirical

CLT for the i.i.d. case under the condition that
∫∞

0

√
log(N[](ε,F , ‖ · ‖2)) dε <∞, where ‖ · ‖2

is given by ‖f‖2 = (
∫
X |f |

2 dµ)1/2. This theorem essentially corresponds to an earlier result of

Ossiander (1987), who considered indexing classes of functions.

We apply the approximating class approach introduced above. To approximate the indexing

class F , we use the intersection G of some ‖ · ‖∞-ball with some normed vector space (C, ‖ · ‖C)
of real-valued, measurable functions on X . As discussed earlier in this section, in order to apply

the approximating class technique, we need to show that for every m ∈ N∗ there is a function

πm : F −→ G taking only finitely many values, such that for all ε > 0

lim sup
n→∞

P∗
(

sup
f∈F

∣∣Un(πmf)−Un(f)
∣∣ > ε

)
−→ 0 as m→∞. (1.12)

To establish this property, we apply chaining arguments, eventually allowing us to estimate

the probability in (1.12) with the help of moment bounds of expressions of the type Un(g),

g ∈ G ∪ (G − G). Our technique is designed to work with processes (Xi)i∈N that are multiple

mixing with respect to C (cf. Chapter 2). In this situation, for every p ∈ N∗ one has a moment

bound of the 2pth moments of Un(g) with g ∈ G ∪ (G − G), cf. Proposition 2.1. These bounds

involve logarithmic terms of the C-norm of g. We therefore use a different kind of covering

numbers that measure how well F can be approximated by the function class G in Ls(µ)-norm,

with a simultaneous control of the ‖ · ‖C-size of the approximating functions.

We developed the following adapted notion of bracketing. Let ε,A > 0, s ≥ 1 and ‖ · ‖s
be given by ‖f‖s = (

∫
X |f |

s dµ)1/s. For a class G of measurable real-valued functions defined

on X , we call a set {f : X −→ R : l ≤ f ≤ u} an (ε,A,G, ‖ · ‖s)-bracket, if l ≤ u ∈ G,

max{‖u‖B, ‖l‖B} ≤ A and ‖u− l‖s ≤ ε. We define the bracketing number N(ε,A,F ,G, ‖ ·‖s) of

F as the smallest number of (ε,A,G, ‖ ·‖s)-brackets that are needed to cover F . In applications,

we usually require an entropy condition which involves these bracketing numbers with A given

by an exponential term of the reciprocal value of the first argument of the bracket. Examples

for classes F that satisfy such a condition are provided in Chapter 4.

Our definition is close to the definition of bracketing numbers given by Ossiander (1987) (see

7for two real valued functions f, g on X , we wrtite f ≤ g if f(x) ≤ g(x) for all x ∈ X .
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also van der Vaart and Wellner (1996)), but different in a vital point. In Ossiander (1987), no

assumptions are made on the upper and lower functions of the bracket other than that they

are close in L2. Here, our moment bound (2.2) below forces us to require the extra condition

that u and l belong to the class G and that their C-norms are controlled. Obviously, our

bracketing numbers are always larger than the ones defined in Ossiander (1987) and naturally

our condition on the size of F are stronger. On the other hand, our results apply to dependent

data, while Ossiander (1987) and van der Vaart and Wellner (1996) treat i.i.d. data.

1.4. Overview of Main Results

In this thesis, we establish a collection of abstract empirical and sequential empirical central

limit theorem. These theorems are adapted for the situation where the underlying process

satisfies a multiple mixing condition. We call a stationary process (Xi)i∈N multiple mixing with

respect to some normed vector space (C, ‖ · ‖C) of real-valued functions, defined on the state

space of (Xi)i∈N, if there are an s ≥ 1 and a θ ∈ (0, 1) such that for any p ∈ N∗, all covariances

of the type

Cov
(
f(Xi0) · · · f(Xiq−1), f(Xiq) · · · f(Xip)

)
can be bounded by a term

‖f‖s‖f‖`CQ(i1 − i0, . . . , ip − ip−1)θiq−iq−1 (1.13)

uniformly for all f ∈ C with E f(X0) = 0 and |f(X0)| ≤ 1 almost surely, i0 ≤ . . . ≤ ip ∈ N, and

q ≤ p (cf. Definition 2.1). Here Q is some polynomial, the exponent ` is greater or equal to 1

and ‖ · ‖s denotes the Ls-norm given by ‖f‖s = (E |f(X0)|s)1/s.

Examples for such processes are B-geometrically ergodic Markov chains, iterative Lipschitz

models that contract on average, dynamical systems with a spectral gap on the Perron–Frobenius

operator and ergodic automorphisms of the torus. These processes are introduced in Chapter 2.

In Part I we establish the following CLT for empirical processes of multiple mixing data that

are indexed by a uniformly bounded class of functions F .

Theorem 1.2 (An Empirical Central Limit Theorem for Multiple Mixing Processes). Let

(Xi)i∈N be multiple mixing with respect to some normed vector space C of measurable functions

with s ≥ 1 and total degree of the multivariate polynomial Q not larger than d0. If
(
f(Xi)

)
i∈N

satisfies the central limit theorem for all f ∈ C and if there exists some uniformly bounded

subclass G ⊂ C such that for some γ > max{1, d0} the entropy condition∫ 1

0
εr sup

ε≤δ≤1
N2
(
δ, exp(Cδ−1/γ),F ,G, ‖ · ‖s

)
dε <∞ for some r > −1, and C > 0 (1.14)

holds, then the empirical process Un = (Un(f))f∈F converges in distribution in `∞(F) to a

tight centred Gaussian process W .
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Under slightly stronger assumptions, involving an exponential decay of covariances of ϕ(X0)

and f(Xk) with f ∈ C and ϕ ∈ F ∪ (F − G) as k → ∞, we can also determine the exact

covariance structure of the limit process W .

We show that property (1.14) holds under reasonable assumption on the distribution function

of X0 for the classes of indicators of finite and semi-finite rectangles, bounded balls and

ellipsoids, balls of arbitrary metric, and some parametric class of monotone functions, where

we use some bounded subclass G of the real-valued bounded Hölder continuous functions.

Among others, we have the following statements about our entropy condition (1.14). Let

µ denote a measure on Rd with distribution function F and let G be the class of real-valued

α-Hölder functions on Rd that are uniformly bounded by 1.

(i) If there are some s ∈ [1,∞] and γ > 1 such that the modulus of continuity ωF of F

satisfies ωF(x) = O(| log(x)|−sγ) as x→∞,8 then condition (1.14) holds (with the same

s and γ) for F := {1(t,u] : t, u ∈ Rd, t ≤ u}, the class of indicators of finite and semi-finite

rectangles on Rd.

(ii) Let F := {1E(x,r) : x ∈ [0, 1]d, r ∈ [0, D]d} for any fixed D > 0, where E(x, r) denotes the

ellipsoid E(x, r) := {y ∈ Rd :
∑d

i=1(xi − yi)2/r2
i ≤ 1}. If µ has a bounded density with

respect to the Lebesgue measure, then condition (1.14) is satisfied for all s ∈ [1,∞], γ > 1.

(iii) In the situation of (ii), F can be replaced by {1E(x,r) : x ∈ Rd, r ∈ [0, D]d}, if one

furthermore assumes that µ({x ∈ Rd : |x| > t}) = O(t−β) as t→∞ for some β ∈ (0, 1).

(iv) Let d = 1 and F = {ft : t ∈ [0, 1]}, where the ft are functions from R to R which satisfy

– 0 ≤ ft(x) ≤ 1 for all t ∈ [0, 1] and x ∈ R,

– fs ≤ ft for all 0 ≤ s ≤ t ≤ 1,

– ft is monotone increasing on R for all t ∈ [0, 1], and

– Gµ(t) = µft is Lipschitz,

If there are some s ∈ [1,∞] and γ > 1 such that the distribution function F of µ satisfies

ωF(x) = O(| log(x)|−sγ) as x→∞, then (1.14) holds (with the same s and γ).

As an application we prove an empirical CLT for ergodic automorphisms of the torus. Let

Td = Rd/Zd denote the multidimensional torus identified with [0, 1]d and let A denote a d× d
matrix with integer coefficients, determinant ±1, and with no eigenvalue that is a root of

unity. Then T : Td −→ Td given by Tx = Ax mod 1 induces a measure preserving ergodic

automorphism on Td equipped with the Lebesgue measure λ.

We establish the empirical CLT for processes (ϕ(T i))i∈N∗ with a Hölder function ϕ.

Theorem 1.3 (An Empirical CLT for Ergodic Automorphisms of the Torus). If (1.14) holds

for some uniformly bounded subspace G of C with d0 equal to the size of the biggest Jordan block

8Recall that ωF (t) := sup{|F (x)− F (y)| : |x− y| ≤ t}, where | · | denotes the corresponding Euclidean norm.
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1.4. Overview of Main Results

of A restricted to its neutral subspace, then Un given by

Un(f) =
1√
n

∑
i=1

(
f ◦ ϕ(T i)−

∫
f ◦ ϕ dλ

)
f ∈ F

satisfies the empirical CLT.

This result can be applied for any of the indexing classes given in (i)-(iv) under different

assumptions on the distribution λ ◦ϕ−1. For instance, we show that under the assumption that

the distribution function F of λ ◦ϕ−1 satisfies ωF(x) = O(| log(x)|−γ) for some γ > max{1, d0},
the empirical process indexed by the class of finite and semi-finite rectangles given in (i) satisfies

the empirical CLT. Under the stronger assumption that λ ◦ ϕ−1 has a bounded density, we

establish an empirical CLT for the empirical process indexed by the class of bounded ellipsoids,

given in (ii).

In Part II, we extend the concept of multiple mixing to the situation, where θiq−iq−1 in

the covariance bound (1.13) is replace by Θ(iq − iq−1) for some non-negative function Θ with∑∞
i=1 Θ(i) < ∞ (cf. Definition 6.1). We call a process that satisfies this condition slowly

multiple mixing. In order to treat slow multiple mixing processes we restrict to empirical

processes indexed by semi-finite rectangles. We have the following result for slowly multiple

mixing processes processes.

Theorem 1.4 (An Empirical CLT for Slowly Multiple Mixing Processes). Let (Xi)i∈N be a

slowly multiple mixing process on Rd with respect to the space of bounded real-valued α-Hölder

continuous functions with s ≥ 1 and Θ : N −→ R+
0 such that there exists a p ∈ N∗ with p > sd

and
∑∞

i=0 i
2p−2Θ(i) <∞. If, for every bounded R-valued α-Hölder continuous function f , the

process (f(Xi))i∈N∗ satisfies the CLT, and if the distribution function F of X0 is β-Hölder with

β > αsp/(p− sd), then there is a centred Gaussian process W = (W (t))t∈[−∞,∞]d with almost

surely continuous sample paths such that Un
d−→W in the space D([−∞,∞]d).

This theorem applies e.g. to causal functions of i.i.d. processes. A causal function of an

i.i.d. process (ξi)i∈Z is defined as the process (Xi)i∈N given by Xi := G((ξj)j≤i), where G is a

measurable Rd-valued function. The dependence structure of (Xi)i∈N can be measured by the

physical dependence measure due to Dedecker and Prieur (2005) (see also Wu (2005)), which is

given by

δi,m :=
(
E
∣∣Xi −G(ξi, ξi−1, . . . , ξ1, ξ

′
0, ξ
′
−1, . . .)

∣∣m) 1
m
,

where (ξ′i)i∈Z is an independent copy of (ξi)i∈Z and m ≥ 1. We show, that (G((ξj)j≤i))i∈N∗

satisfies the empirical CLT, given that the assumptions of Theorem 1.4 hold with Θ(i) =

(δi,(s−1)/s)
α.

As concrete examples we apply this result to linear processes and time delay vectors. Let

(aj)j∈N be a family of linear operators from the state space (X , ‖ · ‖X ) of the ξi to Rd. For a

13



1. Introduction

linear process Xi :=
∑∞

j=0 aj(ξi−j), the condition on the dependence measure δi,m reduce to

∞∑
j=i

sup{|aj(x)| : x ∈ X , ‖x‖X ≤ 1} = O(i−b) with b > min
p∈N, p>sd

s

θ

(2p− 1)p

p− sd
.

The last part of this thesis is dedicated to the study of sequential versions of empirical

processes of multiple mixing data. Here, we focus again on exponential decay of the covariances,

but also give an abstract theorem that can be applied in the case of slower mixing rates. For

exponential multiple mixing, it turns out that the only assumption that significantly changes,

is the CLT assumption on
(
f(Xi)

)
i∈N. Here we need the stronger assumption that

1√
n

(
[nt1]∑
i=1

(f1(Xi)− µf1) , . . . ,

[ntk]∑
i=1

(fk(Xi)− µfk)

)
d−→ N(0,Σ) as n→∞

for all k ∈ N∗, f1, . . . , fk ∈ C, t1, . . . , tk ∈ [0, 1].

(1.15)

Our sequential empirical CLT is the following.

Theorem 1.5 (A Sequential Empirical CLT for Multiple Mixing Processes). Let (Xi)i∈N be

multiple mixing with respect to some normed vector space C of measurable functions with s ≥ 1,

total degree of the multivariate polynomial Q not larger than d0. If further the sequential

finite-dimensional CLT (1.15) holds and if there exists some uniformly bounded subclass

G ⊂ C such that the entropy condition (1.14) holds, then the sequential empirical process

Vn = (Vn(f, t))(f,t)∈F×[0,1] given by

Vn(f, t) :=
1√
n

[nt]∑
i=1

(
f(Xi)−E f(X0)

)
, (f, t) ∈ F × [0, 1],

converges in distribution in `∞(F × [0, 1]) to a tight centred Gaussian process K.

We provide a mixing condition, that allows to deduce property (1.15) from the one-dimensional

CLT (cf. Lemma 11.1).9 This condition holds for the ergodic automorphism of the torus

without additional assumptions and thus we can extend our empirical CLT for the ergodic

torus automorphism Theorem 1.3 to a sequential empirical CLT, where our assumptions are

the same as in the non-sequential version.

Further we give a direct proof of condition (1.15) for B-geometrically ergodic Markov chains

and dynamical systems with a spectral gap on the Perron–Frobenius operator (cf. Theorem 10.1).

As a result, we can also apply Theorem 1.5 in this situations.

Let (Xi)i∈N be a Markov chain with Markov operator P and invariant measure ν and let

(B, ‖ · ‖B) denote a complex Banach space of C-valued functions on the state space of the Xi.

We assume that B satisfies the following conditions:

9Note that since we consider dependent data, this property can not be directly computed from the one-
dimensional CLT using the Cramér-Wold device.
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1.4. Overview of Main Results

(a) 1X ∈ B, |f | and f ∈ B for all f ∈ B, and for every point x in the domain of the functions

in B, the mapping f 7→ f(x) is continuous on B.

(b) There is an m ∈ [1,∞] and some K > 0 such that (
∫
|f |m dν)1/m < K‖f‖B for all f ∈ B.

(c) B is a Banach algebra, that is the inner multiplication “·” satisfies ‖f · g‖B ≤ ‖f‖B · ‖g‖B.

We say, that (Xi)i∈N is B-geometrically ergodic if there is some κ > 0, θ ∈ [0, 1) such that

‖Pnf −E f(X0)‖B ≤ κ‖f‖Bθn for all f ∈ B. (1.16)

This property corresponds to a spectral gap of P on B.10 We have the following sequential

empirical CLT for such Markov chains.

Theorem 1.6 (A Sequential Empirical CLT for B-Geometrically Ergodic Markov Chains). If

(Xi)i∈N is a B-geometrically ergodic Markov chain and if there is some uniformly bounded subset

G of the real-valued functions in B such that entropy condition (1.14) holds with s = m/(m− 1)

for some r > −1, γ > 1, and C > 0, then the sequential empirical Vn process converges in

distribution in `∞(F × [0, 1]) to a tight Gaussian process K with covariance structure given by

Cov
(
K(f, t),K(g, u)

)
= min{t, u}

{ ∞∑
k=0

Cov
(
f(X0), g(Xk)

)
+
∞∑
k=1

Cov
(
f(Xk), g(X0)

)}
.

As an application, we consider iterative Lipschitz models. An iterative Lipschitz model is a

Markov chain (Xi)i∈N∗ with a transition probability P of the form

P (x,A) =

∞∑
i=0

pi(x) 1A(Ti(x)),

where {Ti : i ∈ N} is a family of Lipschitz continuous transformations of the state space of the

Xi and {pi : i ∈ N} is a family of [0, 1]-valued Lipschitz functions on that same space such that∑∞
i=0 pi = 1. We say that the Lipschitz model (Xi)i∈N contracts on average, if exists a ρ ∈ (0, 1)

such that
∑∞

i=0 d(Ti(x), Ti(y))pi(x) < ρd(x, y) for all x, y. Under certain technical assumptions,

such processes satisfy property (1.16) with respect to the space of weighted Lipschitz functions.

This space satisfies the conditions (a)–(c). Further it contains a space of bounded Hölder

continuous functions entropy results apply.

The techniques used to establish Theorem 1.6 also apply in the case of a measure preserving

dynamical system. In this case, we consider the corresponding Perron–Frobenius operator

given instead of the Markov operator. Apart from that, we obtain the sequential empirical

CLT under the same conditions as in Theorem 1.6.

10I.e. the constant functions are the only eigenvectors with eigenvalue of modulus 1 and all other eigenvalues are
contained in a disc of radius strictly smaller 1.
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1.5. Structure of this Thesis

The remainder of this thesis is structured as follows.

In Chapter 2, we introduce the concept of multiple mixing process. We establish an increment

bound of the 2p-th moments for multiple mixing processes and present some examples of such

processes.

In Part I, we establish a CLT for F-indexed empirical processes of multiple mixing data

(Chapter 3). We discuss a range of indexing classes that satisfy our entropy condition (Chapter 4).

As an example we demonstrate the application of our empirical CLT to dynamical systems

given by an ergodic automorphism of the torus (Chapter 5). This part of the thesis corresponds

mainly to the article Dehling, Durieu, and Tusche (2012).

Processes with a weaker mixing property (called slowly multiple mixing here) are discussed

in Part II. We provide an empirical CLT (Chapter 7) with applications to causal functions

such as linear processes and time delay vectors (Section 6.2). This part is based on the article

Durieu and Tusche (2012).

Part III contains the results from the article Dehling, Durieu, and Tusche (2013). Here, we

provide a sequential empirical CLT for multiple mixing data (Chapter 9) with applications to

B-geometrically ergodic Markov chains, dynamical systems with a spectral gap on the Perron–

Frobenius operator (Chapter 10) and ergodic automorphisms of the torus (Chapter 11).
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2. Multiple Mixing Processes

Let (X,A) be a measurable space. For a positive measure λ on X and a λ-integrable complex-

valued function f on X , we use the notation λf :=
∫
X f dλ. For s ∈ [1,∞), we denote by Ls(λ)

the Lebesgue space of s-th power λ-integrable complex-valued functions on X . This space

is equipped with the norm ‖f‖s =
(
λ(|f |s)

)1/s
. Further, we denote the space of essentially

bounded complex-valued measurable functions on X with respect to λ by L∞(λ) and the

corresponding (essential) supremum norm by ‖ · ‖∞. Note that these norms depend heavily on

the choice of the measure λ; however throughout this manuscript it will always be clear which

measure we refer to.

Let (Xi)i∈N be a stationary stochastic process with state space (X ,A) and marginal distri-

bution µ and let (E , ‖ · ‖E) denote a real or complex normed vector space of functions on X
with values in R or C, respectively.

Definition 2.1 (Multiple Mixing). We say that a process (Xi)i∈N is multiple mixing with

respect to E if there exist a θ ∈ (0, 1), as s ≥ 1, and an integer d0 ∈ N such that for all p ∈ N∗

there is an integer ` and a multivariate polynomial Q of total degree not larger than d0 such

that

∣∣Cov
(
f(Xi0) · . . . · f(Xiq−1), f(Xiq) · . . . · f(Xip)

)∣∣
≤ ‖f‖s‖f‖`EQ(i1 − i0, . . . , ip − ip−1)θiq−iq−1 (2.1)

holds for all f ∈ E with µf = 0 and ‖f‖∞ ≤ 1, all integers 0 ≤ i0 ≤ i1 ≤ . . . ≤ ip and all

q ∈ {1, . . . , p}.

An important property of multiple mixing processes is that, for all p ∈ N∗, they allow some

increment bound of the 2p-th moments of Un(f) with f ∈ {f ∈ C : ‖f‖∞ ≤ 1}. These bounds

are presented in the following section.

2.1. Moment bounds for Multiple Mixing Processes

Dehling and Durieu (2011) investigate moment bounds for multiple mixing processes. Here, we

state and prove a version their result (Theorem 4 in Dehling and Durieu (2011)). Note, that this

version contains a correction of a slight computational error in Dehling and Durieu (2011) that

occurs when the polynomials in the multiple mixing property are of a strictly positive degree,

and that lead to a wrong exponent in the logarithmic part on the r.h.s. of the corresponding

moment bound. Let (C, ‖ · ‖C) be a normed real vector space of R-valued measurable functions

on X . We have the following moment bound for multiple mixing processes.
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2. Multiple Mixing Processes

Proposition 2.1. Let (Xi)i∈N∗ be multiple mixing for some θ ∈ (0, 1), d0 ∈ N, and s ≥ 1 with

respect to C. If 1X ∈ C, then for every p ∈ N∗, there exists a Cp > 0 such that for all n ∈ N∗

E

( n∑
i=1

f(Xi)− µf
)2p

≤ Cp
p∑
i=1

ni‖f‖is log2p+ai(‖f‖C + 1), for all f ∈ C with ‖f‖∞ ≤ 1,

(2.2)

where a := max{−1, d0 − 2}.

Proof. Let f ∈ C with ‖f‖∞ ≤ 1 and set g := f − µf . For non-negative integers j1, j2, . . . and

q ∈ N∗, we use the abbreviation j∗q :=
∑q

k=1 jk. Further, we introduce the following notation:

In(0) := 0, In(p) :=
∑

0≤j1,...,jp≤n−1
j∗p≤n−1

∣∣E(g(X0)g(Xj∗1
) . . . g(Xj∗p )

)∣∣, p ∈ N∗.

By stationarity we have that

E

( n∑
i=1

g(Xi)

)p
≤ p!nIn(p− 1) for all p ∈ N∗. (2.3)

We will show by complete induction, that for all p ∈ N∗ there is a constant cp > 0 such that

In(2p) ≤ cp
p∑
i=1

ni−1‖g(X0)‖ir log2p+ai+1(‖g‖C + θ−1), (2.4)

In(2p− 1) ≤ cp
p∑
i=1

ni−1‖g(X0)‖ir log2p+ai(‖g‖C + θ−1). (2.5)

To do so, we need the following technical lemma.

Lemma 2.1. Let

Jn(p, q) :=

n−1∑
jq=0

∑
0≤j1,...,jq−1,jq+1,...,jp≤jq

j∗p≤n−1

∣∣E(g(X0)g(Xj∗1
) . . . g(Xj∗p )

)∣∣, p ∈ N∗, q ∈ {1, . . . , p}.

Then for all p ∈ N∗ and q ∈ {1, . . . , p} there exists a constant cp > 0 such that

Jn(p, q) ≤ cp ‖g(X0)‖r logp+a+1(‖g‖C + θ−1) + nIn(q − 1)In(p− q),

where a := max{−1, d0 − 2}.

Proof of Lemma 2.1. Let n0 be a positive integer such that

log(‖g‖C + θ−1)

log(θ−1)
< n0 ≤

log(‖g‖C + θ−1)

log(θ−1)
+ 1.
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2.1. Moment bounds for Multiple Mixing Processes

Note, that therefore θn0‖g‖C ≤ 1 and n0 ≥ 2. Now, let

Aj1,...,jp :=
∣∣Cov

(
g(X0)g(Xj∗1

) . . . g(Xj∗q−1
), g(Xj∗q )g(Xj∗q+1

) . . . g(Xj∗p )
)∣∣,

Bj1,...,jp :=
∣∣E(g(X0)g(Xj∗1

) . . . g(Xj∗q−1
)
)∣∣ ∣∣E(g(X0)g(Xjq+1) . . . g(Xj∗p−j∗q )

)∣∣.
With this notation, we have

Jn(p, q) ≤
n−1∑
jq=0

∑
0≤j1,...,jq−1,jq+1,...,jp≤jq

j∗p≤n−1

Aj1,...,jp +Bj1,...,jp

Since ‖g‖∞ ≤ 1 we have Aj1,...,jp ≤ 2‖g(X0)‖1 and therefore∑
0≤j1,...,jq−1,jq+1,...,jp≤jq

j∗p≤n−1

Aj1,...,jp ≤ 2(jq + 1)p−1‖g(X0)‖1. (2.6)

Furthermore, using the multiple mixing property (2.1), we also have that∑
0≤j1,...,jq−1,jq+1,...,jp≤jq

j∗p≤n−1

Aj1,...,jp ≤ ‖g(X0)‖r‖g‖`Cθjq
∑

0≤j1,...,jq−1,jq+1,...,jp≤jq

Q(j1, . . . , jp).

Since degQ ≤ d0, Q(j1, . . . , jp) can be bounded above by |Q|(jq)d0 , where |Q| is the sum of

the positive parts of all coefficients of Q. This implies∑
0≤j1,...,jq−1,jq+1,...,jp≤jq

j∗p≤n−1

Aj1,...,jp ≤ |Q| ‖g(X0)‖r‖g‖`Cθjq(jq + 1)p+d0−1

≤ |Q| ‖g(X0)‖rθjq−n0`(jq + 1)p+d0−1 (2.7)

where we used that |{0 ≤ j1, . . . , jq−1, jq+1, . . . , jp ≤ jq}| ≤ (jq + 1)p−1. Using (2.6) for jq = 0

to n0`− 2 and (2.7) for jq ≥ n0`− 1, we obtain

n−1∑
jq=0

∑
0≤j1,...,jq−1,jq+1,...,jp≤jq

j∗p≤n−1

Aj1,...,jp

≤ 2

n0`−2∑
jq=0

‖g(X0)‖1(jq + 1)p−1 + |Q| ‖g(X0)‖r
n−1∑

jq=n0`−1

θjq−n0`(jq + 1)p+d0−1

≤ 2‖g(X0)‖1(n0 − 1)p + θ|Q| ‖g(X0)‖r
n−n0`∑
jq=0

θjq(jq + n0`)
p+d0−1

≤ 2‖g(X0)‖r(n0 − 1)p + cpθ|Q| ‖g(X0)‖r(n0 − 1)p+d0−1
∞∑
jq=0

θjq(jq)
p+d0−1,

for some constant bp > 0, depending only on p.
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2. Multiple Mixing Processes

Thus, since n0 − 1 ≤ log(‖g‖C + θ−1)/ log(θ−1) and
∑∞

jq=0 θ
jp(jq)

p+d0−1 < ∞, there is a

constant cp ≥ 2 such that

n−1∑
jq=0

∑
0≤j1,...,jq−1,jq+1,...,jp≤jq

j∗p≤n−1

Aj1,...,jp ≤ cp ‖g(X0)‖r logp+a+1(‖g‖C + θ−1),

with a = max{−1, d0 − 2}. On the other hand,∑
0≤j1,...,jq−1,jq+1,...,jp≤jq

j∗p≤n−1

Bj1,...,jp ≤ In(q − 1)In(p− q).

Therefore Jn(p, q) ≤ cp ‖g(X0)‖r logp+a+1(‖g‖C + θ−1) + nIn(q − 1)In(p− q).

Obviously we have In(0) = 0 and In(1) = |E(g(X0))| and thus (2.4) and (2.5) hold with

p = 0, p = 1. Now, with

In(p) ≤ ‖g(X0)‖r logp+a+1(‖g‖C + θ−1) +

p−1∑
q=2

nIn(q − 1)In(p− q),

and Lemma 2.1 one can carry out the inductive step. With (2.5) established for all p ∈ N∗,
(2.2) follows from (2.3).

Let us now introduce some classes of multiple mixing processes, that will be investigated in

the following parts of this thesis.

2.2. B-Geometrically Ergodic Markov Chains

Let (Xi)i∈N be a time-homogeneous Markov chain on a measurable state space (X ,A) with

probability transition P and an invariant measure ν. We assume that the Markov chain starts

with initial distribution ν, i.e that the distribution of X0 is ν. This makes (Xi)i∈N a stationary

sequence. We also denote by P the associated Markov operator defined by

Pf =

∫
X
f(y) P (·, dy).

We assume that there exists a complex Banach space (B, ‖ · ‖B) of measurable functions

from X to C such that P is a bounded linear operator on B. We denote by L(B) the space of

bounded linear operators from B to B.

We call (Xi)i∈N∗ B-geometrically ergodic (cf. Meyn and Tweedie (1993) and Hervé and Pène

(2010)), if the corresponding Markov operator on B satisfies

(2.A) ‖Pnf − (νf) 1X ‖B ≤ κ‖f‖Bθn for some κ > 0, θ ∈ [0, 1), and all f ∈ B.

Remark 2.1. This property is also often referred to as strong or geometric ergodicity with

respect to B. Given that 1X ∈ B, this property corresponds to a spectral gap property of P
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2.2. B-Geometrically Ergodic Markov Chains

acting on B, that is 1 is the only eigenvalue of modulus one, it is simple, and the rest of the

spectrum is contained in a disk of radius strictly smaller than one. Further, in this case there

exists a decomposition of the linear operator P in L(B), given by

P = Π +N (2.8)

such that Πf = (νf) 1X is a projection on the eigenspace of 1, N ◦ Π = Π ◦ N = 0, and

ρ(N) := limn→∞ ‖Nn‖1/nL(B) < 1, where ‖ · ‖L(B) denotes the operator norm w.r.t. B, given by

‖P‖L(B) := sup
f∈B\{0}

‖P (f)‖B
‖f‖B

.

To establish the multiple mixing property, analogously to Lemma 3 in Dehling and Durieu

(2011), we make the following three assumptions on the space B:

(2.B) 1X ∈ B, |f | and f ∈ B for all f ∈ B, and for every x ∈ X , the mapping f 7→ f(x) is

continuous on B.

Moreover for some m ∈ [1,∞],

(2.C) B is continuously included in Lm(ν), i.e. B ⊂ Lm(µ) and there is a K > 0 such that

‖f‖m ≤ K‖f‖B for all f ∈ B.

Lastly, we use the condition that

(2.D) there exist some C > 0 and ` ∈ N∗ such that, if f ∈ B and g ∈ B are bounded by 1,

then fg ∈ B and ‖fg‖B ≤ C max{‖f‖B, ‖g‖B}`.

Remark 2.2. Note that if B is a Banach algebra,1 condition (2.D) holds with ` = 2.

Lemma 2.2. Under the conditions (2.A), (2.B), (2.C), and (2.D), the Markov chain (Xi)i∈N

satisfies the multiple mixing property w.r.t. B with d0 = 0 and s = m/(m− 1).

Proof. Let f ∈ B such that ‖f‖∞ ≤ 1 and set s = m/(m − 1). For all p > q > 0, for all

i0 < i1 < . . . < ip, we write g = fP iq+1−iq
(
. . . fP ip−1−ip−2

(
fP ip−ip−1(f)

)
. . .
)
. By (2.D), g

belongs to B. Let σj denote the σ-algebra generated by X0, . . . , Xj . Using Hölder’s inequality,

we obtain

∣∣Cov(f(Xi0) · · · f(Xiq−1), f(Xiq) · · · f(Xip))
∣∣

= E

{
f(Xi0) · · · f(Xiq−1) ·

(
E
[
f(Xiq) . . . E

[
f(Xip−1) E[f(Xip)|σip−1 ]

∣∣ σip−2

]
. . .
∣∣∣ σiq−1

]
−E

(
f(Xiq) · · · f(Xip)

))}
≤ ‖f(Xi0) · · · f(Xiq−1)‖s ‖P iq−iq−1(g)− (νg) 1X ‖m. (2.9)

1I.e. (B,+, ‖ · ‖B) is a complete normed vector space, (B,+, ·) is an associative algebra over C or R (which
is always the case for spaces of C- or R-valued functions), and the inner multiplication “·” in B satisfies
‖f · g‖B ≤ ‖f‖B · ‖g‖B.
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2. Multiple Mixing Processes

Using (2.A), (2.C), and ‖f‖∞ ≤ 1, we infer

∣∣Cov(f(Xi0) · · · f(Xiq−1), f(Xiq) · · · f(Xip))
∣∣ ≤ K‖f‖s‖g‖Bθiq−iq−1 .

By (2.A), P has a decomposition given in (2.8) and thus

‖P kf‖B ≤ ‖Nkf‖B + ‖Π‖L(B)‖f‖B ≤ c‖f‖B for all k ∈ N∗

for some c ≥ 1 since N has a spectral radius that is strictly smaller 1. Now, using (2.D), we

obtain two constants C > 0 and ` ∈ N∗, depending only on p, such that ‖g‖B ≤ C‖f‖`B. This

completes the proof of the lemma.

The following section introduces bounded Hölder continuous and weighted Lipschitz functions.

We present some basic properties of this spaces that will be used later. Especially, we show

that the weighted Lipschitz functions satisfy condition (2.B), (2.C), and (2.D).

2.3. Hölder Spaces and Weighted Lipschitz Functions

Let α ∈ (0, 1] and K = C or K = R. For a metric space (X , d), we denote the space of bounded

α-Hölder continuous functions on X with values in K by Hα(X ,K). This space is equipped

with the norm

‖ · ‖Hα := ‖ · ‖∞ +mα(·),

where

mα(f) := sup
x,y∈X
x 6=y

|f(x)− f(y)|
d(x, y)α

.

Note that this space is a Banach algebra. Further we introduce the space Hα,β(X ,K) of

Lipschitz functions with weights. Let α ∈ (0, 1], β ∈ [0, 1] and x0 ∈ X . Hα,β(X ,K) is defined as

the space of continuous function from X to K with the norm ‖ · ‖Hα,β = Nβ(·) +mα,β(·) <∞,

where

Nβ(f) = sup
x∈X

|f(x)|
1 + d(x, x0)β

and mα,β(f) = sup
x,y∈X
x 6=y

|f(x)− f(y)|
d(x, y)α(1 + d(x, x0)β)

.

Observe that Hα,0(X ,K) = Hα(X ,K), ‖ · ‖Hα,0 = 1
2‖ · ‖Hα , and that Hα(X ,K) is a subspace of

Hα,β(X ,K) for every β > 0. Further, Hα(X ,C) satisfies the following basic properties.

Lemma 2.3. If ν has a finite first moment (that is
∫
X d(x, x0) dν(x) <∞ for some x0 ∈ X )

then for all α and β ∈ [0, 1],

(a) for every f ∈ Hα(X ,C) and g ∈ Hα,β(X ,C), we have that ‖fg‖Hα,β ≤ ‖f‖Hα‖g‖Hα,β ,

(b) (Hα,β(X ,C), ‖ · ‖Hα,β ) is a Banach space which satisfies condition (2.B),

(c) there exists a C > 0 such that ‖f‖1/β ≤ CNβ(f) for every f ∈ Hα,β(X ,C) (where we

agree to let 1/β =∞ for β = 0),
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(d) for every bounded f, g ∈ Hα,β(X ,C), we have that

‖fg‖Hα,β ≤ ‖f‖∞‖g‖Hα,β + ‖g‖∞‖f‖Hα,β .

The proof only requires straight forward calculations and is therefore postponed to the

appendix (cf. Section A.5). As a direct consequence one obtains

Proposition 2.2. If ν has a finite first moment, then for all α ∈ (0, 1] and β ∈ [0, 1] the space

B = Hα,β(X ,C) satisfies (2.B), (2.C), and (2.D) with m = β−1 if β 6= 0 and m =∞ else.

In the following section, we present iterative Lipschitz models as an example for Markov

chains satisfying condition (2.A) w.r.t. the space of weighted Lipschitz functions.

2.4. Iterative Lipschitz Models that Contract on Average

Consider the following experiment. A mouse is confronted with a sequence of possible events

E0, . . . , Em. After each event, the behaviour of the mouse alters, the mouse “learns”. We

are interested in this learning process. Assume the “conscience” or the “state of learning” of

the mouse is represented by an element x of some appropriate space X which may change

during the experiment. The learning process the mouse undergoes after experiencing event Ei

shall be represented by a transformation Ti on X . Assume further, that the probability of the

occurrence of the event Ei is given by pi, where p0, . . . , pm is a probability vector depending

only on the current learning state of the mouse. Such mathematical learning models have first

been studied by Bush and Mosteller (1951), Bush and Mosteller (1953) and Karlin (1953).

In this section we consider so called iterative Lipschitz models that contract on average.

Assume that (X , d) is a (not necessarily compact) metric space in which every closed ball is

compact and suppose that X is equipped with the Borel σ-algebra B(X ). Let {Ti, i ∈ N}
and {pi, i ∈ N} be families of Lipschitz functions that map from X to X and X to [0, 1],

respectively, where the pi satisfy

∞∑
i=1

pi(x) = 1 for all x ∈ X .

An iterative Lipschitz model is then given by a Markov chain (Xi)i∈N with state space X and a

transition probability P of the form

P (x,A) =

∞∑
i=0

pi(x) 1A(Ti(x)), x ∈ X , A ∈ B(X ).

Thus—as in the learning model—each step of the Markov chain corresponds to the application of

one of the transformations Ti which is chosen randomly with respect to the discrete probability

distribution given by p0(x), p1(x), . . . depending only on the actual state x of the chain. We

further assume that this model has a property of contraction on average, that is that there
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exists a ρ ∈ (0, 1) such that

∞∑
i=0

d(Ti(x), Ti(y))pi(x) < ρd(x, y) for all x, y ∈ X . (2.10)

Such Markov chains have been studied e.g. by Barnsley, Demko, Elton, and Geronimo (1988),

Peigné (1993), Walkden (2007), and by Durieu (2013). As in these papers, we work with the

following technical properties in the setting of Markov chains.

For some fixed x0 ∈ X , suppose

sup
x,y,z∈X ,
y 6=z

∞∑
i=0

d(Ti(y), Ti(z))

d(y, z)
pi(x) <∞, (2.11)

sup
x,y∈X

∞∑
i=0

d(Ti(y), x0)

1 + d(y, x0)
pi(x) <∞, (2.12)

sup
x∈X

∞∑
i=0

d(Ti(x), x0)

1 + d(x, x0)
sup

y,z∈X ,y 6=z

|pi(y)− pi(z)|
d(y, z)

<∞. (2.13)

Moreover assume that for all x, y ∈ X , there exist sequences of integer (in)n≥1 and (jn)n≥1

such that

d
(
Tin◦ . . . ◦ Ti1(x) , Tjn◦ . . . ◦ Tj1(y)

)(
1 + d

(
Tjn◦ . . . ◦ Tj1(x) , x0

))
−→ 0 as n→∞ (2.14)

with pin(Tin−1◦ . . . ◦ Ti1(x)) · . . . · pi1(x) > 0 and pjn(Tjn−1◦ . . . ◦ Tj1(y)) · . . . · pj1(x) > 0.

Note that conditions (2.11) – (2.13) are verified when the family of maps Ti is finite and

(2.14) is verified when (2.10) – (2.13) hold and each pi is positive. See Peigné (1993) for a

discussion on these assumptions.

Under the conditions (2.10) – (2.14), Peigné (1993) proved that the Markov chain has

an attractive P -invariant probability measure ν with existing first moment. We define the

stationary process (Xi)i∈N∗ on X as the Markov chain with starting distribution ν (i.e. X0 ∼ ν)

and transition probability P .

Now, according to Theorem 1 in Peigné (1993), we immediately obtain the following proposi-

tion.

Proposition 2.3. If (Xi)i∈N∗ is an iterative Lipschitz model with values in X and satisfies

(2.10) – (2.14), then P is a bounded linear operator on B = Hα,β(X ,C) that satisfies (2.A) for

any α, β ∈ (0, 1/2) such that α < β.

An application of Proposition 2.2 and Proposition 2.3 to Lemma 2.2 yields the following

corollary.

Corollary 2.1. Assume that (Xi)i∈N∗ is an iterative Lipschitz model with values in X and

satisfies (2.10) – (2.14) for some x ∈ X . Then for all α, β ∈ (0, 1/2) with α < β the process

(Xi)i∈N∗ is multiple mixing w.r.t. Hα,β(X ,C) with d0 = 0 and s = (1− β)−1.
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2.5. Dynamical Systems with a Spectral Gap

2.5. Dynamical Systems with a Spectral Gap

Another example of multiple mixing processes are dynamical systems that satisfy the same

assumptions as the Markov chains introduced in Section 2.2, but where P is the Perron–

Frobenius operator instead of the Markov operator.

Let (X ,A, ν) be a probability space and let T be a measure preserving transformation of X ,

that is ν(T−1(A)) = ν(A) for all A ∈ A. The Perron–Frobenius operator P is defined on L1(ν)

by the equation

ν((Pf) · g) = ν(f · (g ◦ T )), ∀f ∈ L1(ν), g ∈ L∞(ν).

The assumption on the Markov chain in section Section 2.2 can also be applied on the

Perron–Frobenius operator P . It is easy to see, that an analogue result to Lemma 2.2 holds

holds for dynamical systems

Lemma 2.4. Let B be a complex Banach space of C-valued functions on X . If a measure

preserving dynamical system (X ,A, ν, T ) satisfies (2.A), (2.B), (2.C), and (2.D), then the

process (T i)i∈N is multiple mixing w.r.t. B with s = m/(m− 1) and d0 = 0.

Proof. Follow the proof of Lemma 2.2. In the computation of (2.9) instead of conditional

expectations use the following consideration. Let f, g ∈ B with ‖f‖∞, ‖g‖∞ <∞, then

Cov
(
f · f(T i) , g(T i+n)

)
= ν

(
f · f(T i) · g(T i+n))− ν

(
f · f(T i)

)
ν
(
g(T i+n)

)
= ν

(
Pn
(
(P if) · f

)
· g
)
− ν
(
P if · f

)
νg

= ν
((
Pn
(
(P if) · f

)
− ν(P if · f)

)
· g
)

≤
∥∥Pn((P if) · f

)
−
(
ν
(
(P if) · f

))
1X
∥∥
m
‖g‖s.

In the preceding sections, the multiple mixing property was always established by using a

spextral gap property of the operator. However, there are multiple mixing processes that do

not necessarily have a spectral gap property. One example for such processes is the ergodic

automorphism of the torus, which we introduce in the following section.

2.6. Ergodic Automorphisms of the Torus

For d ≥ 2, we define the d-dimensional Torus Td = Rd/Zd as the quotient space of Rd equipped

with the usual euclidean metric and the equivalence relation x ∼ y if and only if x− y ∈ Zd. In

the following, we will always identify Td with the d-dimensional intervall [0, 1]d. If A is a square

matrix of dimension d with integer coefficients and determinant ±1, then the transformation

T : Td −→ Td defined by

Tx = Ax mod 1
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2. Multiple Mixing Processes

is an automorphism of Td that preserves the Lebesgue measure λ. Thus (Td,B(Td), λ, T ) is

a measure preserving dynamical system.2 It is ergodic if and only if the matrix A has no

eigenvalue which is a root of unity.3 A result of Kronecker shows that in this case, A always

has at least one eigenvalue which has modulus different than 1.
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Figure 2.1.: The graphics illustrate how the ergodic torus automorphism given by T (x, y) =
(3x+ 2y, 2x+ y) mod 1 acts on a sample of 3, 000 uniform distributed points in [0, 0.2]2 in
four steps.

The hyperbolic automorphisms of the torus (i.e. A has no eigenvalue of modulus 1) are

particular cases of Anosov diffeomorphisms. Their properties are better understood than in the

general case. However, the general case of ergodic automorphisms is an example of a partially

hyperbolic system. A central limit theorem for regular observables of such automorphisms of

the torus has been established by Leonov (1960), see also Le Borgne (1999) for refinements.

For an ergodic automorphism of the torus given by A, one has a decomposition of Rd as the

direct sum Rd = Es ⊕ Eu ⊕ Ec of the stable subspace Es, the unstable subspace Eu, and the

central (or neutral) subspace Ec of Rd. These spaces can be characterized by the property that

there is some fixed Cs, Cu, Cc > 0 and κ > 1 such that |Anv|max ≤ Csκ−n|v|max for all v ∈ Es,
|Anv|max ≥ Cuκn|v|max for all v ∈ Eu, and |Anv|max ≤ CcnJ |v|max for all v ∈ Ec, where | · |max

is the maximum norm on Rd and J is the size of the biggest Jordan block of T restricted to Ec.

Dehling and Durieu (2011) proved a CLT for the
{
1[0,x] : x ∈ [0, 1]d

}
-indexed empirical process

of the ergodic automorphism of the torus. They also showed that for any α ∈ (0, 1] the process

(Xi)i∈N∗ given by

X0 ∼ λ, Xi = T (Xi−1), i ∈ N∗.

is multiple mixing w.r.t. the spaceHα(Td,R) of R-valued bounded α-Hölder continuous functions

on the torus with s = 1 and d0 = J (see Proposition A.2). Note, that therefore one also has

the multiple mixing property for the process (ϕ(Xi))i∈N∗ for every Hölder continuous function

ϕ : Td −→ R`, ` ∈ N∗.

2B(Td) denotes the Borel σ-algebra on Td.
3I.e. if v is an eigenvalue of A, then there is no n ∈ N∗ such that vn = 1.
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Part I.

Empirical Central Limit Theorems for

Multiple Mixing Processes

Based on the article

Herold Dehling, Olivier Durieu, and Marco Tusche (2012): Approximating

class approach for empirical processes of dependent sequences indexed by functions.
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3. An ECLT for Multiple Mixing Processes

Let (Xi)i∈N be a stationary stochastic process with state space (X ,A) and marginal distribution

µ and let F be a uniformly bounded class of real-valued measurable functions defined on X . For

a measure Λ on (X ,A), we use the notation Λf =
∫
X f dΛ. We denote the space of bounded

real-valued functions on F by `∞(F). This space is equipped with the supremum norm and the

Borel σ-algebra generated by the open sets. The F -indexed empirical process Un = (Un(f))f∈F

is the `∞(F)-valued random element given by

Un(f) :=
√
n
(
µn(f)− µf

)
, f ∈ F ,

where µn(f) := n−1
∑n

i=1 f(Xi).
1 Recall that we can not assume that Un is measurable here

and therefore have to use the theory of outer expectation and integrals (cf. Section 1.3).

The goal of the following section is to establish an empirical process CLT for processes

(Xi)i∈N that are multiple mixing w.r.t. some function space C (see Chapter 2). The content of

this part corresponds mainly to the article Dehling et al. (2012) and is supplemented by some

later results.

In what follows, we will frequently make two assumptions concerning the process (f(Xi))i∈N∗ ,

where f : X → R belongs to some normed vector space (C, ‖ · ‖C) of measurable real-valued

functions on X . The precise choice of C will depend on the specific example. Often, we take C
to be the space of all bounded Lipschitz or α-Hölder continuous functions.

Assumption 3.I (CLT for C-Observables). For all f ∈ C, there exists a σ2
f ≥ 0 such that

Un(f)
d−→ N(0, σ2

f ), (3.1)

where N(0, σ2
f ) denotes the normal law with mean zero and variance σ2

f .

Assumption 3.II (Moment Bounds for C-Observables). For some s ≥ 1 and a ∈ R for all

p ≥ 1, there exists a constant Cp > 0 such that for all f ∈ C with ‖f‖∞ ≤ 1

E

( n∑
i=1

(
f(Xi)− µf

))2p

≤ Cp
p∑
i=1

ni‖f‖is log2p+ai(‖f‖C + 1). (3.2)

Remark 3.1. Note, that if Assumption 3.II holds, then for fixed M > 0 inequality (3.2) also

holds uniformly for all f ∈ CM := {f ∈ C : ‖f‖∞ ≤ M}. In this case, the constants Cp may

differ from those for case where ‖f‖∞ ≤ 1 is assumed. To see this, observe that every f ∈ CM
1Un takes values in `∞(F) since F is supposed to be uniformly bounded.
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3. An ECLT for Multiple Mixing Processes

can be represented as f = Mf1 for some f1 ∈ C with ‖f1‖∞ ≤ 1. Then inequality (2.2) for

general f ∈ CM can be directly deduced from the special case, where ‖f‖∞ ≤ 1.

Both Assumption 3.I and Assumption 3.II have been established by many authors for a wide

range of stationary processes. Concerning the CLT, see e.g. the three-volume monograph by

Bradley (2007) for mixing processes, Dedecker, Doukhan, Lang, León, Louhichi, and Prieur

(2007) for so-called weakly dependent processes in the sense of Doukhan and Louhichi (1999),

and Hennion and Hervé (2001) for many examples of Markov chains and dynamical systems.

Durieu (2008b) proved 4th moment bounds of the type (3.2) for Markov chains or dynamical

systems for which the Markov operator or the Perron-Frobenius operator acting on C has a

spectral gap. It was generalized to 2p-th moment bounds for multiple mixing processes by

Dehling and Durieu (2011), see Proposition 2.1 in this thesis. Note that the multiple mixing

condition implies the moment bound (3.2) with a = max{−1, d0 − 2} (see Proposition 2.1).

This applies e.g. in the case of ergodic automorphisms of the torus (see Section 2.6 and

Proposition A.2). Further, the spectral gap property leads to the multiple mixing condition

with d0 = 0, and thus to the moment bound (3.2) with a = −1, see Lemma 2.2 and Lemma 2.4.

Reminding ourselves of the discussion about the approximating class approach in Section 1.3,

Assumption 3.I corresponds to property (1.A), while property (1.B) will be derived from

Assumption 3.II and a specific entropy condition on our bracketing numbers, which are defined

as follows.

Definition 3.1. Let µ be a probability measure on a measurable space (X ,A), let G be a

subclass of a normed vector space (C, ‖ · ‖C) of real-valued measurable function on X , s ≥ 1,

and ε,A > 0. For two measurable functions l, u : X −→ R with l(x) ≤ u(x) for all x ∈ X we

call the bracket

[l, u] := {f : X −→ R : l(x) ≤ f(x) ≤ u(x), for all x ∈ X}.

an (ε,A,G,Ls(µ))-bracket if l, u,∈ G and if

‖u− l‖s ≤ ε,

max{‖u‖B, ‖l‖B} ≤ A.

For a class of measurable functions F defined on X , we define the bracketing number

N(ε,A,F ,G,Ls(µ))

as the smallest number of (ε,A,G,Ls(µ))-brackets needed to cover F .

3.1. Statement of Results

We can now state the first abstract main result of our work.
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3.1. Statement of Results

Theorem 3.1 (Empirical CLT). Let (X ,A) be a measurable space, let (Xi)i∈N be an X -valued

stationary stochastic process with marginal distribution µ, and let F be a uniformly bounded

class of measurable functions on X . Suppose that for some normed vector space C of measurable

real-valued functions on X , a ∈ R, and s ≥ 1, Assumption 3.I and Assumption 3.II hold.

Moreover, assume that there exist some uniformly bounded subclass G ⊂ C, some constants

r > −1, γ > max{2 + a, 1}, and C > 0 such that∫ 1

0
εr sup

ε≤δ≤1
N2
(
δ, exp(Cδ−1/γ),F ,G,Ls(µ)

)
dε <∞. (3.3)

Then the empirical process Un converges in distribution in `∞(F) to a tight centred Gaussian

process W .

The proof is given in Section 3.2.

Remark 3.2. (i) Note that the bracketing number N(δ, exp(Cδ−1/γ),F ,G,Ls(µ)) might not be

a monotone function of δ. This is the reason why we take the supremum in the integral (3.3).

(ii) The proof of Theorem 3.1 shows that the statement also holds if condition (3.2) only holds

for some integer p satisfying

p >
(r + 1)γ

γ −max{2 + a, 1}
.

(iii) If for some r′ ≥ 0,

N(ε, exp(Cε−1/γ),F ,G,Ls(µ)) = O(ε−r
′
) as ε→∞,

condition (3.3) is satisfied for all r > 2r′ − 1.

(iv) Examples of classes of functions satisfying condition (3.3) are provided in Chapter 4.

Among the examples are indicators of multidimensional rectangles, of ellipsoids, and of balls of

arbitrary metrics, as well as a class of monotone functions.

(v) Among the possible applications of Theorem 3.1 are dynamical systems with a spectral gap

on the Perron–Frobenius operator and B-geometrically ergodic Markov chains such as iterative

Lipschitz models that contract on average (see Section 2.2, 2.4, and Section 2.5). Durieu (2013)

applied Theorem 3.1 for iterative Lipschitz models that contract on average satisfying the

conditions (2.10) – (2.14). In Chapter 5, we provide applications of Theorem 3.1 to ergodic

torus automorphisms, indexed by various classes of indicator functions.

In the general setting of Theorem 3.1, we cannot precise the covariance structure of the limit

process W . The following lemma identifies the covariance structure of W under additional

conditions.

Lemma 3.1. In the situation of Theorem 3.1, assume that

(i) Assumption 3.I holds with variance σ2
f given by

σ2
f = Var

(
f(X0)

)
+ 2

∞∑
k=1

Cov
(
f(X0), f(Xk)

)
, (3.4)

31



3. An ECLT for Multiple Mixing Processes

(ii) there are a ρ ∈ (0, 1) and a C ′ > 0 such that

∣∣Cov
(
ϕ(X0), f(Xk)

)∣∣ ≤ C ′‖ϕ‖∞‖f‖C ρk
for all f ∈ C and all ϕ ∈ F ∪ (F − G)

Then the covariance structure of the limit process W is given by

Cov
(
W (f),W (g)

)
=
∞∑
k=0

Cov
(
f(X0), g(Xk)

)
+
∞∑
k=1

Cov
(
f(Xk), g(X0)

)
f, g ∈ F . (3.5)

The proof of Lemma 3.1 is given in Section 3.3.

As shown in Chapter 2, multiple mixing processes with total degree of the the polynomial

term not larger than d0 ∈ N satisfy Assumption 3.II with a = max{−1, d0 − 2}. Thus, for

multiple mixing processes, we have the following version of Theorem 3.1.

Theorem 3.2 (Empirical CLT for Multiple Mixing Processes). Let (Xi)i∈N be a stationary

stochastic process on a state space (X ,A) with marginal distribution µ, and let F be a uniformly

bounded class of measurable functions on X . Assume that the process (Xi)i∈N is multiple mixing

w.r.t. to some normed vector space C of measurable functions on X with s ≥ 1, total degree of

the multivariate polynomial Q in (2.1) not larger than d0 and satisfies Assumption 3.I. If there

exist some uniformly bounded subclass G ⊂ C, some constants r > −1, γ > {1, d0}, and C > 0

such that (3.3) holds, then the empirical process Un converges in distribution in `∞(F) to a

tight centred Gaussian process W .

If further the variance σ2
f in Assumption 3.I is given by (3.4) and if there are constants

ρ ∈ (0, 1) and C ′ > 0 such that for all f ∈ C and all ϕ ∈ F ∪ (F − G)

∣∣Cov
(
ϕ(X0), f(Xk)

)∣∣ ≤ C ′‖ϕ‖∞‖f‖C ρk,
then the covariance structure of the limit process W is given by (3.5).

3.2. Proof of Theorem 3.1

As discussed in Section 1.3 we apply Theorem 1.1. First, let us construct a process U
(q)
n

corresponding to ξ
(q)
n in Theorem 1.1 an the complete metric space S = `∞(F).

For all q ≥ 1, let

Nq := N(2−q, exp(C2
q
γ ),F ,G,Ls(µ))

There exist two sets of functions {gq,1, . . . , gq,Nq} ⊂ G and {g′q,1, . . . , g′q,Nq} ⊂ G, such that

‖gq,i − g′q,i‖s ≤ 2−q, ‖gq,i‖C ≤ exp(C2
q
γ ), ‖g′q,i‖C ≤ exp(C2

q
γ ) and for all f ∈ F , there exists an

i such that gq,i ≤ f ≤ g′q,i. Further, by (3.3),∑
q≥1

2−(r+1)qN2
q <∞. (3.6)
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3.2. Proof of Theorem 3.1

For all q ≥ 1, we can build a partition F =
⋃Nq
i=1Fq,i of the class F into Nq subsets such that for

all f ∈ Fq,i, gq,i ≤ f ≤ g′q,i. To see this define Fq,1 = [gq,1, g
′
q,1] and Fq,i = [gq,i, g

′
q,i]\(∪

i−1
j=1Fj).

In the sequel, we will use the notation πqf = gq,i and π′qf = g′q,i if f ∈ Fq,i. For each q ≥ 1,

we introduce the process

µ(q)
n (f) := µn(πqf) =

1

n

n∑
i=1

πqf(Xi), f ∈ F ,

which is constant on each Fq,i. Further, if f ∈ Fq,i, we have

µ(q)
n (f) ≤ µn(f) ≤ µn(π′qf)

We introduce

U (q)
n (f) := Un(πqf) =

√
n(µ(q)

n (f)− µ(πqf)), f ∈ F .

Now we establish assumption (1.10) and (1.11) of Theorem 1.1 in two separate propositions.

Proposition 3.1. For all q ≥ 1, the sequence (U
(q)
n (f))f∈F converges in distribution in `∞(F)

to a piecewise constant Gaussian process (U (q)(f))f∈F as n→∞.

Proof. Since πqf ∈ G and G is a subset of C, by assumption (3.1), the CLT holds and U
(q)
n (f)

converges to a Gaussian law for all f ∈ F . We can apply the Cramér-Wold device to get the

finite-dimensional convergence: for all k ≥ 1, for all f1, . . . , fk ∈ F , (U
(q)
n (f1), . . . , U

(q)
n (fk))

converges in distribution to a Gaussian vector (U (q)(f1), . . . , U (q)(fk)) in Rk. Since U
(q)
n is

constant on each element Fq,i of the partition, the finite-dimensional convergence implies

the weak convergence of the process. Indeed, consider the function τq : RNq → `∞(F) that

maps a vector x = (x1, . . . , xNq) to the function F → R, f 7→ xi such that f ∈ Fq,i. For

f1 ∈ Fq,1, . . . , fNq ∈ Fq,Nq we have U
(q)
n = τq(U

(q)
n (f1), . . . , U

(q)
n (fNq)) and thus the continuous

mapping theorem guarantees that U
(q)
n converges weakly to the random variable U (q) =

τq(U
(q)(f1), . . . , U (q)(fNq)) which is constant on each Fq,i.

Proposition 3.2. For all ε > 0, η > 0 there exists a q0 such that for all q ≥ q0

lim sup
n→∞

P∗(sup
f∈F
|Un(f)− U (q)

n (f)| > ε) ≤ η.

Proof. For a random variable Y let Y denote its centring Y := Y − EY . If for arbitrary

random variables Yl, Y, Yu, we have Yl ≤ Y ≤ Yu then

|Y − Yl| ≤ |Yu − Yl|+ E |Yu − Yl|.

Using µ
(q+K)
n (f) ≤ µn(f) ≤ µn(π′q+Kf) and E |µn(π′q+Kf) − µ

(q+K)
n (f)| ≤ 2−(q+K) for all
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3. An ECLT for Multiple Mixing Processes

f ∈ F , we obtain

|Un(f)− U (q)
n (f)| =

∣∣∣∣{ K∑
k=1

U (q+k)
n (f)− U (q+k−1)

n (f)

}
+ Un(f)− U (q+K)

n (f)

∣∣∣∣
≤
{ K∑
k=1

∣∣∣U (q+k)
n (f)− U (q+k−1)

n (f)
∣∣∣+
∣∣∣Un(π′q+Kf)− U (q+K)

n (f)
∣∣∣}

+
√
n2−(q+K).

In order to assure ε
4 ≤ 2−(q+K)√n ≤ ε

2 , for fixed n and q, choose K = Kn,q, where

Kn,q :=

[
log

(
4
√
n

2qε

)
log(2)−1

]
.

Here [·] denotes the lower Gauss bracket given by [x] := sup{z ∈ Z : z ≤ x}. For each

i ∈ {1, . . . , Nq}, we obtain

sup
f∈Fq,i

|Un(f)− U (q)
n (f)| ≤

Kn,q∑
k=1

sup
f∈Fq,i

|U (q+k)
n (f)− U (q+k−1)

n (f)|

+ sup
f∈Fq,i

|Un(π′q+Kn,qf)− U (q+Kn,q)
n (f)|+ ε

2
.

By taking εk = ε
4k(k+1) ,

∑
k≥1 εk = ε

4 and we get for each i ∈ {1, . . . , Nq},

P∗

(
sup
f∈Fq,i

|Un(f)− U (q)
n (f)| ≥ ε

)
≤
Kn,q∑
k=1

P∗

(
sup
f∈Fq,i

|U (q+k)
n (f)− U (q+k−1)

n (f)| ≥ εk

)

+ P∗

(
sup
f∈Fq,i

|Un(π′q+Kn,qf)− U (q+Kn,q)
n (f)| ≥ ε

4

)
.

Notice that the suprema in the r.h.s. are in fact maxima over finite numbers of functions, since

the functionals πq and π′q (and thus U
(q)
n ) are constant on the Fq,i. Therefore, we can work with

standard probability theory from this point: the outer probabilities can be replaced by usual

probabilities on the right-hand side. For each k, choose a set Fk composed of at most Nk−1Nk

functions of F in such a way that Fk contains one function in each non empty Fk−1,i ∩ Fk,j ,
i = 1, . . . , Nk−1, j = 1, . . . , Nk. Then, for each i ∈ {1, . . . , Nq}, we have

P∗

(
sup
f∈Fq,i

|Un(f)− U (q)
n (f)| ≥ ε

)
≤
Kn,q∑
k=1

∑
f∈Fq,i∩Fq+k

P
(
|U (q+k)
n (f)− U (q+k−1)

n (f)| ≥ εk
)

+
∑

f∈Fq,i∩Fq+Kn,q

P
(
|Un(π′q+Kn,qf)− U (q+Kn,q)

n (f)| ≥ ε

4

)
.

Now using Markov’s inequality at the order 2p (p will be chosen later) and assumption (3.2),
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3.2. Proof of Theorem 3.1

we infer

P∗

(
sup
f∈Fq,i

|Un(f)− U (q)
n (f)| ≥ ε

)

≤ Cp
Kn,q∑
k=1

∑
f∈Fq,i∩Fq+k

1

ε2p
k

p∑
j=1

nj−p‖πq+kf − πq+k−1f‖js log2p+aj(‖πq+kf − πq+k−1f‖C + 1)

+ Cp
∑

f∈Fq,i∩Fq+Kn,q

(
4

ε

)2p p∑
j=1

nj−p‖πq+Kn,qf − π′q+Kn,qf‖
j
s

· log2p+aj(‖πq+Kn,qf − π′q+Kn,qf‖C + 1).

At this point, without loss of generality, we can assume that a ≥ −1 (if not, take a larger a)

and thus the assumption on γ reduces to γ > 2 + a.

Note that by construction, for each k ≥ 1,

‖πq+kf − πq+k−1f‖s ≤ ‖πq+kf − f‖s + ‖πq+k−1f − f‖s ≤ 3 · 2−(q+k)

‖πq+kf − π′q+kf‖s ≤ 2−(q+k)

‖πq+kf − πq+k−1f‖C ≤ 2 exp(C2
q+k
γ )

‖πq+kf − π′q+kf‖C ≤ 2 exp(C2
q+k
γ ).

Thus,

P∗

(
sup
f∈Fq,i

|Un(f)− U (q)
n (f)| ≥ ε

)

≤ 22p+1Cp

p∑
j=1

Kn,q∑
k=1

#(Fq,i ∩ Fq+k)
(k(k + 1))2p

ε2p
nj−p2−j(q+k) log2p+aj(2 exp(C2

q+k
γ ) + 1),

and if q is large enough,

P∗

(
sup
f∈F
|Un(f)− U (q)

n (f)| ≥ ε

)

≤
Nq∑
i=1

P∗

(
sup
f∈Fq,i

|Un(f)− U (q)
n (f)| ≥ ε

)

≤ D
Nq∑
i=1

p∑
j=1

Kn,q∑
k=1

#(Fq,i ∩ Fq+k)
(k(k + 1))2p

ε2p
nj−p2−j(q+k)2

(2p+aj) q+k
γ .

Here D is a new constant which depends on p, C, and Cp. Since (Fq,i)i=1,...,Nq is a partition of

F , we have
Nq∑
i=1

#(Fq,i ∩ Fq+k) = #(Fq+k) ≤ Nq+k−1Nq+k
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3. An ECLT for Multiple Mixing Processes

and thus

P∗

(
sup
f∈F
|Un(f)− U (q)

n (f)| ≥ ε

)

≤ D′
p∑
j=1

nj−p

ε2p

Kn,q∑
k=1

Nq+k−1Nq+kk
4p2

(2p+(a−γ)j) q+k
γ

≤ D′
p∑
j=1

nj−p

ε2p
2

(p−j)(γ+2+a)
q+Kn,q

γ

Kn,q∑
k=1

Nq+k−1Nq+kk
4p2

((−a−γ)p+(2+2a)j) q+k
γ

≤ D′′
p−1∑
j=1

n
(j−p) γ−(2+a)

2γ

ε
2p+(p−j) γ+2+a

γ

∞∑
k=1

Nq+k−1Nq+kk
4p2

(2+a−γ)p q+k
γ

+
D′

ε2p

∞∑
k=1

Nq+k−1Nq+kk
4p2

(2+a−γ)p q+k
γ , (3.7)

where D′ and D′′ are positive constants also depending on p, C, and Cp. Note that we used

that we can assume without loss of generality that a ≥ −1 and thus (2 + 2a)j ≤ (2 + 2a)p in

the last inequality. As p2+a−γ
γ → −∞ when p tends to infinity, there exists some p > 1 such

that p2+a−γ
γ < −(r + 1) and thus by (3.6),

∞∑
k=2

Nk−1Nkk
4p2

p(2+a−γ) k
γ ≤

∞∑
k=2

N2
k−1k

4p2
p(2+a−γ) k

γ +

∞∑
k=2

N2
kk

4p2
p(2+a−γ) k

γ <∞.

Therefore the first summand of (3.7) goes to zero as n goes to infinity and the second summand

of (3.7) goes to zero as q goes to infinity.

Proposition 3.1 and Proposition 3.2 establish condition (1.10) and (1.11) of Theorem 1.1

for the random elements Un, U
(q)
n , U (q) with value in the complete metric space `∞(F). This

completes the proof of Theorem 3.1.

3.3. Proof of Lemma 3.1

For f ∈ F , let πqf , q ∈ N∗, be the approximating functions defined in Section 3.2 The entropy

condition in Theorem 3.1, yields for every q ∈ N∗

‖f − πqf‖s ≤ 2−q (3.8)

‖πqf‖C ≤ exp
(
C2

q
γ
)
, (3.9)

where s ≥ 1 is given in the assumptions of Theorem 3.1. Let b ∈ (1, γ). For all g ∈ F , and

k ∈ N∗ there exist some gk ∈ G satisfying

‖gk − g‖s ≤ k−b (3.10)

‖gk‖C ≤ exp
(
Ck

b
γ
)
. (3.11)
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3.3. Proof of Lemma 3.1

Let U (q) denote the limit process given in Proposition 3.1. By an application the Cramér-Wold

device, we deduce from (i) that for all f, g ∈ F and q ∈ N∗

Cov
(
U (q)(f), U (q)(g)

)
=
∞∑
k=0

Cov
(
πqf(X0), πqg(Xk)

)
+
∞∑
k=1

Cov
(
πqg(X0), πqf(Xk)

)
.

Since the autocovariance functions of a converging Gaussian process converge to the autocovari-

ance functions of the limit process, the covariance structure of the limit process W of U (q) is

given by Cov(W (f),W (g)) = limq→∞Cov(U (q)(f), U (q)(g)). It is therefore sufficient to show

that for all f, g ∈ F

∣∣∣ ∞∑
k=0

Cov
(
πqf(X0), πqg(Xk)

)
−Cov

(
f(X0), g(Xk)

)∣∣∣ (3.12)

+
∣∣∣ ∞∑
k=1

Cov
(
πqg(X0), πqf(Xk)

)
−Cov

(
g(X0), f(Xk)

)∣∣∣ −→ 0 as q →∞.

By symmetry, both series can be treated the same way. Let k(q) := 2
q
b . We consider the series

in line (3.12). We have

∣∣∣ ∞∑
k=0

Cov
(
πqf(X0), πqg(Xk)

)
−Cov

(
f(X0), g(Xk)

)∣∣∣
≤

k(q)∑
k=0

∣∣Cov
(
πqf(X0)− f(X0), πqg(Xk)

)∣∣+

k(q)∑
k=0

∣∣Cov
(
f(X0), πqg(Xk)− g(Xk)

)∣∣ (3.13)

+
∞∑

k=k(q)+1

∣∣Cov
(
πqf(X0)− f(X0), πqg(Xk)

)∣∣ (3.14)

+
∞∑

k=k(q)+1

∣∣Cov
(
f(X0), πqg(Xk)− g(Xk)

)∣∣. (3.15)

Let us treat the terms separately. Recall that both F and G are uniformly bounded in

‖ · ‖∞-norm and set

M := sup
f∈F∪G

‖f‖∞.

For the term in line (3.13), we know by Hölder’s inequality, (3.8), and the fact that b > 1 that

k(q)∑
k=0

∣∣Cov
(
πqf(X0)− f(X0), πqg(Xk)

)∣∣+

k(q)∑
k=0

∣∣Cov
(
f(X0), πqg(Xk)− g(Xk)

)∣∣
≤ 2M

k(q)∑
k=0

(
‖πqf − f‖s + ‖πqg − g‖s

)
≤ 4Mk(q)2−q = 2−(1− 1

b
)q −→ 0 as q →∞.
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3. An ECLT for Multiple Mixing Processes

For the term in line (3.14), by condition (ii) and inequality (3.9) we obtain

∞∑
k=k(q)+1

∣∣Cov
(
πqf(X0)− f(X0), πqg(Xk)

)∣∣ ≤ C ′‖πqf − f‖∞‖πqg‖C ∞∑
k=k(q)+1

ρk

≤ K exp
(
C2

q
γ + log(ρ)2

q
b
)
−→ 0 as q →∞,

where K denotes some finite non-negative constant and where we used that ρ ∈ (0, 1) and

b ∈ (1, γ). It only remains to show, that the term in line (3.15) goes to zero as q → ∞. We

have

∞∑
k=k(q)+1

∣∣Cov
(
f(X0), πqg(Xk)− g(Xk)

)∣∣
≤

∞∑
k=k(q)+1

∣∣Cov
(
f(X0), πqg(Xk)− gk(Xk)

)∣∣ (3.16)

+
∞∑

k=k(q)+1

∣∣Cov
(
f(X0), gk(Xk)− g(Xk)

)∣∣. (3.17)

First, consider the term in line (3.16). By (ii), (3.9), and (3.11)

∞∑
k=k(q)+1

∣∣Cov
(
f(X0), πqg(Xk)− gk(Xk)

)∣∣
≤ C ′

∞∑
k=k(q)+1

‖f‖∞ ‖πqg − gk‖C ρk

≤ C ′
(
‖πqg‖C

∞∑
k=k(q)+1

ρk
)

+ C ′
( ∞∑
k=k(q)+1

‖gk‖C ρk
)

≤ K exp
(
C2

q
γ + log(ρ)2

q
b
)

+ C ′
∞∑

k=k(q)+1

exp
(
Ck

b
γ + log(ρ)k

)
−→ 0 as q →∞

for some finite K > 0, where we used that ρ ∈ (0, 1) and b ∈ (1, γ) and thus the series on the

r.h.s. in the last line converges for each q ∈ N∗. To treat the term in line (3.17), we apply

Hölder’s inequality and (3.10), which yields

∞∑
k=k(q)+1

∣∣Cov
(
f(X0), gk(Xk)− g(Xk)

)∣∣ ≤ 2M

∞∑
k=k(q)+1

‖gk − g‖s

≤ 2M

∞∑
k=k(q)+1

k−b −→ 0 as q →∞,

since b > 1 and thus
∑∞

k=1 k
−b <∞, which completes the proof.
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4. Entropy of Some Indexing Classes

In many examples that satisfy Assumption 3.I and Assumption 3.II, the normed vector space C
is the space of bounded Lipschitz or α-Hölder continuous functions, see examples in Dehling et al.

(2009) and Dehling and Durieu (2011). In this chapter, we therefore restrict our attention to the

case where C is a space of bounded Hölder functions and give several examples of classes F which

satisfy the entropy condition (3.3). Further, we assume that (X , d) is a metric space equipped

with the corresponding Borel σ-algebra. We choose C = Hα(X ,R) for some fixed α ∈ (0, 1]. As

the approximating class we use the subclass G = Hα(X , [0, 1]) := {f ∈ Hα(X ,R) : 0 ≤ f ≤ 1}
of C.

Throughout this chapter, we use the following notations: For an increasing function F from

R to R, F−1 denotes the pseudo-inverse function defined by F−1(t) := sup{x ∈ R : F (x) ≤ t}
where sup ∅ := −∞. The modulus of continuity of F is defined by

ωF (δ) = sup{|F (x)− F (y)| : |x− y| ≤ δ}.

Constants that only depend on fixed parameters p1, . . . , pk will be denoted with these parameters

in the subscript, such as cp1,...,pk . Furthermore the notation f(x) = Op1,...,pk(g(x)) as x → 0

or x → ∞ means that there exists a constant cp1,...,pk such that f(x) ≤ cp1,...,pkg(x) for all x

sufficiently small or large, respectively. Except in Section 4.5, in all examples we consider the

case where X is a subset of Rd equipped with the Euclidean norm denoted by | · |, where d ≥ 1

is some fixed integer.

In most of the examples, we use the transition function given in the following definition

which uses the notations

dA(x) := inf
a∈A

d(x, a) and d(A,B) := inf
a∈A,b∈B

d(a, b),

for any element x ∈ X and sets A, B ⊂ X , where we define inf ∅ = +∞.

Definition 4.1. Let A, B be subsets of X such that d(A,B) > 0. We define the transition

function T [A,B] : X → R by

T [A,B](x) :=
dB(x)

dB(x) + dA(x)
,

if A and B are non-empty, T [A,B] := 0 if A = ∅, and T [A,B] := 1 if B = ∅ but A 6= ∅.

Observe, that we have T [A,B](X ) ⊂ [0, 1], T [A,B](x) = 1 for all x ∈ A and T [A,B](x) = 0

for all x ∈ B.
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4. Entropy of Some Indexing Classes

Lemma 4.1. For any subsets A,B of X such that d(A,B) > 0, the transition function T [A,B]

is a bounded α-Hölder continuous function and we have

‖T [A,B]‖α ≤ 1 +

(
3

d(A,B)

)α
.

Proof. By the triangle inequality, we have for all x, y ∈ X that

|dB(x)− dB(y)| ≤ d(x, y) and dB(x) + dA(x) ≥ d(A,B).

Therefore,

|T [A,B](x)− T [A,B](y)|

=

∣∣(dB(x)− dB(y)
)(
dB(y) + dA(y)

)
+ dB(y)

(
dB(y) + dA(y)

)
− dB(y)

(
dB(x) + dA(x)

)∣∣(
dB(x) + dA(x)

)(
dB(y) + dA(y)

)
=
|dB(x)− dB(y)|
dB(x) + dA(x)

+
dB(y)

dB(y) + dA(y)

∣∣(dB(y)− dB(x)
)

+
(
dA(y)− dA(x)

)∣∣
dB(x) + dA(x)

≤ 3
d(x, y)

d(A,B)

and thus

‖T [A,B]‖α := ‖T [A,B]‖∞ + sup
x 6=y

∣∣T [A,B](x)− T [A,B](y)
∣∣

d(x, y)α

≤ 1 + sup
x 6=y

(∣∣T [A,B](x)− T [A,B](y)
∣∣

d(x, y)

)α ∣∣T [A,B](x)− T [A,B](y)
∣∣1−α

≤ 1 +

(
3

d(A,B)

)α
.

4.1. Indicators of Rectangles

Here, we consider X = Rd. In its classical form, the empirical process is defined by the class

of indicator functions of left infinite rectangles, i.e. the class {1(−∞,t] : t ∈ Rd}, where (−∞, t]
denotes the set of points x such that x ≤ t.1 This case was treated under similar assumptions

by Dehling and Durieu (2011). We will see that Theorem 3.1 covers the results of that paper.

The following proposition gives an upper bound for the bracketing number of the larger class

F = {1(t,u] : t, u ∈ [−∞,+∞]d, t ≤ u},

where (t, u] denotes the rectangle which consists of the points x such that t < x and x ≤ u.

1On Rd, we use the partial order : x ≤ t if and only if xi ≤ ti for all i = 1, . . . , d.
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4.1. Indicators of Rectangles

Proposition 4.1. Let s ≥ 1, G = Hα(Rd, [0, 1]), and let µ be a probability distribution on Rd

with distribution function F.

(i) If F satisfies

ωF(x) = O(| log(x)|−sγ) as x→ 0 (4.1)

for some γ > 1, then there exists a constant C = CF > 0 such that

N
(
ε, exp(Cε−1/γ),F ,G,Ls(µ)

)
= Od

(
ε−2ds

)
as ε→ 0.

(ii) If F is β-Hölder continuous for some β ∈ (0, 1], then exists a constant C = CF > 0 such

that stronger bracketing condition

N
(
ε, Cε

− sα
β ,F ,G, Ls(µ)

)
= Od

(
ε−2ds

)
as ε→ 0

holds.

Proof. (i) Let ε ∈ (0, 1) and m = [6dε−s + 1]. For all i ∈ {1, . . . , d} and j ∈ {0, . . . ,m}, we

define the quantiles

ti,j := F−1
(i)

(
j

m

)
where F−1

(i) is the pseudo-inverse of the marginal distribution function F(i).
2 Now, if j =

(j1, . . . , jd) ∈ {0, . . . ,m}d, we write

tj = (t1,j1 , . . . , td,jd).

In the following definitions, for convenience, we will also denote by ti,−1 or ti,−2 the points

ti,0 and by ti,m+1 the points ti,m. We introduce the brackets [lk,j , uk,j ], k ∈ {0, . . . ,m}d,
j ∈ {0, . . . ,m}d, k ≤ j, given by the bounded α-Hölder functions

lk,j(x) := T
[
[tk+1, tj−2],Rd \ [tk, tj−1]

]
(x),

and

uk,j(x) := T
[
[tk−1, tj ],Rd \ [tk−2, tj+1]

]
(x),

where we have used the convention that [s, t] = ∅ if s � t and that the addition of an integer to

a multi-index is the addition of the integer to every component of the multi-index.

For each k ≤ j, we have

‖lk,j − uk,j‖ss ≤ µ ([tk−2, tj+1] \ [tk+1, tj−2])

≤
d∑
i=1

|F(i)(ti,ki+1)− F(i)(ti,ki−2)|+ |F(i)(ti,ji+1)− F(i)(ti,ji−2)| ≤ 2
3d

m
,

2F(i)(t) := µ(R× · · · × R× (−∞, t]× R× · · · × R).
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4. Entropy of Some Indexing Classes

and thus ‖lk,j − uk,j‖s ≤ ε. Moreover, since for a < b < b′ < a′,

d([b, b′],Rd \ [a, a′]) = inf
i=1,...,d

inf
{
|ai − bi|, |a′i − b′i|

}
,

using Lemma 4.1 and (4.1), we have

‖lk,j‖Hα ≤ 1 + 3α
(

inf
i=1,...,d

min
{
|ti,ki − ti,ki+1|, |ti,ji−1 − ti,ji−2|

})−α
≤ 1 + 3α

[
inf

{
x > 0 : ∃i ∈ {1, . . . , d},∃t,F(i)(t+ x)− F(i)(t) ≥

1

m

}]−α
≤ 1 + 3α

[
inf

{
x > 0 : cF| log(x)|−sγ ≥ 1

m

}]−α
≤ 1 + 3α exp

(
α(cFm)

1
sγ

)
,

where cF is given by (4.1). The same bound holds for ‖uk,j‖α.

Thus, there exists a new constant CF > 0 such that for all k ≤ j ∈ {0, . . . ,m}d, [lk,j , uk,j ]

is an (ε, exp(CFε
− 1
γ ),G,Ls(µ))-bracket. It is clear that for each function f ∈ F there exists

a bracket of the form [lk,j , uk,j ] which contains f . Further, we have at most (m + 1)2d such

brackets, which proves (i).

(ii) Parallel the proof of (i). When computing the bound for ‖lk,j‖Hα , use that a β-Hölder

function has | · |β as a modulus of continuity. Then one obtains ‖lk,j‖Hα ≤ 1 + 3αmα/β and

thus ‖lk,j‖Hα ≤ 1 +
(
3α(6d)α/β

)
ε−sα/β.

Notice that under the assumptions of the proposition, condition (3.3) is satisfied and

therefore Theorem 3.1 may be applied to empirical processes indexed by the class of indicators

of rectangles, taking C to be the class of bounded Hölder functions.

Corollary 4.1. Let (Xi)i≥0 be an Rd-valued stationary process. Let F be the class of indicator

functions of rectangles in Rd and let G = Hα(Rd, [0, 1]). Assume that, for some s ≥ 1, a ∈ R,

and γ > max{2 + a, 1}, Assumptions 1 and 2 hold, and that the distribution function F of the

Xi satisfies (4.1). Then the empirical process (Un(f))f∈F converges in distribution in `∞(F)

to a tight centred Gaussian process.

Remark 4.1. By regarding the class of indicator functions of left infinite rectangles as a sub-class

of F , we obtain Theorem 1 of Dehling and Durieu (2011) as a particular case of the preceding

corollary.

4.2. Indicators of Multidimensional Balls in the Unit Cube

Here, we consider the class F of indicator functions of balls on X = [0, 1]d, i.e.

F := {1B(x,r) : x ∈ [0, 1]d, r ≥ 0}

where B(x, r) = {y ∈ [0, 1]d : |x− y| < r}. We have the following upper bound.
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4.2. Indicators of Multidimensional Balls in the Unit Cube

Proposition 4.2. Let µ be a probability distribution on [0, 1]d with a density bounded by some

B > 0 and let s ≥ 1. Then there exists a constant C = Cd,B > 0 such that

N
(
ε, Cε−αs,F ,G,Ls(µ)

)
= Od,B

(
ε−(d+1)s

)
as ε→ 0,

where G = Hα([0, 1]d, [0, 1]).

Note that the second argument in the bracketing number is different from the one appearing

in the condition (3.3). In this situation we have a stronger type of bracketing number than in

(3.3).

Proof. Let ε > 0 be fixed and m = [ε−s]. For all i = (i1, . . . , id) ∈ {0, . . . ,m}d, we denote by ci

the centre of the rectangle [ i1−1
m , i1m ]× · · · × [ id−1

m , idm ]. Then we define, for i ∈ {1, . . . ,m}d and

j ∈ {0, . . . ,m}, the functions

li,j(x) := T

[
B

(
ci,
j − 2

m

√
d

)
, [0, 1]d \ B

(
ci,
j − 1

m

√
d

)]
(x)

and

ui,j(x) := T

[
B

(
ci,
j + 2

m

√
d

)
, [0, 1]d \ B

(
ci,
j + 3

m

√
d

)]
(x),

where we use the convention that a ball with negative radius is the empty set.

By Lemma 4.1, these functions are α-Hölder and, since d(B(x, r),Rd \ B(x, r′)) = r′ − r, we

have

‖li,j‖Hα ≤ 1 +

(
3m√
d

)α
≤ 1 + 3ε−sα.

The same bound holds for ‖ui,j‖Hα . Since µ has a bounded density with respect to Lebesgue

measure, we also have

‖li,j − ui,j‖ss ≤ µ

(
B

(
ci,
j + 3

m

√
d

)
\ B

(
ci,
j − 2

m

√
d

))
≤ Bcd

((
j + 3

m

√
d

)d
−
(
j − 2

m

√
d

)d)
,

where cd is the constant πd/2

Γ(d/2+1) (Γ is the gamma function). Hence,

‖li,j − ui,j‖s ≤ c1/s
d,Bε

as ε→ 0, where cd,B is a constant depending only on d and B.

Now, if f belongs to F , then f = 1B(x,r) for some x ∈ [0, 1]d, and 0 ≤ r ≤
√
d. Thus, there

exist some i = (i1, . . . , id) ∈ {0, . . . ,m}d and j ∈ {0, . . . ,m} such that

x ∈
[
i1 − 1

m
,
i1
m

)
× · · · ×

[
id − 1

m
,
id
m

)
and

j

m

√
d ≤ r ≤ j + 1

m

√
d.

We then have li,j ≤ f ≤ ui,j .
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4. Entropy of Some Indexing Classes

Thus, the (m+ 1)md brackets [li,j , ui,j ], i ∈ {1, . . . ,m}d and j ∈ {0, . . . ,m}, cover the class

F . Therefore, N(c
1/s
d,Bε, 4ε

−αs,F ,G,Ls(µ)) = Od,B(ε−(d+1)s) as ε → 0, which implies that

there exists a constant Cd,B > 0, for which N(ε, Cd,Bε
−αs,F ,G,Ls(µ)) = Od,B(ε−(d+1)s) as

ε→ 0.

4.3. Indicators of Uniformly Bounded Multidimensional

Ellipsoids Centred in the Unit Cube

Set X = Rd. Here, we consider the class of ellipsoids which are aligned with the coordinate

axes, have their centre in [0, 1]d, and their parameters bounded by some constant D > 0.

Without loss of generality, we assume that D ∈ N∗. For x = (x1, . . . , xd) ∈ [0, 1]d and all

r = (r1, . . . , rd) ∈ [0, D]d, we set

E(x, r) :=

{
y ∈ Rd :

d∑
i=1

(yi − xi)2

r2
i

≤ 1

}
.

We denote by F the class of indicator functions of these ellipsoids, i.e.

F := {1E(x,r) : x ∈ [0, 1]d, r ∈ [0, D]d}.

We have the following upper bound.

Proposition 4.3. Let µ be a probability distribution on Rd with a density bounded by some

B > 0. Then there exists a constant C = Cd,B,D > 0 such that

N
(
ε, Cε−2αs,F ,G,Ls(µ)

)
= Od,B

(
ε−2ds

)
as ε→ 0,

where G = Hα(Rd, [0, 1]).

Proof. Let ε > 0 be fixed and m = [ε−s]. For all i = (i1, . . . , id) ∈ {0, . . . ,m}d, we denote by

Ii the rectangle [ i1−1
m , i1m ] × · · · × [ id−1

m , idm ]. Then, for i ∈ {1, . . . ,m}d and j = (j1, . . . , jd) ∈
{0, . . . , Dm− 1}d, we define the sets

Ui,j =
⋃
x∈Ii

E

(
x,

j

m

)
=

{
y ∈ Rd : min

x∈Ii

d∑
k=1

(yk − xk)2

j2
k

≤ 1

m2

}

and

Li,j =
⋂
x∈Ii

E

(
x,

j

m

)
=

{
y ∈ Rd : max

x∈Ii

d∑
k=1

(yk − xk)2

j2
k

≤ 1

m2

}
.

We introduce the bracket [li,j , ui,j ] given by

li,j(x) := T
[
Li,j−1,Rd \ Li,j

]
(x) and ui,j(x) := T

[
Ui,j+1,Rd \ Ui,j+2

]
(x),

where we use the convention that an ellipsoid with one negative parameter is the empty set.
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4.3. Indicators of Uniformly Bounded Multidimensional Ellipsoids Centred in the Unit Cube

By Lemma 4.1, these functions are α-Hölder. Further, we have the following lemma which is

proved in the appendix (cf. Section A.6):

Lemma 4.2. For all j ∈ {0, . . . , Dm− 1}d, x ∈ Rd, we have

d

(
E

(
x,

j

m

)
, Rd \ E

(
x,
j + 1

m

))
≥ D−1m−2.

As a consequence we infer that the distance between Ui,j and Rd \Ui,j+1 is at least D−1m−2

and the distance between Li,j and Rd \ Li,j+1 is at least D−1m−2. Thus, by Lemma 4.1, we

have

‖li,j‖Hα ≤ 1 + 3αDαm2α ≤ 1 + 3Dε−2αs,

and the same bound holds for ‖ui,j‖Hα .

Now, to bound ‖ui,j − li,j‖s we need to estimate the Lebesgue measures of Ui,j and Li,j .

Recall that, if j = (j1, . . . , jd) ∈ Rd+ and x ∈ Rd, the Lebesgue measure of the ellipsoid E(x, j)

is given by

λ(E(x, j)) = cd

d∏
k=1

jk,

where cd is the constant πd/2

Γ(d/2+1) .3 The set Ui,j can be seen as the set constructed as follows:

start from an ellipsoid of parameters j/m centred at the centre of Ii, cut it along its hyperplanes

of symmetry, and shift each obtained component away from the centre by a distance of 1/2m

in every direction; Ui,j is then the convex hull of these 2d components (see Figure 4.1 for the

dimension 2).

Figure 4.1.: Ui,j in dimension 2 Figure 4.2.: Li,j in dimension 2

Let us denote by Vi,j the set that has been added to the 2d components to obtain the convex

hull. We can bound the volume of Ui,j by the volume of the ellipsoid plus a bound on the

volume of Vi,j , that is

λ(Ui,j) ≤ cd
d∏

k=1

jk
m

+
d∑

k=1

1

m

∏
l 6=k

2jl + 1

m
.

The set Li,j can be seen an the intersection of the 2d ellipsoids of parameters j/m centred at

each corner of the hypercube Ii (see Figure 4.2 for the dimension 2). Its volume is larger than

3Here Γ denotes the gamma function.
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the volume of an ellipsoid of parameters j/m minus the volume of Vi,j . We thus have

λ(Li,j) ≥ cd
d∏

k=1

jk
m
−

d∑
k=1

1

m

∏
l 6=k

2jl + 1

m
.

Since µ has a bounded density with respect to Lebesgue measure, we have

‖li,j − ui,j‖ss ≤ µ (Ui,j+2 \ Li,j−1)

≤ Bλ(Ui,j+2)−Bλ(Li,j−1)

We infer ‖li,j − ui,j‖s = c
1/s
d,B(ε), as ε→ 0, where the constant cd,B only depends on d and B.

Now, if f belongs to F , then f = 1E(x,r) for some x ∈ X , and r ∈ [0, D]d. Thus, there exist

some i = (i1, . . . , id) ∈ {0, . . . ,m}d and j ∈ {0, . . . , Dm− 1}d such that

x ∈
[
i1 − 1

m
,
i1
m

)
× · · · ×

[
id − 1

m
,
id
m

)
and for each k = 1, . . . , d,

jk
m
≤ rk ≤

jk + 1

m
.

We then have li,j ≤ f ≤ ui,j .
Thus, the Ddm2d brackets [li,j , ui,j ], i ∈ {1, . . . ,m}d and j ∈ {0, . . . , Dm−1}d, cover the class

F . Therefore, there exists a Cd,B,D > 0, such that N(ε, Cd,B,Dε
−αs,F ,G,Ls(µ)) = Od,B(ε−2ds),

as ε→ 0.

4.4. Indicators of Uniformly Bounded Multidimensional

Ellipsoids

In Section 4.3, we only considered indicators of ellipsoids centred in a compact subset of Rd,
namely the unit square. The following lemma will allow us to extend such results to indicators

of sets in the whole Rd, at the cost of a moderate additional assumption and a marginal increase

of the bracketing numbers.

Lemma 4.3. Let µ be a measure with continuous distribution function F, and s ≥ 1. Fur-

thermore let F := {1S : S ∈ S}, where S is a class of measurable sets of diameter not larger

than D ≥ 1, and G = Hα(Rd, [0, 1]). Assume that there are constants p, q ∈ N∗, C > 0, and a

function f : R+ → R+, such that for any K > 0 we have

N
(
ε, f(ε),FK ,G,Ls(µ)

)
≤ CKpε−q, (4.2)

for sufficiently small ε, where FK := {1S : S ∈ S, S ⊂ [−K,K]d}. If there are some constants

b, β > 0 such that

µ({x ∈ Rd : |x| > t}) ≤ bt−
1
β , (4.3)
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for all sufficiently large t, then

N
(
ε,max

{
f(ε), 4

√
d(ω−1

F (2−(d+1)εs))−α
}
,F ,G,Ls(µ)

)
= Oβ,b,C,D,p(ε

−(βps+q)) as ε→ 0,

where ωF is the modulus of continuity of F.

The proof is postponed to the appendix (see Section A.7)

Proposition 4.4. Let F denote the class of indicators of ellipsoids of diameter uniformly

bounded by D > 0, which are aligned with coordinate axes (and arbitrary centres in the whole

space Rd). If µ is a measure on Rd with a density bounded by B > 0 and if furthermore (4.3)

holds for some β > 0 and b > 0, then there exists a constant C = Cd,B,D > 0 such that

N
(
ε, Cε−2αs,F ,G,Ls(µ)

)
= Oβ,b,d,B,D,s

(
ε−(βs+2)ds

)
as ε→ 0,

where G = Hα(Rd, [0, 1]).

Proof. In the situation of Section 4.3 change the set of the centres of the ellipsoids [0, 1]d to

[−K,K]d and apply Lemma 4.3. Following the proof of Proposition 4.3 we can easily see

that condition (4.2) holds for p = ds, q = 2ds and f(ε) = Cd,B,Dε
−2αs. Note that since

we have a bounded density, we have ωF(x) ≤ Bx and therefore 4
√
d(ω−1

F (2−(d+1)εs))−α ≤
4
√
d(2d+1B)αε−αs ≤ Cd,B,Dε−2αs for sufficiently small ε.

Remark 4.2. In the situation of Proposition 4.4 for the class F ′ of indicators of balls in Rd with

uniformly bounded diameter, we can obtain the slightly sharper bound

N
(
ε, Cε−αs,F ′,G,Ls(µ)

)
= Oβ,b,d,B,D,s(ε

−((β+1)ds+1)s) as ε→ 0

for some C = C ′d,B > 0 by applying Lemma 4.3 directly to the situation in Section 4.2 and

using the same arguments as in the previous example.

4.5. Indicators of Balls of an Arbitrary Metric with Common

Centre

Let (X , d) be a metric space and fix x0 ∈ X . An x0-centred ball is given by

B(t) := {x ∈ X : d(x0, x) ≤ t}.

We have the following bound on the bracketing numbers of the class F := {1B(t) : t > 0}.

Proposition 4.5. Let s ≥ 1, G = Hα(X , [0, 1]), and let µ be a probability measure on X with

distribution function F

(i) If the modulus of continuity ωG of the function G(t) := µ(B(t)) satisfies

ωG(x) = O(| log x|−sγ) as x→ 0 (4.4)
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for some γ > 1, then there is a constant C = CG > 0 such that

N
(
ε, exp(Cε−1/γ),F ,G,Ls(µ)

)
= O(ε−s) as ε→ 0.

(ii) If G is β-Hölder continuous for some β ∈ (0, 1] then there is a constant C = CG > 0

such that

N
(
ε, Cε

− sα
β ,F ,G, Ls(µ)

)
= O(ε−s) as ε→ 0,

Remark 4.3. Note that in the case that X = R2, dµ(t) = ρ(t)dt, the metric d is given by the

Euclidean norm, and x0 = 0, an equivalent condition to (4.4) is

sup
r≥0

∫ r+x

r
t

∫ 2π

0
ρ(teiϕ) dϕ dt = O(| log x|−sγ) as x→ 0.

Proof of Proposition 4.5. (i) Fix ε > 0 and choose m = [1 + 3ε−s]. Let G−1 denote the

pseudo-inverse of G and set for i ∈ {1, . . . ,m}

ri := G−1
( i
m

)
, Bi := B(ri).

For convenience set B−1,B0 := ∅ and Bm+1 = X . Define

li(x) := T [Bi−2,X \ Bi−1] (x) and ui(x) := T [Bi,X \ Bi+1] (x)

The system {[li, ui] : i ∈ {1, . . . ,m}} is a covering for F . Obviously

‖ui − li‖ss ≤ µ(Bi+1 \Bi−2) ≤ 3

m
≤ εs.

By Lemma 4.1, we have

‖ui‖Hα ≤ 1 +
3α

d(Bi,X \ Bi+1)α
≤ 1 +

3α

(ri+1 − ri)α
.

Since by condition (4.4)

ri+1 − ri ≥ inf
{
x > 0 : ∃t ∈ R such that G(t+ x)−G(t) ≥ 1

m

}
≥ inf

{
x > 0 : ∃t ∈ R such that ωG(x) ≥ 1

m

}
≥ exp(−cGm

1
sγ )

for some constant cG > 0, there is a constant CG > 0 such that

‖ui‖Hα ≤ 1 + 3α exp(αcGm
1
sγ ) ≤ exp(CGm

1
sγ ) ≤ exp(CGε

− 1
γ ).

Analogously, we can show that ‖li‖Hα ≤ exp(CGε
− 1
γ ). This implies that all brackets [li, ui] are

(ε, exp(CGε
− 1
γ ),F ,G,Ls(µ))-brackets and thus (i) is proved.
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(ii) To prove (ii), follow the proof of (i). In the computation of the bound for the α-norm,

use that G is β-Hölder and thus has modulus of continuity | · |β.

4.6. A Class of Monotone Functions.

In this example, we choose X = R. We consider the case of a one-parameter class of functions

F = {ft : t ∈ [0, 1]}, where ft are functions from R to R with the properties:

(i) for all t ∈ [0, 1] and x ∈ R, 0 ≤ ft(x) ≤ 1;

(ii) for all 0 ≤ s ≤ t ≤ 1, fs ≤ ft;

(iii) for all t ∈ [0, 1], ft is increasing on R.

Note that all the sequel remains true if in (iii), increasing is replaced by decreasing. Further,

for a probability measure µ on R, we define

Gµ : [0, 1] −→ R, Gµ(t) := µft

and we say that Gµ is Lipschitz with Lipschitz constant λ > 0 if |Gµ(t)−Gµ(s)| ≤ λ|t− s| for

all s, t ∈ [0, 1].

Empirical processes indexed by a 1-parameter class of functions arise, e.g. in the study of

empirical U-processes; see Borovkova, Burton, and Dehling (2001). The empirical U-distribution

function with kernel function g(x, y) is defined as

Un(t) =
1(
n
2

) ∑
1≤i<j≤n

1{g(Xi,Xj)≤t}.

Then, the first order term in the Hoeffding decomposition is given by

n∑
i=1

gt(Xi),

where gt(x) = P (g(x,X1) ≤ t). For this class of functions, conditions (i) and (ii) are auto-

matically satisfied. Condition (iii) holds, if g(x, y) is monotone in x. This is e.g. the case for

the kernel g(x, y) = y − x, which arises in the study of the empirical correlation integral; see

Borovkova et al. (2001).

Proposition 4.6. Let s ≥ 1, G = Hα(R, [0, 1]), and let µ be a probability measure on R with

distribution function F. Assume that Gµ is Lipschitz with Lipschitz constant λ > 0.

(i) If F satisfies

ωF(x) = O(| log(x)|−sγ) as x→ 0 (4.5)

for some γ > 1, then there exists a C = CF > 0, such that

N
(
ε, exp(Cε

− 1
γ ),F ,G,Ls(µ)

)
= Oλ

(
ε−s
)

as ε→ 0
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(ii) If F is β-Hölder continuous with β ∈ (0, 1], then there exists a C = CF > 0, such that

N
(
ε, Cε

− sα
β ,F ,G, Ls(µ)

)
= O(ε−s) as ε→ 0.

Proof. (i) Let ε > 0 and m = [(λ+ 4)ε−s + 1]. For i = 0, . . . ,m, we set

ti =
i

m
and xi = F−1

(
i

m

)
.

We always have xm = +∞, but x0 could be finite or −∞. In order to simplify the notation, in

the first case, we change to x0 = −∞.

We define, for j ∈ {1, . . . ,m}, the functions lj and uj as follows. If k ∈ {1, . . . ,m − 1},
we set lj(xk) = ftj−1(xk−1) and uj(xk) = ftj (xk+1), where we have to understand f(±∞) as

limx→±∞ f(x). If k ∈ {0, . . . ,m−1} and x ∈ (xk, xk+1), we define lj(x) and uj(x) by the linear

interpolations,

lj(x) = lj(xk) + (x− xk)
lj(xk+1)− lj(xk)

xk+1 − xk
,

uj(x) = uj(xk) + (x− xk)
uj(xk+1)− uj(xk)

xk+1 − xk
,

with the exceptions that lj(x) = lj(x1) = ftj−1(−∞) if x ∈ (−∞, x1) and uj(x) = uj(xm−1) =

ftj (+∞) if x ∈ (xm−1,+∞). Then it is clear that for all tj−1 ≤ t ≤ tj , we have lj ≤ ft ≤ uj ,

i.e. ft belongs to the bracket [lj , uj ].

Further, being piecewise affine functions, lj and uj are α-Hölder continuous functions with

Hölder norm

‖lj‖Hα ≤ 1 + max
k=1,...,m

lj(xk)− lj(xk−1)

(xk − xk−1)α
≤ 1 + max

k=1,...,m

1

(xk − xk−1)α
≤ 1 + exp

(
CFm

1
sγ

)
.

Here we have used the condition (4.5) and the same computation as for the class of indicators

of rectangles. Analogously, the same bound holds for ‖uj‖Hα .

Now,

‖uj − lj‖ss ≤ ‖uj − lj‖1 ≤ ‖uj − ftj‖1 + ‖ftj − ftj−1‖1 + ‖lj − ftj−1‖1.

First, since Gµ is Lipschitz, we have

‖ftj − ftj−1‖1 ≤ G(tj)−G(tj−1) ≤ λ(tj − tj−1) =
λ

m
.

For x ∈ [xk−1, xk], since ft is increasing, we have uj(x) ≤ ftj (xk+1) and utj (x) ≥ ftj (xk−1),

thus

‖uj − ftj‖1 ≤
m−1∑
k=1

|ftj (xk+1)− ftj (xk−1)|µ([xk, xk+1])

≤ 1

m

m−1∑
k=1

(|ftj (xk+1)− ftj (xk)|+ |ftj (xk)− ftj (xk−1)|) ≤ 2

m
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since, by monotonicity,
∑m−1

k=0 |ftj (xk+1)−ftj (xk)| ≤ 1. In the same way we get ‖lj−ftj−1‖1 ≤ 2
m

and we infer

‖uj − lj‖s ≤
(
λ+ 4

m

)1/s

≤ ε.

Thus, the number of (ε, exp(CFε
− 1
γ ),G,Ls(µ))-brackets needed to cover the class F is bounded

by m, which proves the proposition.

(ii) Part (ii) can be shown analogously, where one uses that β-Hölder continuous functions

have modulus of continuity | · |β.
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Torus

In this section we establish an empirical CLT for processes whose behaviour is determined by

an ergodic automorphism on the d-dimensional torus. Dehling and Durieu (2011) established

an empirical CLT where the underlying random variables of the empirical process are directly

the iterates of the automorphism themselves and where the empirical process is indexed by the

class of rectangles of the form [0, t], t ∈ [0, 1]d. Here, we generalize this result to an empirical

CLT with different indexing classes and to the case, where the underlying random variables are

functionals of the iterate of the automorphism under some regular function.

Let Td = Rd/Zd be the torus of dimension d ≥ 2, which is identified with [0, 1]d and equipped

with the Lebesgue measure λ. Recall, that the automorphism of the torus T : Td → Td

introduced in Section 2.6 is given by

Tx = Ax mod 1,

where A is a square matrix of dimension d with integer coefficients and determinant ±1 and

such that no eigenvalue of A is a root of unity. Recall that T is measure preserving and ergodic

w.r.t. λ (cf. Section 2.6). In the remainder of this chapter, we denote by ‖ · ‖1 the L1(λ)-norm

given by ‖f‖1 := λ(|f |). Further, for the ith iterate of T , we write T i. By T 0 we denote the

identity map on Td.
We extend the definition of the R- or C-valued bounded α-Hölder continuous functions from

Section 2.3 to bounded α-Hölder functions with values in R`, ` ∈ N∗, by replacing the absolute

value (or modulus) in the definition of ‖ · ‖Hα by the corresponding euclidean norm. We denote

the space of such functions defined on a space X by Hα(X ,R`).

As an application of Theorem 3.2, we establish the following proposition.

Theorem 5.1 (Empirical CLT for Ergodic Automorphisms of the Torus). Let F be a uniformly

bounded class of functions on R`, ` ∈ N∗, ϕ ∈ Hβ(Td,R`), β ∈ (0, 1], and let d0 denote the

size of the biggest Jordan block of T restricted to its neutral subspace. If the entropy condition

(3.3) holds with µ = λ ◦ ϕ−1 and s = 1 for some uniformly bounded subset G of Hα(R`,R) with

α ∈ (0, 1], r ≥ −1, C > 0 and γ > max{1, J}, then the empirical process Un = (Un(f))f∈F

given by

Un(f) :=
1√
n

( n∑
i=1

f ◦ ϕ(T i)− λ(f ◦ ϕ)

)
converges in distribution in `∞(F) to a tight centred Gaussian process W .
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Proof. We use Theorem 3.2 with X = R`, C = Hα(R`,R), and Xi = ϕ(T i). For f ∈ Hα(R`,R)

and ϕ ∈ Hβ(Td,R`) the function f ◦ ϕ is an element Hαβ(Td,R). Dehling and Durieu (2011)

showed that (T i)i∈N is multiple mixing w.r.t. Hαβ(Td,R) for any α, β ∈ (0, 1], s = 1, and d0

not larger than the size J of the biggest Jordan block of T restricted to its neutral subspace

(see Proposition A.2). Therefore (Xi)i∈N is multiple mixing w.r.t. Hα(R`,R) with the same

s and d0. By a result of Leonov (1960) (see also Le Borgne (1999)) the CLT holds under all

functions in Hαβ(Td,R). Then (Xi)i∈N = (ϕ ◦ T i)i∈N satisfies the CLT under Hα(R`,R) and

thus Theorem 3.2 applies.

Theorem 5.1 provides no information about the covariance structure of the limiting process.

If in the situation of Theorem 5.1 we assume that furthermore there is some (possibly infinite)

covering of F by L1(µ)-balls with centres in G that provide some polynomial control of the

α-norm of those central functions, we can identify the covariance structure of the limiting

process as the following lemma shows.

Lemma 5.1. If the assumptions of Theorem 5.1 are satisfied with γ > 2 and if furthermore

for every f ∈ F there exits a f̃k ∈ G such that

‖(f − f̃k) ◦ ϕ‖1 ≤ k−1, (5.1)

‖f̃k‖Hα ≤ C ′ka (5.2)

for some a,C ′ > 0, then the covariance structure of the limiting process W is given by

Cov
(
W (f),W (g)

)
=

∞∑
k=0

Cov
(
f(ϕ), g(ϕ(T k))

)
+

∞∑
k=1

Cov
(
f(ϕ(T k)), g(ϕ)

)
f, g ∈ F . (5.3)

Proof. For i ∈ N let Xi = ϕ(T i) and follow the proof of Lemma 3.1 in Section 3.3. Condition

(i) of Lemma 3.1 is satisfied due to Leonov (1960) (cf. Le Borgne (1997)). However we can not

assume that (ii) holds. We therefore need to show that the terms (3.14) and (3.15) vanish as

q →∞. All remaining terms can be treated the same way as before. Observe that in the case

of the ergodic automorphism of the torus, there exists a ρ ∈ (0, 1) and a K > 0 such that for

all f ∈ F and all h ∈ Hα(R`,R)

∣∣Cov
(
f(X0), h(Xn)

)∣∣ ≤ K‖h‖Hα ρn. (5.4)

To see this let f̃k, k ∈ N∗ satisfy (5.1) and (5.2), then by Lemma A.1 and Hölder’s inequality

there is a D > 0 and a θ ∈ (0, 1) such that

∣∣Cov
(
f(X0), h(Xn)

)∣∣ ≤ ∣∣Cov
(
f̃k(X0), h(Xn)

)∣∣+
∣∣Cov

(
f(X0)− f̃k(X0), h(Xn)

)∣∣
≤ D

(
‖f̃k‖Hα ‖h‖Hαθn + ‖(f − f̃k) ◦ ϕ‖1 ‖h ◦ ϕ‖∞

)
for all k ∈ N∗.

Here we used that ‖h ◦ ϕ‖Hαβ ≤ ‖h‖Hα(1 + ‖ϕ‖αHβ ) for all h ∈ Hα(R`,R) and ϕ ∈ Hβ(Rd,R`).
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Now, setting k = [θ−n/(2a)] + 1, by (5.1) and (5.2) there is a K > 0 such that

∣∣Cov
(
f(X0), h(Xn)

)∣∣ ≤ 2−1K
(
‖h‖Hαθ

n
2 + ‖h‖Hαθ

n
2a
)
.

This implies (5.4) with ρ = max
{
θ1/2, θ1/(2a)

}
.

Now consider the term (3.14). Recall that k(q) = 2q/b, where b was an arbitrary real number

in (1, γ). Here, since γ is assumed to be larger than 2, we may chose b ∈ (1, γ/2). Using

Lemma A.1 and (5.4), we have

∞∑
k=k(q)+1

∣∣Cov
(
(πqf)(X0)− f(X0), (πqg)(Xk)

)∣∣
≤

∞∑
k=k(q)+1

∣∣Cov
(
(πqf)(X0), (πqg)(Xk)

)∣∣+

∞∑
k=k(q)+1

∣∣Cov
(
f(X0), (πqg)(Xk)

)∣∣
≤
(
D‖πqf‖Hα‖πqg‖Hα

∞∑
k=k(q)+1

θk
)

+
(
K‖πqg‖Hα

∞∑
k=k(q)+1

ρk
)

≤ Kϕ

(
exp
(
C2

2q
γ + log(θ)2

q
b
)

+ exp
(
C2

q
γ + log(ρ)2

q
b
))
−→ 0 as q →∞,

where Kϕ > 0 is some finite constant and where we use that ρ, θ ∈ (0, 1) and b ∈ (1, γ/2). With

similar arguments we obtain for (3.15) that

∞∑
k=k(q)+1

∣∣Cov
(
f(X0), πqg(Xk)− gk(Xk)

)∣∣
≤

∞∑
k=k(q)+1

∣∣Cov
(
f(X0), πqg(Xk)

)∣∣+
∞∑

k=k(q)+1

∣∣Cov
(
f(X0), gk(Xk)

)∣∣
≤

∞∑
k=k(q)+1

exp
(
C2

q
γ
)
ρk +

∞∑
k=k(q)+1

exp
(
Ck

b
γ
)
ρk −→ 0 as q →∞,

which finishes the proof.

Remark 5.1. The assumptions in Lemma 5.1 and the entropy condition (3.3) in Theorem 5.1

can be simplified to the following stronger condition: Let there be constants r > −1, a,C ′ > 0

such that ∫ 1

0
εr sup

ε≤δ≤1
N2
(
δ, C ′δ−a,F ,G,L1(µ)

)
dε <∞.

Under this condition (3.3) is easily satisfied for any γ > 1. Further, this condition even gives

us a finite covering of F by
(
ε, C ′ε−a,G,L1(µ)

)
-brackets, where Lemma 5.1 only requires a

(possibly infinity) covering by corresponding balls and thus (5.1) and (5.2) are satisfied.

Applying the results from Chapter 4, Theorem 5.1 and Remark 5.1 yields the following

corollary.
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Corollary 5.1. Let d ≥ 2 and T be an ergodic d-dimensional automorphism of the torus

Td with J the size of the biggest Jordan block of T restricted to its neutral subspace. Let

ϕ ∈ Hβ(Td,R`), ` ∈ N∗, and let F denote the distribution function of µ := λ ◦ ϕ−1.

(i) If the modulus of continuity ωF of F satisfies ωF(x) = O(| log(x)|−γ) as x→ 0 for some

γ > max{1, J} then the empirical CLT holds w.r.t. to the class of indicators of finite and

infinite rectangles on R` given in Section 4.1.

The empirical CLT holds further w.r.t. the 1-parameter class F = {ft : t ∈ [0, 1]} of

monotone function introduced in Section 4.6 if Gµ : [0, 1] −→ R, t 7→ µft is Lipschitz.

(ii) If F is β′-Hölder continuous w.r.t. some β′ ∈ (0, 1] then the empirical CLT holds w.r.t.

the class of indicators of finite and infinite rectangles given in Section 4.1 with covariance

structure given by (5.3).

If further Gµ is Lipschitz, then the empirical CLT holds w.r.t. the 1-parameter class

of monotone function introduced in that section, where the covariance structure of the

limiting process is given by (5.3).

(iii) If µ has a bounded density, then the empirical CLT holds w.r.t. the classes of indicators

of multidimensional balls and indicators of uniformly bounded multidimensional ellipsoids

introduced in Section 4.2, 4.3, and 4.4 with covariance structure given by (5.3).
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6. Slowly Multiple Mixing Processes

In the earlier sections, we considered multiple mixing processes with some exponential decrease of

the covariances. This property led to an increment bound of 2pth moments of the approximation

process (cf. Proposition 2.1). The aim of the following chapters is to extend our approximating

class approach (see Section 1.3) to situations, where we have a much slower decrease of the

covariances that appear in the definition of the multiple mixing property. We consider processes,

where the decay of the covariances can be described by a summable sequence. In order to

treat such processes, we develop a version of Theorem 3.1 which can be applied when only

weaker moment bounds than in Part I are available. This is achieved mainly by introducing

balancing conditions between the distribution of X0 and properties of the approximating class

of functions. As a concrete application, we obtain results for causal functions of i.i.d. processes.

We define the slow multiple mixing property as follows.

Definition 6.1 (Slow Multiple Mixing). Let (Xi)i∈N be a stationary stochastic process of

Rd-valued random variables, and let C be a space of measurable real-valued functions defined on

Rd and equipped with a semi-norm ‖ · ‖C . For integers i1, ..., ij ∈ N, we write i∗j := i1 + . . .+ ij .

We say that (Xn)n∈N is slowly multiple mixing with respect to C if there exist a constant s ≥ 1

and a decreasing function Θ : N −→ R+
0 such that for any p ∈ N∗, there is a constant Kp <∞

satisfying

∣∣Cov
(
f(X0)f(Xi∗1

) · . . . · f(Xi∗q−1
) , f(Xi∗q )f(Xi∗q+1

) · . . . · f(Xi∗p)
)∣∣

≤ Kp‖f(X0)‖s‖f‖CΘ(iq) (6.1)

for all f ∈ C with ‖f‖∞ ≤ 1 and E(f(X0)) = 0 and all i1, . . . , ip ∈ N, q ∈ {1, . . . , p}.

Remark 6.1. From the abstract definition, the notion of “slow” may seem a bit irritating, since

Θ is not specified here. However, in applications we will use this notion only in the context,

where Θ(k) goes to zero with a slower rate than θk with θ ∈ (0, 1). Note that we also do not

allow a polynomial term Q of strictly positive degree on the r.h.s. of (6.1), thus the notion of

slow multiple mixing does not include every case of (exponential) multiple mixing as introduced

in the earlier chapters of this thesis.

The following section establishes moment bounds for slowly multiple mixing processes.
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6. Slowly Multiple Mixing Processes

6.1. Moment Bounds for Slowly Multiple Mixing Processes

Proposition 6.1. Let (Xn)n∈N be slowly multiple mixing w.r.t. C with s ≥ 1 and a function Θ

such that for some p ∈ N∗

∞∑
i=0

i2p−2Θ(i) <∞. (6.2)

Then there is a finite constant C > 0 such that for all f ∈ C with ‖f‖∞ ≤ 1 and all n ∈ N∗, we

have

E

(∣∣∣ n∑
i=1

f(Xi)−E(f(X0))
∣∣∣2p)

≤ C
p∑
i=1

ni ‖f(X0)−E(f(X0))‖is (‖f −E(f(X0))‖C)i (6.3)

Proof. Without loss of generality, assume that E(f(X0)) = 0. By stationarity, we have

∣∣∣E(( n∑
i=1

f(Xi)
)p)∣∣∣ =

∣∣∣ ∑
1≤i1,...,ip≤n

E
(
f(Xi1) · . . . · f(Xip)

)∣∣∣
≤ p!n

∣∣∣ ∑
0≤i1,...,ip−1≤n−1

i∗p−1≤n−1

E
(
f(X0)f(Xi∗1

) · . . . · f(Xi∗p−1
)
)∣∣∣.

Using the notations In(0) :=
∣∣E(f(X0))

∣∣ = 0 and

In(p) :=
∑

0≤i1,...,ip≤n−1
i∗p≤n−1

∣∣E(f(X0)f(Xi∗1
) · . . . · f(Xi∗p)

)∣∣, (6.4)

for p ∈ N∗, we therefore have

∣∣∣E(( n∑
i=1

f(Xi)
)p)∣∣∣ ≤ p!nIn(p− 1). (6.5)

Decomposing the sum in (6.4) with respect to the highest increment of indices iq, q ∈ {1, . . . , p},
we receive a bound

In(p) ≤
p∑
q=1

Jn(p, q),

where

Jn(p, q) =
n−1∑
iq=0

∑
0≤i1,...,iq−1,iq+1,...,ip≤iq

i∗p≤n−1

∣∣E(f(X0)f(Xi∗1
) · . . . · f(Xi∗p)

)∣∣.
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6.1. Moment Bounds for Slowly Multiple Mixing Processes

We successively treat the terms Jn(p, q) and I(p) in two separate lemmata.

Lemma 6.1. Let p ∈ N∗. If (Xn)n∈N is slowly multiple mixing w.r.t. C with s ≥ 1 and

Θ : N −→ R+
0 such that

∞∑
i=0

ip−1Θ(i) <∞, (6.6)

then for all q ∈ {1, . . . , p} there exists a constant K ′ > 0 such that

Jn(p, q) ≤ K ′‖f(X0)‖s‖f‖C + nIn(q − 1)In(p− q) for all n ∈ N∗ and f ∈ C.

Proof. Set

Ai1,...,ip :=
∣∣Cov

(
f(X0)f(Xi∗1

) · . . . · f(Xi∗q−1
) , f(Xi∗q )f(Xi∗q+1

) · . . . · f(Xi∗p)
)∣∣

Bi1,...,ip :=
∣∣E(f(X0)f(Xi∗1

)·. . .·f(Xi∗q−1
)
)∣∣·∣∣E(f(X0)f(Xiq+1)·. . .·f(Xi∗p−i∗q )

)∣∣,
where we used the stationarity of (Xi)i∈N in the last line. We have

Jn(p, q)

≤
n−1∑
iq=0

∑
0≤i1,...,iq−1,iq+1,...,ip≤iq

i∗p≤n−1

Ai1,...,ip +

n−1∑
iq=0

∑
0≤i1,...,iq−1,iq+1,...,ip≤iq

i∗p≤n−1

Bi1,...,ip .

An application of the slow multiple mixing property (6.1) yields

n−1∑
iq=0

∑
0≤i1,...,iq−1,iq+1,...,ip≤iq

i∗p≤n−1

Ai1,...,ip ≤ K‖f(X0)‖s‖f‖C
n−1∑
iq=0

(iq + 1)p−1Θ(iq)

≤ K ′‖f(X0)‖s‖f‖C

for some constant K ′ <∞, since
∑∞

iq=0 i
p−1
q Θ(iq) <∞ by (6.6). Finally,

∑
0≤i1,...,iq−1,iq+1,...,ip≤iq

i∗p≤n−1

Bi1,...,ip ≤
∑

0≤i1,...,iq−1≤n−1
i∗q−1≤n−1

∣∣∣E(f(X0)f(Xi∗1
) · . . . · f(Xi∗q )

)∣∣
·

∑
0≤iq+1,...,ip≤n−1

i∗p−i∗q≤n−1

∣∣E(f(X0)f(Xiq+1) · . . . · f(Xi∗p−i∗q )
)∣∣

and thus
n−1∑
iq=0

∑
0≤i1,...,iq−1,iq+1,...,ip≤iq

i∗p≤n−1

Bi1,...,ip ≤ nIn(p− 1)In(p− q).
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6. Slowly Multiple Mixing Processes

From now on, let d·e denote the upper Gauss bracket dxe := min{z ∈ Z : z ≥ x}.

Lemma 6.2. Let p ∈ N∗. Assume that (Xn)n∈N is slowly multiple mixing with s ≥ 1 and Θ

such that (6.6) holds. Then there is a constant Kp <∞ such that

In(p) ≤ Kp

dp/2e∑
i=1

ni−1‖f(X0)‖is‖f‖iC (6.7)

for all f ∈ C with ‖f‖∞ ≤ 1 and E(f(X0)) = 0.

Proof. We will use complete induction to prove the lemma. By Lemma 6.1 we can easily see

that

In(1) ≤ K1‖f(X0)‖r ‖f‖C

for some constant K1 <∞ if (6.6) is satisfied. Now consider an arbitrary p̃ ≥ 2 satisfying (6.6)

and assume that (6.7) holds for all p ≤ p̃− 1. We have

In(p̃) ≤
p̃∑
q=1

Jn(p̃, q)

≤
p̃∑
q=1

(
K ′‖f(X0)‖s‖f‖C + nIn(q − 1)In(p̃− q)

)
≤ p̃K ′‖f(X0)‖s‖f‖C

+ n

p̃∑
q=1

(
Kq−1

d q−1
2 e∑
i=1

ni−1‖f(X0)‖is‖f‖iC
)(
Kp̃−q

d p̃−q2 e∑
j=1

nj−1‖f(X0)‖js‖f‖
j
C

)

≤ K ′p̃‖f(X0)‖s‖f‖C + n

p̃∑
q=1

K ′′
d q−1

2 e+d p̃−q2 e∑
i=2

ni−2‖f(X0)‖is‖f‖iC

≤ K ′′
{
‖f(X0)‖s‖f‖C + np̃

dp̃/2e∑
i=2

ni−2‖f(X0)‖is‖f‖iC
}

≤ Kp̃

dp̃/2e∑
i=1

ni−1‖f(X0)‖is‖f‖iC

for some constants K ′,K ′′,Kp̃ <∞, since d(q − 1)/2e+ d(p̃− q)/2e ≤ dp̃/2e.

By (6.5) and Lemma 6.2 we immediately obtain

E
(∣∣∣ n∑

i=1

f(Xi)
∣∣∣2p) ≤ (2p)!nIn(2p− 1) ≤ Kp

p∑
i=1

ni‖f(X0)‖is‖f‖iC

since (6.2) implies that (6.6) holds with p replaced by 2p − 1, which completed the proof of

6.1.

Remark 6.2. Recall that sharper moment bounds are available under multiple mixing with
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6.2. Causal Functions of I.I.D. Processes

exponential decay (cf. Section 2.1). However, the moment bounds given by Proposition 6.1 are

sufficient to apply the approximating class approach as we will show in Chapter 7.

The next section is dedicated to a specific class of slowly multiple mixing processes, the class

of causal functions of i.i.d. processes.

6.2. Causal Functions of I.I.D. Processes

One example of processes that feature the slow multiple mixing property (6.1) and that can be

treated by our methods is the class of causal functions of i.i.d. processes, which are defined as

follows.

Definition 6.2 (Causal function). Let (ξj)j∈Z be an independent identically distributed process

with values in a Banach space (X , ‖ · ‖X ). We call (Xi)i∈N a causal function of (ξj)j∈Z if there

is a measurable function G : XN → Rd such that each Xi is of the form

Xi := G((ξi−j)j∈N).

Let us now introduce a measure of the dependence structure of a causal function of an i.i.d.

process (ξj)j∈Z. Set

Ẋi := G(ξi, ξi−1, . . . , ξ1, ξ
′
0, ξ
′
−1, . . .),

where (ξ′j)j∈Z is an independent copy of (ξj)j∈Z, i.e. (ξj)j∈Z and (ξ′j)j∈Z are identically dis-

tributed, and both processes are independent from each other. We can now define for i ∈ N∗

and m ≥ 1,

δi,m = ‖Xi − Ẋi‖m := E
(
|Xi − Ẋi|m

) 1
m , (6.8)

where | · | denotes the euclidean norm in Rd. This physical dependence measure was introduced

by Dedecker and Prieur (2005) (see also Wu (2005) and Dedecker and Prieur (2007)).

Proposition 6.2. Let (Xi)i∈N be an Rd-valued causal function of an i.i.d. process. Then

(Xi)i∈N is slowly multiple mixing w.r.t. Hα(Rd,R) with s ≥ 1 and Θ(i) = (δi,m)α for every

α ∈ (0, 1], and s ∈ [1,∞), m ∈ (1,∞] with 1
s + 1

m = 1. As a consequence of Proposition 6.1, if

∞∑
i=1

i2p−2(δi,m)α <∞ (6.9)

for some p > sd, then the moment bound (6.3) holds for all f ∈ Hα(Rd,R) such that ‖f‖∞ ≤ 1,

with p, s as above.

Proof. Since (Xi)i∈N is a causal function of an i.i.d. process, we can write Xi = G(ξi, ξi−1, . . .),

with G : XN → Rd. Let (ξ′j)j∈Z and (ξ′′j )j∈Z be copies of the underlying process (ξj)j∈Z such
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6. Slowly Multiple Mixing Processes

that all three processes are independent. Set

Ẋ
(k)
i := G(ξi, ξi−1, . . . , ξi−k+1, ξ

′
i−k, ξ

′
i−k−1, . . .),

Ẍ
(k)
i := G(ξi, ξi−1, . . . , ξi−k+1, ξ

′′
i−k, ξ

′′
i−k−1, . . .),

and note that therefore (Xi)i∈N
d
= (Ẋ

(k)
i )i∈N

d
= (Ẍ

(k)
i )i∈N. We have

∣∣Cov
(
f(X0) . . . f(Xi∗q−1

) , f(Xi∗q ) . . . f(Xi∗p)
)∣∣

≤
∣∣Cov

(
f(X0) . . . f(Xi∗q−1

)− f(Ẋ
(k)
0 ) . . . f(Ẋ

(k)
i∗q−1

) , f(Xi∗q ) . . . f(Xi∗p)
)∣∣

+
∣∣Cov

(
f(Ẋ

(k)
0 ) . . . f(Ẋ

(k)
i∗q−1

) , f(Xi∗q ) . . . f(Xi∗p)− f(Ẍ
(k)
i∗q

) . . . f(Ẍ
(k)
i∗p

)
)∣∣

+
∣∣Cov

(
f(Ẋ

(k)
0 ) . . . f(Ẋ

(k)
i∗q−1

) , f(Ẍ
(k)
i∗q

) . . . f(Ẍ
(k)
i∗p

)
)∣∣. (6.10)

Since f(Ẋ
(k)
0 ) · . . . · f(Ẋ

(k)
i∗q−1

) is σ
(
{ξj : j ≤ i∗q−1} ∪ {ξ′j : j ∈ Z}

)
-measurable while f(Ẍ

(k)
i∗q

) · . . . ·

f(Ẍ
(k)
i∗p

) is σ
(
{ξj : j > i∗q − k} ∪ {ξ′′j : j ∈ Z}

)
-measurable, the functions in the last covariance

on the right-hand side of (6.10) are independent as soon as k ≤ iq and thus the last summand

is equal to 0 in this case. Recall that we only consider such f that satisfy ‖f‖∞ ≤ 1. If we

apply Hölder’s inequality to equation (6.10) we obtain for s,m satisfying 1
s + 1

m = 1,

∣∣Cov
(
f(X0) · . . . · f(Xi∗q−1

)− f(Ẋ
(k)
0 ) · . . . · f(Ẋ

(k)
i∗q−1

) , f(Xi∗q ) · . . . · f(Xi∗p)
)∣∣

≤ 2‖f(X0) · . . . · f(Xi∗q−1
)− f(Ẋ

(k)
0 ) · . . . · f(Ẋ

(k)
i∗q−1

)‖m‖f(Xi∗q ) · . . . · f(Xi∗p)‖s

≤ 2q‖f(X0)‖s‖f(X0)− f(Ẋ
(k)
0 )‖m (6.11)

where we used that
∣∣∣∏n

i=1 ai−
∏n
i=1 bi

∣∣∣≤∑n
i=1

∣∣ai−bi∣∣. for ai, bi ∈ [−1, 1]. Since |f(x)−f(y)| ≤
‖f‖α‖x− y‖α, an application of Jensen’s inequality to (6.11) yields

∣∣Cov
(
f(X0) · . . . · f(Xi∗q−1

)− f(Ẋ
(k)
0 ) · . . . · f(Ẋ

(k)
i∗q−1

) , f(Xi∗q ) · . . . · f(Xi∗p)
)∣∣

≤ 2q‖f(X0)‖s‖f‖Hα
(
‖X0 − Ẋ(k)

0 ‖m
)α

= 2q‖f(X0)‖s‖f‖Hα(δk,m)α.

Analogously, we can show that

∣∣Cov
(
f(Ẋ

(k)
0 ) . . . f(Ẋ

(k)
i∗q−1

) , f(Xi∗q ) . . . f(Xi∗p)− f(Ẍ
(k)
i∗q

) . . . f(Ẍ
(k)
i∗p

)
)∣∣

≤ 2(p− q)‖f(X0)‖s‖f‖Hα‖(δk,m)α,

thus for k = iq, we have

∣∣Cov
(
f(X0) . . . f(Xi∗q−1

) , f(Xi∗q ) . . . f(Xi∗p)
)∣∣ ≤ 2q‖f(X0)‖s‖f‖Hα(δiq ,m)α,

which proves the slow multiple mixing property
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7. An Empirical CLT for Slowly Multiple Mixing

Processes

In this chapter, we establish an empirical CLT for slowly multiple mixing processes. We are

especially interested in the case, where the decay of the covariances is given by a term Θ that

converges to zero with sub-exponential rate. We therefore develop a general theorem that can

be applied to weaker moment bounds than Theorem 3.1 in Part I. As our main intention here

is to extend the application of our approximating class approach (see Section 1.3) to situations

where the underlying process only satisfies a weaker version of the multiple mixing property,

we restrict our attention to Rd-valued stationary processes (Xi)i∈N∗ and consider the classical

empirical processes indexed by the class of indicators of semi-finite rectangles {1[−∞,t] : t ∈ Rd}.
For sets such as {x ∈ [−∞,∞]d : a ≤ x < b} with a ≤ b ∈ Rd, we write (a, b], where ≤,

<, ... used in Rd are to be understood component-wise.1 The empirical distribution function

Fn : [−∞,∞]d −→ R is given by

Fn(t) :=
1

n

n∑
i=1

1[−∞,t](Xi)

Let F denote the (multidimensional) distribution function of X0. We consider the empirical

process Un = (Un(t))t∈[−∞,∞]d as the random element given by

Un(t) :=
√
n
(
Fn(t)− F(t)

)
, t ∈ [−∞,∞]d.

which takes valued in the càdlàg space D([∞,∞]d) equipped with the Skorokhod metric dS .2

Before coming to the statement of our main results, let us have a look at our central

assumptions. Similar as in Chapter 3, we assume that (Xi)i∈N satisfies a Central Limit

Theorem under a class of functions C.

Assumption 7.I (CLT for C-Observables.). For every f ∈ C such that E(f(X0)) = 0, there

exists σ2
f ≥ 0 such that

1√
n

n∑
i=1

f(Xi)
d−→ N(0, σ2

f ). (7.1)

Further, we assume that the following generalized moment bounds hold under the same

function space C for which the CLT (7.1) is satisfied.

1i.e., for a = (a1, . . . , ad) and b = (b1, . . . , bd) ∈ [−∞,∞]d, write a ≤ b if and only if ai ≤ bi for all i = 1, . . . , d.
2For more details, see page 8.
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7. An Empirical CLT for Slowly Multiple Mixing Processes

Assumption 7.II (Moment Bounds for C-Observables). There are finite constants C > 0,

s ≥ 1, p ∈ N∗ and increasing functions Φ1, . . . ,Φp : R+
0 → R+

0 such that for all f ∈ C with

‖f‖∞ ≤ 1 and all n ∈ N∗, we have

E

( n∑
i=1

(
f(Xi)−E(f(X0))

))2p

≤ C
p∑
i=1

ni ‖f(X0)−E(f(X0))‖is Φi(‖f −E(f(X0))‖C). (7.2)

Recall that this condition is met for instance for processes satisfying a slow multiple mixing

property with Φ(x) = xi (see Proposition 6.1).

Since in this setting, the indexing class of the empirical process is a fixed class of semi-finite

rectangles, we do not apply our bracketing technique in full generality here. Instead the

bracketing will be directly included in the proof of property (1.B) of our approximating class

approach.

Control of the ‖ · ‖C-Size of the Approximating Functions

Assumption 7.I and Assumption 7.II refer to the processes (f(Xi))i∈N for f ∈ C. In order

to obtain results for the empirical process Un indexed by indicator functions of semi-finite

rectangles, we use approximations by functions of the space C. Here, we use a function that

provides a control over the ‖ · ‖C-size of the approximating functions. This function replaces

the entropy condition used in Part I. It corresponds in a way to the second argument in the

bracketing numbers in that section and can be seen as an adapted version of the bracketing

technique used there.

Definition 7.1 (‖ · ‖C-Control). Let F be a (multidimensional) distribution function on Rd and

let C be some vector space of R-valued measurable functions on Rd, equipped with a semi-norm

‖ · ‖C. We call a increasing function Ψ : R+
0 → R+

0 a ‖ · ‖C-control (with respect to F) if for

every a < b ∈ [−∞,∞]d, there is a function ϕ(a,b) ∈ C such that for any x ∈ Rd,

1(−∞,a] ≤ ϕ(a,b] ≤ 1(−∞,b] . (7.3)

and such that

‖ϕ(a,b)‖C ≤ Ψ

(
1

min
i=1,...,d

ωF(i)
(bi − ai)

)
, (7.4)

where F(i) denotes the i-th marginal distribution function of X and where ωF(i)
is the modulus

of continuity of F(i).
3

If such a function Ψ exists, we say that C approximates the indicator functions of semi-finite

rectangles R := {[−∞, t] : t ∈ Rd} with ‖ · ‖C-control Ψ.

3Recall that the modulus of continuity ωg of a real-valued function g is defined by ωg(δ) := sup{|g(t)− g(s)| :
s, t ∈ Rd, ‖t− s‖ ≤ δ}.
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7.1. Statement of Results

Example 7.1. As an example, consider the space of bounded α-Hölder functions Hα(Rd,R)

introduced in Section 2.3. Choose ϕ(a,b) ∈ Hα(Rd,R) as

ϕ(a,b)(x1, . . . , xd) :=

d∏
i=1

ϕ
(
1(−∞,∞)2(ai, bi) ·

xi − bi
bi − ai

)
,

where ϕ : R→ R is given by ϕ(x) = 1[−∞,−1](x)− x1(−1,0](x). Obviously, this choice of ϕ(a,b)

satisfies (7.3). Let us now check condition (7.4). Since for all j = 1, . . . , d, ωF(j)
(δ) ≤ ωF(δ), we

have

bj − aj ≥ inf
{
δ > 0 : ωF(δ) ≥ min

i=1,...,d
ωF(i)

(bi − ai)
}
.

Thus, by the definition of ϕ(a,b) we obtain

‖ϕ(a,b)‖Hα ≤ d max
j=1,...,d

1(−∞,∞)2(aj , bj) ·
1

(bj − aj)α
+ 1

≤ d
(
ω←F

(
min

i=1,...,d
ωF(i)

(bi − ai)
))−α

+ 1,

where ω←F (y) := inf
{
δ > 0 : ωF(δ) ≥ y

}
.Hence, (7.4) is satisfied for the increasing function Ψ

given by

Ψ(z) := d
(
ω←F
(
z−1
))−α

+ 1 (7.5)

and thus Ψ defines an ‖ · ‖Hα-control, which gives us the following lemma:

Lemma 7.1. The space of bounded α-Hölder functions Hα(Rd,R) approximates the indicator

functions of semi-finite rectangles R with ‖ · ‖Hα-control Ψ w.r.t. F given by (7.5).

Under these assumptions, we can establish the following theorems.

7.1. Statement of Results

Theorem 7.1. Let (Xi)i∈N be a stationary process of Rd-valued random vectors with continuous

multidimensional distribution function F. Assume that there is a vector space C of measurable

functions Rd → R, containing the constant functions, equipped with a semi-norm ‖ · ‖C, and

satisfying the following conditions:

(i) For every f ∈ C such that ‖f‖∞ <∞, the CLT (7.1) holds.

(ii) C approximates the indicator functions of semi-finite rectangles R with ‖ · ‖C-control Ψ

w.r.t. F.

(iii) There are constants s ≥ 1, p > sd, γ1, . . . , γp ∈ R satisfying

0 ≤ γi <
i

s
+ 2(p− i)− d for all i = 1, . . . , p (7.6)
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and some increasing functions Φ1, . . . ,Φp : R+
0 → R+

0 satisfying

Φi(2Ψ(z)) = O(zγi) as z →∞ (7.7)

such that for every f ∈ C with ‖f‖∞ ≤ 1, the moment bound (7.2) holds.

Then there is a centred Gaussian process W = (W (t))t∈[−∞,∞]d with almost surely continuous

sample paths such that Un
d−→W in the space D([−∞,∞]d).

Remark 7.1. (i) In fact, the functions Φ1, . . . ,Φp and the function Ψ only have to be increasing

for sufficiently large arguments. Note that condition (7.2) has only to be satisfied for a certain

subclass of C, see Remark 7.5.

(ii) Although, the focus of this chapter is to consider processes with a sub-exponential decay,

the assumptions of Theorem 7.1 are quite general and can also be applied in the exponential

case. For instance, choosing C = Hα(Rd,R) and γi = 2p− i we obtain Theorem 3 in Dehling

and Durieu (2011), setting further α = d = s = 1 covers Theorem 1 in Dehling et al. (2009).

As a consequence of this abstract theorem, we can give a statement for slowly multiple

mixing processes, for which conditions are more easily verifiable.

Theorem 7.2 (Empirical CLT for Slowly Multiple Mixing Data). Let (Xi)i∈N be a stationary

Rd-valued process with continuous multidimensional distribution function F. Assume there is a

vector space C of measurable functions Rd → R, containing the constant functions, equipped

with a semi-norm ‖ · ‖C that satisfies the following conditions:

(i) For every f ∈ C such that ‖f‖∞ <∞ the CLT (7.1) holds.

(ii) The process (Xi)i∈N∗ is slowly multiple mixing w.r.t. to C for some s ≥ 1 and Θ : N −→ R+
0

such that there exists a p > sd satisfying
∑∞

i=0 i
2p−2Θ(i) <∞.

(iii) C approximates the indicator functions of semi-finite rectangles R with ‖ · ‖C-control Ψ

w.r.t. F such that Ψ(z) = O(z1/γ) for some γ > sp
p−sd .

Then there is a centred Gaussian process W = (W (t))t∈[−∞,∞]d with almost surely continuous

sample paths such that Un
d−→W in the space D([−∞,∞]d).

Proof. By Proposition 6.1, condition Assumption 7.II holds with Φi(x) = xi. Then, taking

γi = i/γ, the condition (iii) of Theorem 7.1 is satisfied.

Remark 7.2. In the situation, where C is the space Hα(Rd,R) with α ∈ (0, 1], by Lemma 7.1,

(iii) of Theorem 7.2 can be replaced by(
ω←F

(1

z

))α
= O

(
z

1
γ

)
as z →∞, for some γ >

sp

p− sd
.

This is certainly satisfied (for instance for γ = θ/α) if F is θ-Hölder with

θ >
αsp

p− sd
. (7.8)
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7.2. Proof of Theorem 7.1

To prove Theorem 7.1, we apply Theorem 1.1 where we choose S = D([−∞,∞]d), the càdàg

space on [−∞,∞]d equipped with the Skorokhod metric dS and ξn = Un denotes the empirical

process. We therefore need to find a process U
(q)
n which approximates Un as q → ∞ in the

sense of (1.11) and to show that this process is convergent in distribution for each q as n→∞.

Remark 7.3. Note that in this situation one can also apply the version of Theorem 1.1 used by

Dehling et al. (2009), since the relevant processes are measurable and S is separable.

Following the techniques presented in Dehling and Durieu (2011, p.1078 ff), we begin

by introducing a partition for [−∞,∞]d. Let F(i) be the i-th marginal distribution of F,

0 = r
(q)
0 < r

(q)
1 < . . . < r

(q)
q = 1 a partition of [0, 1], and set for i ∈ {1, . . . , d} and ji ∈ {0, . . . , q},

t
(q)
i,ji

:= F−1
(i) (r

(q)
ji

),

where F−1
(i) (y) := sup{x ∈ [−∞,∞] : F(i)(x) ≤ y}. Note that the F−1

(i) are injective since the F(i)

are continuous. For convenience, we also define t
(q)
i,q+1 := t

(q)
i,q . For j ∈ {0, . . . , q + 1}d, set

t
(q)
j := (t

(q)
1,j1

, . . . , t
(q)
d,jd

) = (F−1
(1)(r

(q)
j1

), . . . ,F−1
(d)(r

(q)
jd

)).

To keep notation short, denote (x, . . . , x) ∈ [−∞,∞]d by x.

We can construct a C-approximation of the indicator function 1
[−∞,t(q)

j−1
]

by setting for

j ∈ {1, . . . , q}d,

ϕ
(q)
j :=


ϕ(

t
(q)

j−2
,t
(q)

j−1

) if j ≥ 2,

0 if j � 2,
(7.9)

where ϕ
(t

(q)

j−2
,t
(q)

j−1
)
∈ C satisfies (7.3) and (7.4). Observe that t

(q)

j−2
< t

(q)

j−1
, since all F−1

(i) are

injective.

To approximate the empirical distribution function, we introduce

F (q)
n (t) :=

∑
j∈{1,...,q}d

( 1

n

n∑
i=1

ϕ
(q)
j (Xi)

)
1

[t
(q)

j−1
,t
(q)
j )

(t).

Note that for t in any fixed rectangle [t
(q)

j−1
, t

(q)
j ) we have the simple form

F (q)
n (t) =

1

n

n∑
i=1

ϕ
(q)
j (Xi).

By the definition of the ϕ
(q)
j it is easy to see that therefore

Fn(t
(q)

j−2
) ≤ F (q)

n (t) ≤ Fn(t
(q)

j−1
) ∀t ∈ [t

(q)

j−1
, t

(q)
j ).
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Thus, it is natural to approximate (as q →∞) Un by

U (q)
n :=

(√
n
(
F (q)
n (t)− F (q)(t)

))
t∈[−∞,∞]d

,

where

F (q)(t) := E
(
F (q)
n (t)

)
=

∑
j∈{1,...,q}d

E
(
ϕ

(q)
j (X0)

)
1

[t
(q)

j−1
,t
(q)
j )

(t).

Remark 7.4. Notice that at this point the ϕ
(q)
j and thus U

(q)
n depend heavily on the chosen

partition r0, . . . , rq on [0, 1]. Therefore the notation with the superscript q may be misleading at

first glance, but since whenever the choice of the partition matters, we will only use equidistant

partitions of [0, 1], and thus in all relevant situations the partitions will be uniquely defined by

q.

As the central idea to prove Theorem 7.1 is to use Theorem 1.1, we need to check (1.10) and

(1.11) for S = D([−∞,∞]d). This is done in the next two lemmas.

Lemma 7.2. For every partition 0 = r
(q)
0 < . . . < r

(q)
q = 1 of [0, 1], U

(q)
n converges weakly to

some centred Gaussian process W (q) ∈ D([−∞,∞]d) whose sample paths are constant on each

of the rectangles [t
(q)

j−1
, t

(q)
j ), j ∈ {1, . . . , q}d.

Proof. Since all the U
(q)
n are constant on each of the rectangles [t

(q)

j−1
, t

(q)
j ), it suffices to show

weak convergence of the sequence of vectors(
1√
n

n∑
i=1

(
ϕ

(q)
j (Xi)−E

(
ϕ

(q)
j (Xi)

)))
j∈{1,...,q}d

,

which is a consequence of the CLT (7.1) and the Cramér–Wold device.

Lemma 7.3. Let 0 = r
(q)
0 < r

(q)
1 < . . . < r

(q)
q = 1 be the partition of [0, 1] defined by r

(q)
k = k

q .

Then for all ε, η > 0 there is a q0 ∈ N∗ such that for all q ≥ q0,

lim sup
n→∞

P

(
sup

t∈[−∞,∞]d
|Un(t)− U (q)

n (t)| > ε

)
≤ η.

Proof. Let us consider ε, η > 0 fixed for the rest of this proof. Consider the partition 0 = r
(q)
0 <

. . . < r
(q)
q = 1 of [0, 1] defined in the statement of the lemma and set h = 1

q . For each k ∈ N∗,
consider the refined partition

r
(q)
m−1 = s

(k)
m,0 < s

(k)
m,1 < . . . < s

(k)

m,2k
= r(q)

m

of [r
(q)
m−1, r

(q)
m ], where

s
(k)
m,` := r

(q)
m−1 + ` · h

2k
,
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` ∈ {0, . . . , 2k} and m ∈ {0, . . . , q}. Setting for i ∈ {1, . . . , d}, ji ∈ {1, . . . , q}, li ∈ {0, . . . , 2k}

s
(k)
i,ji,li

= F−1
(i) (s

(k)
ji,li

),

we obtain partitions

t
(q)
i,ji−1 = s

(k)
i,ji,0

< s
(k)
i,ji,1

< . . . < s
(k)

i,ji,2k
= t

(q)
i,ji

of [t
(q)
i,ji−1, t

(q)
i,ji

]. To simplify the notation in the following calculations, we set

s
(k)
i,ji,−1 := s

(k)

i,ji−1,2k−1
for ji > 1, and s

(k)

i,ji,2k+1
:= s

(k)
i,ji+1,1, for ji < q.

Let us now focus on a fixed rectangle [t
(q)

j−1
, t

(q)
j ) for some j = (j1, . . . , jd) ∈ {1, . . . , q}d.

Our aim is to construct a chain to link the point t
(q)

j−1
to some arbitrary point t ∈ [t

(q)

j−1
, t

(q)
j ).

Therefore, we set

li,ji(k, t) = max
{
` ∈ {0, . . . , 2k} : s

(k)
i,ji,`
≤ ti

}
∈ {0, . . . , 2k − 1}.

Since we consider j to be fixed, we may drop the index j in order to simplify further notation.

More precisely, we set

s
(k)
l := (s

(k)
1,j1,l1

, . . . , s
(k)
d,jd,ld

) and l(k, t) := (l1,j1(k, t), . . . , ld,jd(k, t)).

In this way for any k ∈ N∗, we obtain an ([−∞,∞]d- valued) chain

t
(q)

j−1
= s

(0)
l(0,t) ≤ s

(1)
l(1,t) ≤ . . . ≤ s

(k)
l(k,t) ≤ t ≤ s

(k)

l(k,t)+1
.

Now set ψ
(0)

0
:= ϕ

(t
(q)

j−1
,t
(q)
j )

and choose for every k ∈ N∗ and l ∈ {0, . . . , 2k + 1}d, a function

ψ
(k)
l ∈ C such that4

ψ
(k)
l =



0 if ∃i ∈ {1, . . . , d} : ji = 1 and li = 0,

1 if (∃i ∈ {1, . . . , d} : ji = q and li = 2k + 1)

and (@i ∈ {1, . . . , d} : ji = 1 and li = 0),

ϕ
(s

(k)

l−1
,s

(k)
l )

else,

(7.10)

where ϕ
(s

(k)

l−1
,s

(k)
l )

satisfies (7.3) and (7.4). By this definition we have for every t ∈ [−∞,∞]d

and l ∈ {0, . . . , 2k}d, the following inequalities:

1[−∞,sl−1] ≤ ψ
(k)
l ≤ 1[−∞,sl], (7.11)

4the reference to the indices j and q is omitted, since these are considered to be fixed.
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ϕ
(q)
j ≤ ψ

(1)
l(1,t) ≤ . . . ≤ ψ

(k)
l(k,t) ≤ 1[−∞,t] ≤ ψ

(k)

l(k,t)+2
. (7.12)

Using inequality (7.12), we obtain for t ∈ [t
(q)

j−1
, t

(q)
j ) and K ∈ N∗, the telescopic-sum represen-

tation

1

n

n∑
i=1

(
1[−∞,t](Xi)− F (q)

n (t)
)

=
1

n

n∑
i=1

1[−∞,t](Xi)−
1

n

n∑
i=1

ϕ
(q)
j (Xi)

=

K∑
k=1

1

n

n∑
i=1

(
ψ

(k)
l(k,t)(Xi)− ψ(k−1)

l(k−1,t)(Xi)
)

+
1

n

n∑
i=1

(
1[−∞,t](Xi)− ψ(K)

l(K,t)(Xi)
)
. (7.13)

Let us now consider

Un(t)− U (q)
n (t) =

√
n
( 1

n

n∑
i=1

1[−∞,t](Xi)− F(t)
)
−
√
n
(
F (q)
n (t)− F (q)(t)

)
.

Equation (7.13) yields

Un(t)− U (q)
n (t) =

K∑
k=1

1√
n

n∑
i=1

(
ψ

(k)
l(k,t)(Xi)−Eψ

(k)
l(k,t)(X0)

)
−
(
ψ

(k−1)
l(k−1,t)(Xi)−Eψ

(k−1)
l(k−1,t)(X0)

)
+

1√
n

n∑
i=1

(
1[−∞,t](Xi)− F(t)

)
−
(
ψ

(K)
l(K,t)(Xi)−Eψ

(K)
l(K,t)(X0)

)
. (7.14)

Applying the inequalities in (7.12), we gain the following upper bounds for the last sum on the

right-hand side of the above inequality. For every K ∈ N∗

1√
n

n∑
i=1

((
1[−∞,t](Xi)− F(t)

)
−
(
ψ

(K)
l(K,t)(Xi)−Eψ

(K)
l(K,t)(X0)

))
≥ −
√
n
(

F(t)−Eψ
(K)
l(K,t)(X0)

)
≥ −
√
n
(
Eψ

(K)

l(K,t)+2
(X0)−Eψ

(K)
l(K,t)(X0)

)
(7.15)

and

1√
n

n∑
i=1

((
1[−∞,t](Xi)− F(t)

)
−
(
ψ

(K)
l(K,t)(Xi)−Eψ

(K)
l(K,t)(X0)

))
≤ 1√

n

n∑
i=1

((
ψ

(K)

l(K,t)+2
(Xi)−Eψ

(K)

l(K,t)+2
(X0)

)
−
(
ψ

(K)
l(K,t)(Xi)−Eψ

(K)
l(K,t)(X0)

)
+
√
n
(
Eψ

(K)

l(K,t)+2
(X0)− F(t)

)
≤ 1√

n

n∑
i=1

((
ψ

(K)

l(K,t)+2
(Xi)−Eψ

(K)

l(K,t)+2
(X0)

)
−
(
ψ

(K)
l(K,t)(Xi)−Eψ

(K)
l(K,t)(X0)

)
+
√
n
(
Eψ

(K)

l(K,t)+2
(X0)−Eψ

(K)
l(K,t)(X0)

)
. (7.16)
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For convenience, let s
(k)

i,q,2k+1
:= s

(k)

i,q,2k
. Using equation (7.11) and the continuity of F,5 we

obtain

√
n
∣∣∣E(ψ(K)

l(K,t)+2
(X0)

)
−
(
Eψ

(K)
l(K,t)(X0)

)∣∣∣
≤
√
n
∣∣∣E(1[−∞,sl(K,t)+2)(X0)

)
−E

(
1[−∞,sl(K,t)−1)(X0)

)∣∣∣
=
√
n
(

F(sl(K,t)+2)− F(sl(K,t)−1)
)

≤
√
n
(
d max
i=1,...,d

{
F(i)(si,ji,li,ji (K,t)+2)− F(i)(si,ji,li,ji (K,t)−1)

})
=

3d
√
nh

2K
,

and thus, if we choose

K = Kn :=

[
log2

(
24d

ε

√
nh

)]
, (7.17)

we obtain ∣∣∣Eψ
(K)

l(K,t)+2
(X0)−Eψ

(K)
l(K,t)(X0)

∣∣∣ < ε

2
. (7.18)

In summary, using (7.15), (7.16) and (7.18) in equation (7.14) yields, for all n ∈ N∗,

∣∣Un(t)− U (q)
n (t)

∣∣
≤
∣∣∣∣Kn∑
k=1

1√
n

n∑
i=1

(
ψ

(k)
l(k,t)(Xi)−Eψ

(k)
l(k,t)(X0)

)
−
(
ψ

(k−1)
l(k−1,t)(Xi)−Eψ

(k−1)
l(k−1,t)(X0)

)∣∣∣∣
+

∣∣∣∣ 1√
n

n∑
i=1

(
ψ

(Kn)

l(Kn,t)+2
(Xi)−Eψ

(Kn)

l(Kn,t)+2
(X0)

)
−
(
ψ

(Kn)
l(Kn,t)

(Xi)−Eψ
(Kn)
l(Kn,t)

(X0)
)∣∣∣∣+

ε

2
.

(7.19)

Now, consider the maximum of the terms in (7.19) over all t ∈ [t
(q)

j−1
, t

(q)
j ). By the definition

of the l(k, t) we have

[
l(k, t)

2

]
: =

([
l1,j1(k, t)

2

]
, . . . ,

[
ld,jd(k, t)

2

])
= l(k − 1, t).

We therefore obtain

sup
t∈[t

(q)

j−1
,t
(q)
j )

|Un(t)− U (q)
n (t)|

≤
Kn∑
k=1

1√
n

max
l∈{0,...,2k−1}d

∣∣∣∣ n∑
i=1

(
ψ

(k)
l (Xi)−Eψ

(k)
l (X0)

)
−
(
ψ

(k−1)
[l/2] (Xi)−Eψ

(k−1)
[l/2] (X0)

)∣∣∣∣
+

1√
n

max
l∈{0,...,2Kn−1}d

∣∣∣∣ n∑
i=1

(
ψ

(Kn)

l+2
(Xi)−Eψ

(Kn)

l+2
(X0)

)
−
(
ψ

(Kn)
l (Xi)−Eψ

(Kn)
l (X0)

)∣∣∣∣+
ε

2
.

5note that for continuous F, we have F ◦F−1(x) = x for all x ∈ [0, 1].
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Choose εk = ε
4k(k+1) and note that

∑∞
k=1 εk = ε/4. An application of Markov’s inequality for

the 2p-th moments combined with condition (7.2) implies

P

(
sup

t∈[t
(q)
j−1,t

(q)
j )

|Un(t)− U (q)
n (t)| ≥ ε

)

≤

{
Kn∑
k=1

∑
l∈{0,...,2k−1}d

P

(
1√
n

∣∣∣∣ n∑
i=1

(
ψ

(k)
l (Xi)−Eψ

(k)
l (X0)

)
−
(
ψ

(k−1)
[l/2] (Xi)−Eψ

(k−1)
[l/2] (X0)

)∣∣∣∣ > εk

)}

+
∑

l∈{0,...,2Kn−1}d
P

(
1√
n

∣∣∣∣ n∑
i=1

(
ψ

(Kn)

l+2
(Xi)−Eψ

(Kn)

l+2
(X0)

)
−
(
ψ

(Kn)
l (Xi)−Eψ

(Kn)
l (X0)

)∣∣∣∣ > ε

4

)
≤

{
Kn∑
k=1

∑
l∈{0,...,2k−1}d

1

ε2p
k n

p
E

(∣∣∣ n∑
i=1

(
ψ

(k)
l (Xi)−Eψ

(k)
l (X0)

)
−
(
ψ

(k−1)
[l/2] (Xi)−Eψ

(k−1)
[l/2] (X0)

)∣∣∣2p)}

+
∑

l∈{0,...,2Kn−1}d

42p

npε2p
E

(∣∣∣ n∑
i=1

(
ψ

(Kn)

l+2
(Xi)−Eψ

(Kn)

l+2
(X0)

)
−
(
ψ

(Kn)
l (Xi)−Eψ

(Kn)
l (X0)

)∣∣∣2p)

≤ 2C

{
Kn∑
k=1

∑
l∈{0,...,2k−1}d

1

ε2p
k n

p

p∑
i=1

ni ‖ψ(k)
l (X0)− ψ(k−1)

[l/2] (X0)‖is Φi

(
2‖ψ(k)

l − ψ
(k−1)
[l/2] ‖C

)

+
∑

l∈{0,...,2Kn−1}d

42p

ε2pnp

p∑
i=1

ni ‖ψ(Kn)

l+2
(X0)− ψ(Kn)

l (X0)‖is Φi

(
2‖ψ(Kn)

l+2
− ψ(Kn)

l ‖C
)}

. (7.20)

We collect the necessary auxiliary calculations in the following lemma.

Lemma 7.4. For all l ∈ {0, . . . , 2k − 1}d, s ≥ 1, and k, n ∈ N∗,

‖ψ(k)
l (X0)− ψ(k−1)

[l/2] (X0)‖s ≤
(3dh

2k

) 1
s
,

‖ψ(Kn)

l+2
(X0)− ψ(Kn)

l (X0)‖s ≤
(3dh

2Kn

) 1
s
,

‖ψ(k)
l ‖C ≤ max

{
Ψ
(2k

h

)
, ‖1‖C

}
.

Proof. By (7.11) and the continuity of the F(i),

‖ψ(k)
l (X0)− ψ(k−1)

[l/2] (X0)‖s ≤ ‖1
[−∞,s(k)l ]

(X0)− 1
[−∞,s(k−1)

[l/2]−1
]
(X0)‖s

≤
(
d max
i=1,...,d

(
F(i)(s

(k)
i,ji,li

)− F(i)(s
(k)
i,ji,li−3)

)) 1
s

≤
(3dh

2k

) 1
s
.
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The second inequality can be proven in a similar way.

In the first two cases of the definition (7.10), ψ
(k)
l is a constant function taking either the

value zero or one for each argument. In this case the last inequality of the lemma is trivially

satisfied by the conditions on ‖ · ‖C . Else, ψ
(k)
l has a representation ϕ

(s
(k)

l−1
,s

(k)
l )

, where

s
(k)
l =

(
s

(k)
1,j1,l1

, . . . , s
(k)
d,jd,ld

)
=
(

F−1
(1)

(
s

(k)
j1,l1

)
, . . . ,F−1

(d)

(
s

(k)
jd,ld

))
,

s
(k)

l−1
=
(
s

(k)
1,j1,l1−1, . . . , s

(k)
d,jd,ld−1

)
=
(

F−1
(1)

(
s

(k)
j1,l1
− h2−k

)
, . . . ,F−1

(d)

(
s

(k)
jd,ld
− h2−k

))
and hence, for every i ∈ {1, . . . , d}

s
(k)
i,ji,li

− s(k)
i,ji,li−1 ∈

{
δ > 0 : ∃t ∈ R, |F(i)(t)− F(i)(t− δ)| ≥ h2−k

}
⊂
{
δ > 0 : ωF(i)

(δ) ≥ h2−k
}
. (7.21)

To see this, set δ = F−1
(i) (s

(k)
li

) − F−1
(i) (s

(k)
li−1) > 0, t = F−1

(i) (s
(k)
li

), and recall that the F−1
(i) are

injective. Now condition (7.4) yields

‖ϕ(k)
l ‖C ≤ Ψ

(
1

min
i=1,...,d

ωF(i)
(s

(k)
i,ji,li

− s(k)
i,ji,li−1)

)
≤ Ψ

(2k

h

)
,

since mini=1,...,d ωF(i)

(
s

(k)
ji,li
− s(k)

1,ji,li−1

)
≥ h2−k by (7.21).

An application of Lemma 7.4 to (7.20) yields

P

(
sup

t∈[t
(q)
j−1,t

(q)
j )

|Un(t)− U (q)
n (t)| ≥ ε

)

≤ 2C

{
Kn∑
k=1

p∑
i=1

2dkn−(p−i)

ε2p
k

(3dh

2k

) i
s
Φi

(
2Ψ
(2k

h

))
+

p∑
i=1

2dKnn−(p−i)

( ε4)2p

(3dh

2Kn

) i
s
Φi

(
2Ψ
(2Kn

h

))}

≤ 2C

p∑
i=1

{
(3d)

i
sn−(p−i)

Kn∑
k=1

2dk

ε2p
k

( h
2k

) i
s
Φi

(
2Ψ
(2k

h

))}

≤ D
p∑
i=1

{
n−(p−i)

Kn∑
k=1

2(d− i
s
)kk4pΦi

(
2Ψ
(2k

h

))
h
i
s

}

≤ D

{
p−1∑
i=1

n−(p−i)
(

2Kn

h

)d− i
s

Kn
4p+1Φi

(
2Ψ

(
2Kn

h

))
hd

}

+D

{
Kn∑
k=1

2(d− p
s

)kk4pΦp

(
2Ψ
(2k

h

))
h
p
s

}
(7.22)

for every j ∈ {1, . . . , q}d, where D > 0 denotes some finite constant. In the second inequality

we used that Ψ and Φi are increasing functions and that ε/4 > εKn . Let us first deal with the
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term in the last line of (7.22). By condition (7.7) we have

Kn∑
k=1

2(d− p
s

)kk4pΦp

(
2Ψ
(2k

h

))
h
p
s ≤ C ′′h

p
s
−γp

∞∑
k=1

2(γp−( p
s
−d))kk4p,

where γp <
p
s − d. Hence, there is a nonnegative constant D′ <∞ such that

Kn∑
k=1

2(d− p
s

)kk4pΦp

(
2Ψ
(2k

h

))
h
p
s ≤ D′h

p
s
−γp = o(hd). (7.23)

Now consider the first summand on the right-hand side of inequality (7.22). In (7.17) we chose

Kn = [log2(24d
√
nh/ε)], and hence condition (7.7) yields for any i = 1, . . . , p− 1,

n−(p−i)
(

2Kn

h

)d− i
s

Kn
4p+1Φi

(
2Ψ

(
2Kn

h

))
hd

≤ D′′ log4p+1
2

(24d

ε

√
nh
)
· (
√
n)γi−( i

s
+2(p−i)−d)hd

for some non-negative constant D′′ <∞. Since γi <
i
s + 2(p− i)− d for i = 1, . . . , p− 1, by

(7.7) we obtain for all η > 0 and sufficiently large n ∈ N∗,

D

p−1∑
i=1

{
n−(p−i)

(
2Kn

h

)d− i
s

Kn
4p+1Φi

(
2Ψ

(
2Kn

h

))
hd

}
≤ 1

2
ηhd. (7.24)

Finally, by (7.22), (7.23), and (7.24), for any η > 0

lim sup
n→∞

P

(
sup

t∈[−∞,∞]d
|Un(t)− U (q)

n (t)| ≥ ε
)

≤ lim sup
n→∞

∑
j∈{1...,q}d

P

(
sup

t∈[t
(q)
j−1,t

(q)
j )

|Un(t)− U (q)
n (t)| ≥ ε

)

≤ qd
(

o(hd) +
1

2
ηhd
)

= qd
(

o(q−d) +
1

2
ηq−d

)
,

since h = 1/q. Hence, there is a q0 ∈ N∗ such that

lim sup
n→∞

P

(
sup

t∈[−∞,∞]d
|Un(t)− U (q)

n (t)| ≥ ε
)
≤ η

for all q ≥ q0.

With Lemma 7.2 and Lemma 7.3 established, let us finally prove Theorem 7.1. By application

of Theorem 1.1 on D([−∞,∞]d) equipped with the Skorokhod metric ρ, Lemma 7.2 (with

r
(q)
k := k

q ) and Lemma 7.3 show that Un converges in distribution to a process W which is also

the limit process of the sequence W (q), q ∈ N∗. Since all W (q) are centred Gaussian processes,

the limit process must also be centred Gaussian.

It remains to prove the continuity of the sample paths of W . At this point we already know
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7.2. Proof of Theorem 7.1

that Un converges weakly to W . Therefore, it is sufficient to show that for every ε, η > 0, there

is a δ > 0 such that

lim sup
n→∞

P
(

sup
‖t−u‖<δ

|Un(t)−Un(u)| > 3ε
)
< 3η. (7.25)

The sufficiency of this condition can be proven exactly in the same way as in the proof of

Theorem 15.5 in Billingsley (1968, p.127 f).

For all q ∈ N∗, by some triangle inequality arguments we obtain

lim sup
n→∞

P
(

sup
‖t−u‖<δ

|Un(t)−Un(u)| > 3ε
)

≤ 2 lim sup
n→∞

P
(

sup
t
|Un(t)− U (q)

n (t)| > ε
)

+ lim sup
n→∞

P
(

sup
‖t−u‖<δ

|U (q)
n (t)− U (q)

n (u)| > ε
)
,

and thus, by Lemma 7.3, there is an q0 ∈ N∗ such that for all q ≥ q0,

lim sup
n→∞

P
(

sup
‖t−u‖<δ

|Un(t)−Un(u)| > 3ε
)

≤ 2η + lim sup
n→∞

P
(

sup
‖t−u‖<δ

|U (q)
n (t)− U (q)

n (u)| > ε
)
. (7.26)

Now set δq := 1
2 minj∈{0,...,q}d

{
maxi=1,...,d |tji−tji−1|

}
and observe that δq is strictly positive for

any q ∈ N∗, since the F−1
(i) used in the construction of the tj are strictly increasing. Obviously,

for all δ ≤ δq and ‖t − u‖ < δ, the points t, u ∈ [−∞,∞]d must be located in adjacent (or

identical) intervals of the form [tj , tj−1). Since the process U
(q)
n is constant on any of the

intervals [tj , tj−1) and by symmetry in the arguments t, u we obtain

sup
‖t−u‖<δ

|U (q)
n (t)− U (q)

n (u)| = max
j∈{0,...,q}d

z∈{0,1}d, j≥z

|U (q)
n (tj)− U (q)

n (tj−z)|,

and thus,

P
(

sup
‖t−u‖<δ

|U (q)
n (t)− U (q)

n (u)| > ε
)

≤ 2d(q + 1)d max
j∈{0,...,q}d

z∈{0,1}d, j≥z

P
(
|U (q)
n (tj)− U (q)

n (tj−z)| > ε
)
. (7.27)

Recall that the functions ϕ
(q)
j are defined in (7.9). Analogously to the calculations in Lemma 7.4,

one can show that for all j ∈ {0, . . . , q}d and z ∈ {0, 1}d such that j ≥ z, we have

‖ϕ(q)

j+1
(X0)− ϕ(q)

j+1−z(X0)‖s ≤
(3d

q

) 1
s

and ‖ϕ(q)

j+1
‖C ≤ max

{
Ψ(q), ‖1‖C

}
.

Then, by applying one after another Markov’s inequality, the 2p-th moment bounds (7.2), and
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the preceding inequalities, we obtain

P
(
|U (q)
n (tj)− U (q)

n (tj−z)| > ε
)

= P

(∣∣∣∣ n∑
i=1

(
ϕ

(q)

j+1
(Xi)− ϕ(q)

j+1−z(Xi)
)
−E

(
ϕ

(q)

j+1
(X0)− ϕ(q)

j+1−z(X0)
)∣∣∣∣2p > npε2p

)

≤ n−pε−2p E
∣∣∣ n∑
i=1

(
ϕ

(q)

j+1
(Xi)− ϕ(q)

j+1−z(Xi)
)
−E

(
ϕ

(q)

j+1
(X0)− ϕ(q)

j+1−z(X0)
)∣∣∣2p

≤ 2Cn−pε−2p
p∑
i=1

ni‖ϕ(q)

j+1
(X0)− ϕ(q)

j+1−z(X0)‖isΦi

(
2‖ϕ(q)

j+1
− ϕ(q)

j+1−z‖C
)

≤ 2Cn−pε−2p
p∑
i=1

ni
(3d

q

) i
s
Φi

(
2Ψ(q)

)
≤ D

p∑
i=1

n−(p−i)qγi−
i
s

≤ Dqγp−( p
s

) +D

p−1∑
i=1

n−(p−i)qγi−
i
s ,

where D is some finite constant. Therefore, by (7.27) there is another finite constant D′ such

that

P
(

sup
‖t−u‖<δ

|U (q)
n (t)− U (q)

n (u)| > ε
)
≤ D′qd

(
qγp−

p
s +

p−1∑
i=1

n−(p−i)qγi−
i
s

)
,

and thus,

lim sup
n→∞

P
(

sup
‖t−u‖<δq

|U (q)
n (t)− U (q)

n (u)| > ε
)
≤ D′qγp−( p

s
−d) < η

for sufficiently large q ∈ N∗, say q ≥ q1. By (7.26) this implies that (7.25) holds for δ =

δmax{q0,q1}.

Remark 7.5. We saw in the proof that the theorem also holds if (7.2) is only satisfied for a

certain subclass of functions in C; more precisely if (7.2)holds for all functions f ∈ C of the

form f := ϕ(a,b) − ϕ(a′,b′), where a, b, a′, b′ ∈ [−∞,∞]d, a′ < b, are such that

P(X0 ∈ [a′, b′]) ≤ 2 P(X0 ∈ [a, b]) ≤ P(X0 ∈ [a′, b]) ≤ 3 P(X0 ∈ [a′, b′]). (7.28)

Choosing for each q ∈ N∗, an fq := ϕ(a,b) − ϕ(a′,b′) such that (7.28) is satisfied for P(X0 ∈
[a′, b′]) = 1/q, it can be shown that

‖fq(X0)‖is = O
( qγi−

i
s

Φi(‖fq‖C)

)
as q →∞.
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8. Empirical CLTs for Causal Functions of I.I.D.

Processes

In Chapter 7 we gave quite abstract conditions for the empirical CLT. Here, we establish an

empirical CLT for causal functions of i.i.d. processes. Recall that, under reasonable assumption

on the physical dependence measure δi,m, such processes are slowly multiple mixing w.r.t.

Hα(Rd,R), see Proposition 6.2. In order to apply Theorem 7.2, the second crucial point

besides the slow multiple mixing property is that a CLT holds under Hα(Rd,R). The following

proposition shows that this is true for causal functions of i.i.d. processes under weaker conditions

than those that we needed for the slow multiple mixing property.

Proposition 8.1 (A CLT for Causal Functions of I.I.D. Data). If (Xi)i∈N is an Rd-valued

causal function of an i.i.d. process and satisfies

∞∑
i=1

(δi,m)α <∞ (8.1)

for some α ∈ (0, 1], m ∈ [1,∞] then the CLT (7.1) holds under Hα(Rd,R) with

σ2
f = E(f(X0)2) + 2

∞∑
i=1

E
(
f(X0)f(Xi)

)
.

Proof. We use a result of Dedecker (1998) which is recalled as Proposition A.1 in the appendix.

Choose an arbitrary f ∈ Hα(Rd,R) with E(f(X0)) = 0. The process (Yi)i∈N given by

Yi := f(Xi) is centred, ergodic, has finite second moments, and is adapted to the filtration

(Mi)i∈N :=
(
σ(ξi, ξi−1, . . .)

)
i∈N.

As before, let (ξ′j)j∈Z be an independent copy of (ξj)j∈Z and set

X ′i := G(ξ′i, ξ
′
i−1, . . .), Ẋ ′i := G(ξ′i, ξ

′
i−1, . . . , ξ

′
1, ξ0, ξ−1, . . .).

Observe that by the independence of M0 and σ({ξ′i : i ∈ Z}) we have that

E
(
f(X ′i)|M0

)
= E(f(X ′i)) = 0,

and

E
(
f(Xi)|M0

)
= E

(
f(Ẋ ′i)|M0

)
.
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Thus,

E
{∣∣Y0 E

(
Yi|M0

)∣∣} ≤ ‖f‖∞E
{∣∣E(f(Xi)|M0

)∣∣} = ‖f‖∞E
{∣∣E(f(Ẋ ′i)− f(X ′i)|M0

)∣∣}
≤ ‖f‖∞E

∣∣f(Ẋ ′i)− f(X ′i)
∣∣

and therefore

E
{∣∣Y0 E

(
Yi|M0

)∣∣} ≤ ‖f‖2Hα E
∣∣Ẋ ′i −X ′i∣∣α ≤ ‖f‖2Hα(δi,1)α,

where we used Jensen’s inequality and f ∈ Hα(Rd,R) in the last steps. Therefore, by (8.1),

n∑
i=1

Y0 E
(
Yi|M0

)
converges in L1, and thus Proposition A.1 applies.

As a direct application of previous results, we obtain the following theorem.

Theorem 8.1 (Empirical CLT for Causal Functions of I.I.D. Processes). Let (Xi)i∈N be an

Rd-valued causal function of an i.i.d. sequence. Assume that:

(i) The distribution function F of X0 is θ-Hölder for some θ ∈ (0, 1].

(ii) There are some s ∈ [1,∞), m ∈ (1,∞] satisfying 1
s + 1

m = 1, an integer p > sd, and a

positive constant α ∈ (0, 1] satisfying (6.9) and (7.8).

Then there is a centred Gaussian process W = (W (t))t∈[−∞,∞]d with almost surely continuous

sample paths such that Un
d−→W in the space D([−∞,∞]d).

Proof. We apply Theorem 7.2 with C = Hα(Rd,R) (see also Remark 7.2). By Proposition 8.1

the CLT (7.1) holds under Hα(Rd,R). Proposition 6.2 shows that (Xi)i∈N is slowly multiple

mixing w.r.t. Hα(Rd,R) with Θ(i) = (δi,m)α and s ∈ [1,∞) such that 1
s + 1

m = 1, and thus∑∞
i=0 i

2p−2Θ(i) <∞.

Example 8.1 (Linear Processes). Let (Xi)i∈N be a causal linear function given by

Xi :=
∑
j=0∞

ajξi−j ,

where (ξj)j∈Z is an i.i.d. X -valued process, and (aj)j∈N is a family of linear operators from X
to Rd. We denote the norm of such operators by

‖a‖∗ = sup{|a(x)| : x ∈ X , ‖x‖X ≤ 1}.
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If ‖ξ0‖m <∞ for some m > 1, if the distribution function F of X0 is θ-Hölder, and if

∞∑
j=i

‖aj‖∗ = O(i−b) with b > min
p∈N, p>sd

s

θ

(2p− 1)p

p− sd

for s = m
m−1 , then the empirical Central Limit Theorem holds.

Proof. Let (ξ′j)j∈Z be an independent copy of (ξj)j∈Z, and p an integer which realizes the

minimum in the condition on b. By assumption, there is an ε > 0 such that b > (1 + ε) (2p−1)sp
θ(p−sd) .

We can choose α = θ(1 + ε)−1 p−sd
sp , ensuring that (7.8) is satisfied. Since

δi,m =
∥∥∥ ∞∑
j=i

aj(ξi−j − ξ′i−j)
∥∥∥
m
≤ ‖ξ0 − ξ′0‖m

∞∑
j=i

‖aj‖∗,

we have

i2p−2(δi,m)α ≤ (2‖ξ0‖m)αi2p−2
( ∞∑
j=i

‖aj‖∗
)α

= O(i2p−2−αb),

where 2p− 2 < −1 since αb > 2p− 1. Hence (6.9) holds and Theorem 8.1 applies.

Remark 8.1. The example of causal linear processes has already been studied by several authors.

The condition on the coefficients ai are somewhat strict in the above example. For results

with weak assumptions on the convergence rate of
∑∞

j=i |aj | see Doukhan and Surgailis (1998),

Dedecker and Prieur (2007), Wu (2008), and Dedecker (2010).

Example 8.2 (Time Delay Vectors). Let (Xi)i∈N be a real-valued causal function of an i.i.d.

process. We define the time delay vector process (Yi)i∈N of dimension d ≥ 1 by

Yi = (Xi, . . . , Xi+d−1), i ∈ N.

If the scalar process (Xi)i∈N satisfies (i) and (ii) of Theorem 8.1, then the Empirical Central

Limit Theorem holds for the process (Yi)i∈N.

Proof. Assume that (Xi)i∈N satisfies (i) and (ii) of Theorem 8.1 and let us check that the

process (Yi)i∈N also satisfies these assumptions. Denote by FX the distribution function of

X0 and by FY the multidimensional distribution function of Y0. The marginals of FY are all

equal FX and therefore ωFY ≤ dωFX . Thus, FY is θ-Hölder. Denote by δi,m(X) and δi,m(Y )

the coefficients introduced in (6.8) relative respectively to (Xi)i∈N and (Yi)i∈N. We can see

that there exists a constant C > 0 such that for all i ∈ N,

δi,m(Y ) ≤ C(δi,m(X) + . . .+ δi+d−1,m(X)).

Thus, we infer that (Yi)i∈N satisfies (6.9) with the same constant α as for (Xi)i∈N.
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Part III.

Sequential Empirical CLTs for Multiple

Mixing Processes.

Based on the article

Herold Dehling, Olivier Durieu, and Marco Tusche (2013): A sequential

empirical CLT for multiple mixing processes with application to B-geometrically

ergodic Markov chains. Preprint. arXiv: 1303.4537

Keywords: Multivariate sequential empirical processes, Limit theorems, Multiple

mixing, Spectral gap, Dynamical systems, Markov chains, Change-point problems

Mathematics Subject Classification (2010): 60F05, 60F17, 60G10, 62G30, 60J05
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9. A SECLT for Multiple Mixing Processes

Let (Xi)i∈N be an X -valued stationary stochastic process with marginal distribution µ and

let F be a class of real-valued measurable functions on X which is uniformly bounded w.r.t.

the ‖ · ‖∞-norm. The sequential empirical process of the n-th order of (Xi)i∈N is then the

F × [0, 1]-indexed process Vn := (Vn(f, t))(f,t)∈F×[0,1] given by

Vn(f, t) :=
[nt]√
n

(
µ[nt](f)− µf

)
=

1√
n

[nt]∑
i=1

(
f(Xi)− µf

)
, (f, t) ∈ F × [0, 1],

where µf :=
∫
X f dµ and µn(f) := n−1

∑n
i=1 f(Xi).

For fixed n ∈ N∗, we consider Vn as a random element in the metric space `∞(F × [0, 1])

of bounded real-valued functions on F × [0, 1], equipped with the supremum norm and the

corresponding Borel σ-algebra. We say that the process (Xi)i∈N satisfies a sequential empirical

CLT if the process Un converges in distribution in `∞(F × [0, 1]) to a tight centred Gaussian

process.

As in Part I we cannot assume that Vn is measurable and therefore have to use the theory

of outer probability and expectation (cf. Section 1.3). Further, we make use of our adapted

bracketing numbers defined in Chapter 3 (cf. Section 1.3), which allows us to control the

number of brackets needed to cover F not only with respect to the decreasing rate of the size

of the brackets in Ls(µ)-norm,1 but also with a control of the increasing rate of the ‖ · ‖C-size

of the bracketing functions as the Ls(µ)-norm goes to zero.

Recall that for a probability space (X ,A, µ), s ≥ 1, and a subclass G of a normed vector space

(C, ‖ · ‖C), an (ε,A,G,Ls(µ))-bracket is a set [l, u] := {f : X → R : l ≤ f ≤ u} with l ≤ u ∈ G,

‖u− l‖s ≤ ε, and max
{
‖l‖C , ‖u‖C

}
≤ A. The bracketing number N(ε,A,F ,G,Ls(µ)) of a class

F of real-valued functions on X w.r.t. G is defined as the minimum number of (ε,A,G,Ls(µ))-

brackets, needed to cover F .

9.1. Statement of Results

Let (C, ‖ · ‖C) be some normed vector space of function on X . As in Chapter 3 we make two

basic assumptions concerning the process (f(Xi))i∈N, f ∈ C.

1The Ls(µ)-norm is given by ‖f‖s = µ(|f |s)1/s.
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9. A SECLT for Multiple Mixing Processes

Assumption 9.I (Finite-Dimensional Sequential CLT for C-Observables). For every choice of

f1, . . . , fk ∈ C and t1, . . . , tk ∈ [0, 1]

1√
n

(
[nt1]∑
i=1

(f1(Xi)− µf1) , . . . ,

[ntk]∑
i=1

(fk(Xi)− µfk)

)
d−→ N(0,Σ),

where N(0,Σ) denotes some k-dimensional normal distribution with mean zero and covariance

matrix Σ = (Σi,j)1≤i,j≤k.

Assumption 9.II (Moment Bounds for C-Observables). For fixed p ∈ N∗, s ≥ 1, and monotone

increasing functions Φ1, . . . ,Φp : R+ −→ R+, there exists some Cp > 0 such that for all f ∈ C
with ‖f‖∞ ≤ 1

E

( n∑
i=1

(
f(Xi)− µf

))2p

≤ Cp
p∑
i=1

ni‖f‖isΦi(‖f‖C). (9.1)

Remark 9.1. Of course, Assumption 9.II implies that for every fixed M > 0 inequality (9.1)

holds with different constants Cp uniformly for all f ∈ CM .

With these assumptions we can show the following abstract sequential empirical CLT.

Theorem 9.1 (Sequential Empirical CLT). Let (X ,A) be a measurable space, let (Xi)i∈N be

an X -valued stationary process with marginal distribution µ, and let F be a uniformly bounded

class of measurable functions on X . Suppose that for some normed vector space C of measurable

functions on X , some subset G of C which is bounded in ‖ · ‖∞-norm, p ∈ N∗, s ≥ 1 and some

monotone increasing functions Φ1, . . . ,Φp : R+ −→ R+, Assumption 9.I and Assumption 9.II

hold. Moreover, assume that there exist a constant r > −1 and a monotone increasing function

Ψ : R+ −→ R+ such that∫ 1

0
εr sup

ε≤δ≤1
N2
(
δ,Ψ

(
δ−1
)
,F ,G,Ls(µ)

)
dε <∞. (9.2)

If

Φi(2Ψ(x)) = O(xγi), as x→∞ (9.3)

for some non-negative constants γi such that

γi < 2p− (i+ r + 2), (9.4)

then the sequential empirical process Vn converges in distribution in `∞(F × [0, 1]) to a tight

centred Gaussian process K.

The proof is given in Section 9.2.

Remark 9.2. (i) Observe that Assumption 9.I is stronger than Assumption 3.I. This comes

from the fact, that in the situation of t1 6= t2 the limit distribution of V(f1, t1),V(f2, t2) can
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9.1. Statement of Results

not be computed directly from the one-dimensional CLT via the Cramér-Wold device, since we

consider non-necessarily independent processes (Xi)i∈N.

(ii) Assumption 9.II is a more general version of Assumption 3.II, which corresponds to the

case where Φi = log2p+ai(idR+1). This condition can be deduced from the multiple mixing

property of the underlying process w.r.t. C. Recall that this property can be established for

instance for B-geometrically ergodic Markov chains (Section 2.2), dynamical systems with a

spectral gap of the Perron–Frobenius Operator (Section 2.5), the ergodic automorphism of

the torus (Section 2.6), and in a non-exponential form for causal functions of i.i.d. processes

(Section 6.2).

(iii) For examples of classes F that satisfy (9.2) see Chapter 4.

(iv) As in Section 3.1, inequality (9.2) holds for all r > 2r′ − 1 with r′ ≥ 0 if

N
(
ε,Ψ

(
ε−1
)
,F ,G,Ls(µ)

)
= O(ε−r

′
) as ε→ 0.

Theorem 9.1 holds no information about the covariance structure of the limit process K.

However, under some additional conditions, it can be shown that the limit process of Vn is

indeed a Kiefer process (cf. Remark 9.3).

Lemma 9.1. In the situation of Theorem 9.1, assume that

(i) Assumption 9.I holds with covariance matrix Σ given by

Σi,j = min{ti, tj}
{ ∞∑
k=0

Cov
(
fi(X0), fj(Xk)

)
+
∞∑
k=1

Cov
(
fj(X0), fi(Xk)

)}
, (9.5)

(ii) there is a function Θ : N −→ R+ and a constant b > 1 satisfying

∞∑
k=1

Ψ(kb)Θ(k) <∞ (9.6)

such that for all f ∈ C and all ϕ ∈ F ∪ (F − G)

∣∣Cov
(
ϕ(X0), f(Xk)

)∣∣ ≤ ‖ϕ‖∞‖f‖CΘ(k). (9.7)

Then the covariance structure of the limit process K is given by

Cov
(
K(f, t),K(g, u)

)
= min{t, u}

{ ∞∑
k=0

Cov
(
f(X0), g(Xk)

)
+

∞∑
k=1

Cov
(
f(Xk), g(X0)

)}
, f, g ∈ F , t, u ∈ [0, 1].

(9.8)

The proof is given in Section 9.3.

Remark 9.3. A centred Gaussian process K with covariance structure (9.8) is often referred to

as a Kiefer process.
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9. A SECLT for Multiple Mixing Processes

As Assumption 9.II can be deduced from the multiple mixing property, for this kind of

processes we have the following version of Theorem 9.1.

Theorem 9.2 (Sequential Empirical CLT for Multiple Mixing Processes). Let (X ,A) be a

measurable space, let (Xi)i∈N be an X -valued stationary process with marginal distribution µ,

and let F be a uniformly bounded class of measurable functions on X . Suppose that for some

s ≥ 1, the process (Xi)n∈N is multiple mixing w.r.t. a normed vector space C of measurable

functions on X , where for every p ∈ N∗ the multivariate polynomial Q in inequality (2.1) is of

total degree not larger than d0. If Assumption 9.I holds and if there are a ‖ · ‖∞-bounded subset

G of C, an r > −1, and a γ > max{1, d0} such that∫ 1

0
εr sup

ε≤δ≤1
N2
(
δ, exp(Cδ−1/γ),F ,G,Ls(µ)

)
dε <∞, (9.9)

then the sequential empirical process Vn converges in distribution in `∞(F × [0, 1]) to a tight

centred Gaussian process K.

If further the covariance matrix Σ in Assumption 9.I is given by (9.5) and if there are

constants ρ ∈ (0, 1) and D > 0 such that for all f ∈ C and all ϕ ∈ F ∪ (F − G)

∣∣Cov
(
ϕ(X0), f(Xk)

)∣∣ ≤ D‖ϕ‖∞‖f‖C ρk,
then the covariance structure of the limit process K is given by (9.8).

Proof. By Proposition 2.1, Assumption 9.II is holds for Φi(x) = c log2p+ai(x + 1) with a =

max{−1, d0 − 1} and some c > 0 depending only on p. Thus choosing Ψ(x) := exp(Cx1/γ) for

some C > 0 and γ > 1 (which gives a quite relaxed entropy condition concerning the ‖ · ‖C-size),

we have Φi(2Ψ(x)) = O(x(2p+ai)/γ). Therefore condition (9.4) holds for sufficiently large p ∈ N∗

if γ > max{1, d0}. The covariance structure of the limit process is a direct consequence of

Lemma 9.1 with Θ(k) = ρk and b ∈ (1, γ).

Applications of Theorem 9.2 are provided in the following chapters. In Section 10.1 we

establish sequential empirical CLTs for B-geometrically ergodic Markov chains and dynamical

systems with a spectral gap on the corresponding transfer operator. An application to the

ergodic automorphism of the multidimensional torus is given in Chapter 11.

9.2. Proof of Theorem 9.1

The main idea of the proof is to introduce some approximation V
(q)
n for the original process

Vn, which is based on functions in G and thus can be controlled by Assumption 9.I and

9.II. The approximation can be constructed as follows: For all q ≥ 1, there exist two sets of

Nq := N(2−q,Ψ(2q),F ,G,Ls(µ)) functions {gq,1, . . . , gq,Nq} ⊂ G and {g′q,1, . . . , g′q,Nq} ⊂ G, such

that

‖gq,i − g′q,i‖s ≤ 2−q, ‖gq,i‖C ≤ Ψ(2q), ‖g′q,i‖C ≤ Ψ(2q) (9.10)
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9.2. Proof of Theorem 9.1

and for all f ∈ F , there exists some i such that gq,i ≤ f ≤ g′q,i. Further, by (9.2),∑
q≥1

2−(r+1)qN2
q <∞. (9.11)

To approximate the indexing function f ∈ F , construct a partition of F into Nq subsets Fq,i such

that for each f ∈ Fq,i one has gq,i ≤ f ≤ g′q,i. We use the notation πqf = gq,i∗ and π′qf = g′q,i∗ ,

where i∗ is the uniquely defined integer such that f ∈ Fq,i∗ . To approximate the time parameter

we use the partition of [0, 1] into subsets Tq,j , j = 1 . . . , 2q, given by Tq,j := [(j−1)2−q, j2−q) for

j < 2q and Tq,2q := [1−2−q, 1]. For t ∈ [0, 1] we define τqt := max{(j−1)2−q ≤ t : j = 1, . . . , 2q}
and further τ ′qt := τqt+ 2−q. We extend the notation introduced in Chapter 10 to arbitrary

µ-integrable functions f : X −→ R by setting

µn(f) :=
1

n

n∑
i=1

f(Xi)

and for t ∈ [0, 1]

Vn(f, t) :=
[nt]√
n

(
µ[nt](f)− µ(f)

)
=

1√
n

[nt]∑
i=1

(
f(Xi)− µ(f)

)
.

For each q ≥ 1, we introduce the approximating process

V (q)
n (f, t) := Vn(πqf, τqt) =

1√
n

[nτqt]∑
i=1

(πqf(Xi)− µ(πqf)) .

Note that these process is constant on each Fq,i × Tq,j .
To draw the connection between the weak asymptotic behaviour of the original process Vn

and the approximating process V
(q)
n , we use Theorem 1.1. We establish the conditions (1.10)

and (1.11) in the two following propositions.

Proposition 9.1. For all q ∈ N∗ the process (V
(q)
n (f, t))(f,t)∈F×[0,1] converges in distribution

to a piecewise constant Gaussian process (V (q)(f, t))(f,t)∈F×[0,1] as n→∞.

Proposition 9.2. Assume that Assumption 9.II holds for some p ∈ N∗, s ≥ 1 and some

monotone increasing functions Φ1, . . . ,Φp : R+ −→ R+. Moreover, suppose there exists a

constant r > −1 and an monotone increasing function Ψ : R+ −→ R+ such that (9.2) holds. If

(9.3) holds for some non-negative constants γi satisfying (9.4), then for all ε, η > 0 there exists

some q0 such that for all q ≥ q0

lim sup
n→∞

P∗

(
sup
t∈[0,1]

sup
f∈F

∣∣∣Vn(f, t)− V (q)
n (f, t)

∣∣∣ > ε

)
≤ η.

Proof of Theorem 9.1. We can now apply Theorem 1.1 with ξn = Vn, ξ
(q)
n = V

(q)
n , ξ(q) = V (q).

By Proposition 9.1 the convergence (1.10) holds, while (1.11) is satisfied due to Proposition 9.2.
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9. A SECLT for Multiple Mixing Processes

Therefore Vn converges in distribution to an `∞(F × [0, 1])-valued, separable random variable

W . Furthermore, we know that V (q) is a piecewise constant Gaussian process which converges

in distribution to K. Thus K is Gaussian, too. Since `∞(F × [0, 1]) is complete, the tightness

of K follows from the separability (cf. Lemma 1.3.2 in van der Vaart and Wellner (1996)).

Proof of Proposition 9.1. Since by construction πqf ∈ G for all f ∈ F , due to Assumption 9.I,

the finite-dimensional process (V
(q)
n (f1, t1), . . . , V

(q)
n (fk, tk)) converges in distribution to some

multi-dimensional normal distributed random variable (V (q)(f1, t1), . . . , V
(q)
n (fk, tk)) for all fixed

k ∈ N∗, f1, . . . , fk ∈ F , t1, . . . , tk ∈ [0, 1]. All V
(q)
n , n ∈ N∗, are constant on each Fq,i × Tq,j ,

i = 1, . . . , N q, j = 1, . . . , 2q. Therefore V (q) is constant on all Fq,i × Tq,j , too. Since these

sets form a partition of F × [0, 1], the finite-dimensional convergence yields the convergence in

distribution of the whole process (V
(q)
n (f, t))(f,t)∈F×[0,1].

Proof of Proposition 9.2. Let Z := Z −EZ denote the centring of a random variable Z and

observe that for any random variables Yl ≤ Y ≤ Yu the inequality

|Y − Yl| ≤ |Yu − Yl|+ E |Yu − Yl|

holds. Since for f ∈ F , k ∈ N we have µ[nt](πq+kf, t) ≤ µ[nt](f, t) ≤ µ[nt](π
′
q+kf, t), using that

‖ · ‖1 ≤ ‖ · ‖s for s ≥ 1 and applying (9.10), we obtain

∣∣Vn(f, t)−Vn(πq+kf, t)
∣∣

≤
∣∣Vn(π′q+kf, t)−Vn(πq+kf, t)

∣∣+
[nt]√
n

E
∣∣µ[nt](π

′
q+kf − πq+kf)

∣∣
≤
∣∣Vn(π′q+kf, t)−Vn(πq+kf, t)

∣∣+
√
n2−(q+k). (9.12)

Moreover, for all n ≥ 2q+k and g ∈ G

∣∣Vn(g, t)−Vn(g, τq+kt)
∣∣ =

1√
n

∣∣∣∣∣
[nt]∑

i=[nτq+kt]+1

g(Xi)− µ(g)

∣∣∣∣∣
≤ 2Mn−

1
2 ([nt]− [nτq+kt])

≤ 4M
√
n2−(q+k), (9.13)

where M := sup{‖g‖∞ : g ∈ G} is finite by assumption. Analogously to the processes V
(q)
n , we

introduce the processes V
′(q)
n given by

V ′(q)n (f, t) := Vn(π′qf, τ
′
qt).

An application of the triangle inequality, (9.12), and (9.13) yields∣∣∣Vn(f, t)− V (q+k)
n (f, t)

∣∣∣ ≤ ∣∣∣V ′(q+k)
n (f, t)− V (q+k)

n (f, t)
∣∣∣+ (4M + 1)

√
n2−q+k. (9.14)
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9.2. Proof of Theorem 9.1

Combining (9.14) with a telescopic sum argument, one obtains for any K ≥ 1∣∣∣Vn(f, t)− V (q)
n (f, t)

∣∣∣
=

∣∣∣∣∣
{ K∑
k=1

V (q+k)
n (f, t)− V (q+k−1)

n (f, t)

}
+ Vn(f, t)− V (q+K)

n (f, t)

∣∣∣∣∣
≤
{ K∑
k=1

∣∣∣V (q+k)
n (f, t)− V (q+k−1)

n (f, t)
∣∣∣}+

∣∣∣V ′(q+K)
n (f, t)− V (q+K)

n (f, t)
∣∣∣

+ (4M + 1)
√
n2−(q+K). (9.15)

To assure ε/4 ≤ (4M + 1)
√
n2−(q+K) ≤ ε/2, choose K = Kn,q, given by

Kn,q :=

[
log2

(
4(4M + 1)

√
n

2qε

)]
.

For each i = 1, . . . , Nq, j = 1, . . . , 2q, inequality (9.15) implies

sup
t∈Tq,j

sup
f∈Fq,i

|Vn(f, t)− V (q)
n (f, t)| ≤

{Kn,q∑
k=1

sup
t∈Tq,j

sup
f∈Fq,i

∣∣∣V (q+k)
n (f, t)− V (q+k−1)

n (f, t)
∣∣∣}

+ sup
t∈Tq,j

sup
f∈Fq,i

∣∣∣V ′(q+K)
n (f, t)− V (q+K)

n (f, t)
∣∣∣+

ε

2
.

Set εk = ε/(4k(k + 1)). Then
∑∞

i=1 εk = ε/4 and for all i = 1, . . . , Nq we have

P∗
(

sup
t∈Tq,j

sup
f∈Fq,i

|Vn(f, t)− V (q)
n (f, t)| ≥ ε

)

≤

{Kn,q∑
k=1

P∗
(

sup
t∈Tq,j

sup
f∈Fq,i

∣∣∣V (q+k)
n (f, t)− V (q+k−1)

n (f, t)
∣∣∣ ≥ εk)

}

+ P∗
(

sup
t∈Tq,j

sup
f∈Fq,i

∣∣∣V ′(q+K)
n (f, t)− V (q+K)

n (f, t)
∣∣∣ ≥ ε

4

)
. (9.16)

Recall that (πq+k, τq+k) and thus V
(q+k)
n and V

′(q+k)
n are constant on each Fq+k,i × Tq+k,j ,

i = 1, . . . Nq+k, j = 1, . . . , 2q+k, and thus the suprema on the r.h.s. of inequality (9.16) are in

fact maxima over finite numbers of functions. Therefore the outer probabilities may be replaced

by usual probabilities here. Now, for each k ∈ N∗, choose a set F(k) of at most Nk−1Nk

functions in F , such that F(k) contains at least one function in each non empty Fk,i ∩ Fk−1,i′ ,

i = 1, . . . , Nk, i
′ = 1, . . . , Nk−1. For q ∈ N∗ and i ∈ {1, . . . , Nq}, define

Fk,q,i := Fq,i ∩ F(q + k)

Tk,q,j :=
{

(j − 1)2−q + (m− 1)2−(q+k) : m ∈ {1, . . . , 2k}
}
.
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9. A SECLT for Multiple Mixing Processes

Inequality (9.16) implies

P∗
(

sup
t∈Tq,j

sup
f∈Fq,i

|Vn(f, t)− V (q)
n (f, t)| ≥ ε

)

≤

{Kn,q∑
k=1

∑
t∈Tk,q,j

∑
f∈Fk,q,i

P
(∣∣∣V (q+k)

n (f, t)− V (q+k−1)
n (f, t)

∣∣∣ ≥ εk)
}

+
∑

t∈TKn,q,q,j

∑
f∈FKn,q,q,i

P
(∣∣∣V ′(q+Kn,q)n (f, t)− V (q+Kn,q)

n (f, t)
∣∣∣ ≥ ε

4

)

≤

{Kn,q∑
k=1

∑
t∈Tk,q,j

∑
f∈Fk,q,i

P
(∣∣∣Vn(πq+kf, τq+k−1t)−Vn(πq+k−1f, τq+k−1t)

∣∣∣ ≥ εk
2

)

+ P
(∣∣∣Vn(πq+kf, τq+kt)−Vn(πq+kf, τq+k−1t)

∣∣∣ ≥ εk
2

)}
+

∑
t∈TKn,q,q,j

∑
f∈FKn,q,q,i

P
(∣∣∣Vn(π′q+Kn,qf, τq+Kn,q t)−Vn(πq+Kn,qf, τq+Kn,q t)

∣∣∣ ≥ ε

8

)
+ P

(∣∣∣Vn(π′q+Kn,qf, τ
′
q+Kn,q t)−Vn(π′q+Kn,qf, τq+Kn,q t)

∣∣∣ ≥ ε

8

)
.

Applying Markov’s inequality on the 2p-th moments, we obtain

P∗
(

sup
t∈Tq,j

sup
f∈Fq,i

|Vn(f, t)− V (q)
n (f, t)| ≥ ε

)

≤

{Kn,q∑
k=1

∑
t∈Tk,q,j

∑
f∈Fk,q,i

(εk
2

)−2p(
E
∣∣Vn(πq+kf, τq+k−1t)−Vn(πq+k−1f, τq+k−1t)

∣∣2p
+ E

∣∣Vn(πq+kf, τq+kt)−Vn(πq+kf, τq+k−1t)
∣∣2p)}

+
∑

t∈TKn,q,q,j

∑
f∈FKn,q,q,i

(ε
8

)−2p(
E
∣∣Vn(π′q+Kn,qf, τq+Kn,q t)−Vn(πq+Kn,qf, τq+Kn,q t)

∣∣2p
+ E

∣∣Vn(π′q+Kn,qf, τ
′
q+Kn,q t)−Vn(π′q+Kn,qf, τq+Kn,q t)

∣∣2p). (9.17)

We will treat the expected values on the r.h.s. of inequality (9.17) separately now by using

Assumption 9.II and properties of our brackets used to cover F . Recall that by (9.10) we have

‖πq+kf − πq+k−1f‖s ≤ ‖πq+kf − f‖s + ‖πq+k−1f − f‖s ≤ 3 · 2−(q+k) (9.18)

‖πq+kf − π′q+kf‖s ≤ 2−(q+k)

‖πq+kf − πq+k−1f‖C ≤ 2Ψ(2q+k) (9.19)

‖πq+kf − π′q+kf‖C ≤ 2Ψ(2q+k).

Notation. For convenience, from now on we will write x� y if there is some finite constant

C ∈ (0,∞) such that x ≤ Cy, where C may only depend on global parameters of the

corresponding statement.
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Applying successively Assumption 9.II and equations (9.18), (9.19), and (9.3) we have

E
∣∣Vn(πq+kf, τq+k−1t)−Vn(πq+k−1f, τq+k−1t)

∣∣2p
� n−p

p∑
`=1

n`‖πq+kf − πq+k−1f‖`sΦ`(‖πq+kf − πq+k−1f‖C)

�
p∑
`=1

n−(p−`)2(γ`−`)(q+k) (9.20)

and analogously

E
∣∣Vn(π′q+Kn,qf, τq+Kn,q t)−Vn(πq+Kn,qf, τq+Kn,q t)

∣∣2p � p∑
`=1

n−(p−`)2(γ`−`)(q+Kn,q). (9.21)

For fixed g ∈ G we have by stationarity

E
∣∣Vn(g, τq+kt)−Vn(g, τq+k−1t)

∣∣2p = n−p E

([nτq+kt]−[nτq+k−1t]∑
i=1

(
g(Xi)− µg

))2p
 , (9.22)

where we consider
∑0

i=1 . . . = 0. Note that by construction τq+kt− τq+k−1t ∈ {0, 2−(q+k)} for

every t ∈ [0, 1] and therefore

[nτq+kt]− [nτq+k−1t] ≤ n2−(q+k) + 1 for all n ≥ 2q+k.

Applying Assumption 9.II and equations (9.10), and (9.3) to (9.22) we obtain

E
∣∣Vn(πq+kf, τq+kt)−Vn(πq+kf, τq+k−1t)

∣∣2p � n−p
p∑
`=1

(
n2−(q+k)

)`‖πq+kf‖`sΦ`(‖πq+kf‖C)

�
p∑
`=1

n−(p−`)2(γ`−`)(q+k) (9.23)

and analogously

E
∣∣Vn(π′q+Kn,qf, τ

′
q+Kn,q t)−Vn(π′q+Kn,qf, τq+Kn,q t)

∣∣2p � p∑
`=1

n−(p−`)2(γ`−`)(q+Kn,q). (9.24)

Now, apply (9.20), (9.21), (9.23), and (9.24) to (9.17). We infer

P∗
(

sup
t∈Tq,j

sup
f∈Fq,i

∣∣∣Vn(f, t)− V (q)
n (f, t)

∣∣∣ ≥ ε)

�
Kn,q∑
k=1

#Tk,q,j #Fk,q,i
(k(k + 1))2p

ε2p

p∑
`=1

n−(p−`)2(γ`−`)(q+k). (9.25)

Recall that by construction of the partitions of F and [0, 1] at the beginning of this section,
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9. A SECLT for Multiple Mixing Processes

we have
∑2q

j=1 #Tk,q,j = 2q+k and
∑Nq

i=1 #Fk,q,i = #F(q + k) ≤ Nq+k−1Nq+k. Therefore (9.25)

yields

P∗

(
sup
t∈[0,1]

sup
f∈F

∣∣∣Vn(f, t)− V (q)
n (f, t)

∣∣∣ > ε

)

�
p∑
`=1

Kn,q∑
k=1

2q∑
j=1

#Tk,q,j

Nq∑
i=1

#Fk,q,ik
4pn−(p−`)2(γ`−`)(q+k)

�
p∑
`=1

Kn,q∑
k=1

Nq+k−1Nq+kk
4pn−(p−`)2(γ`−`+1)(q+k).

This implies that for any η > 0

P∗

(
sup
t∈[0,1]

sup
f∈F

∣∣∣Vn(f, t)− V (q)
n (f, t)

∣∣∣ > ε

)

�
p∑
`=1

n−(p−`) max
{

1 , 2(γ`−`+r+2+η)(q+Kn,q)
}Kn,q∑
k=1

Nq+k−1Nq+kk
4p2−(r+1+η)(q+k)

� max

{
1 , max

`=1,...,p
n

1
2

(γ`+`−2p+r+2+η)

} ∞∑
k=q+1

Nk−1Nkk
4p2−(r+1+η)k. (9.26)

By (9.4) we can choose η small enough to assure γ` + `− 2p+ r+ 2 + η < 0 for all ` = 1, . . . , p.

Thus the factor in front of the sum is uniformly bounded w.r.t. n. Using (9.11), we obtain

∞∑
k=1

Nk−1Nkk
4p2−(r+1+η)k ≤

∞∑
k=1

2−(r+1)kN2
k−1 · k4p2−ηk +

∞∑
k=1

2−(r+1)kN2
k · k4p2−ηk <∞

for sufficiently small η > 0 which implies that the series in (9.26) goes to zero as q →∞.

9.3. Proof of Lemma 9.1

This proof parallels the proof of Lemma 3.1. We therefore shorten calculations where the same

arguments are used. For f ∈ F , recall the definition of the approximating functions πqf in

Section 9.2. By the entropy condition in Theorem 9.1, we know that for every q ∈ N∗

‖f − πqf‖s ≤ 2−q (9.27)

‖πqf‖C ≤ Ψ(2q). (9.28)

Similarly, for all g ∈ F and k ∈ N∗ there exist some gk ∈ G satisfying

‖gk − g‖s ≤ k−b (9.29)

‖gk‖C ≤ Ψ(kb). (9.30)
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Let V (q) denote the limit process given in Proposition 9.1. Condition (i) implies that for all

f, g ∈ F , t, u ∈ [0, 1] and q ∈ N∗

Cov
(
V (q)(f, t), V (q)(g, u)

)
= min{t, u}

{ ∞∑
k=0

Cov
(
πqf(X0), πqg(Xk)

)
+

∞∑
k=1

Cov
(
πqg(X0), πqf(Xk)

)}
.

With the same arguments as in the proof of Lemma 3.1, it is sufficient to show that for all

f, g ∈ F the term
∣∣∑∞

k=0 Cov
(
πqf(X0), πqg(Xk)

)
−Cov

(
f(X0), g(Xk)

)∣∣ converges to zero as

k →∞. Let k(q) := 2q/b. By the triangle inequality, we have

∣∣∣ ∞∑
k=0

Cov
(
πqf(X0), πqg(Xk)

)
−Cov

(
f(X0), g(Xk)

)∣∣∣
≤

k(q)∑
k=0

∣∣Cov
(
πqf(X0)− f(X0), πqg(Xk)

)∣∣+

k(q)∑
k=0

∣∣Cov
(
f(X0), πqg(Xk)− g(Xk)

)∣∣ (9.31)

+
∞∑

k=k(q)+1

∣∣Cov
(
πqf(X0)− f(X0), πqg(Xk)

)∣∣ (9.32)

+
∞∑

k=k(q)+1

∣∣Cov
(
f(X0), πqg(Xk)− g(Xk)

)∣∣. (9.33)

Recall that both F and G are uniformly bounded in ‖ · ‖∞-norm. The term in line (9.31) can

be treated exactly as the term (3.13) in the proof of Lemma 3.1. For the term in line (9.32),

by (9.7), (9.27), (9.28), condition (9.6), and the monotonicity of Ψ, with similar calculations as

for the term in line (3.14), we obtain

∞∑
k=k(q)+1

∣∣Cov
(
πqf(X0)− f(X0), πqg(Xk)

)∣∣� ∞∑
k=k(q)+1

Ψ(2q)Θ(k) −→ 0 as q →∞.

By the triangle inequality, the term in line (9.33) can be bounded by

∞∑
k=k(q)+1

∣∣Cov
(
f(X0), πqg(Xk)− gk(Xk)

)∣∣+

∞∑
k=k(q)+1

∣∣Cov
(
f(X0), gk(Xk)− g(Xk)

)∣∣.
With (9.7), (9.28), and (9.30) we obtain with the same calculation as for the term (3.16)

∞∑
k=k(q)+1

∣∣Cov
(
f(X0), πqg(Xk)− gk(Xk)

)∣∣
�
( ∞∑
k=k(q)+1

Ψ(2q)Θ(k)

)
+

( ∞∑
k=k(q)+1

Ψ(kb)Θ(k)

)
−→ 0 as q →∞,

where we also used that Ψ is increasing and applied condition (9.6). Finally, the second series

can be treated the same way as (3.17), which completes the proof.
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10. SECLTs for Markov Chains and Dynamical

Systems with a Spectral Gap

In this chapter we present an application of Theorem 9.2 to processes given by a B-geometrically

ergodic Markov chain or a dynamical system. This leads to sequential empirical CLTs for

Markov chains and dynamical systems with a spectral gap on the corresponding operator.

10.1. B-Geometrically Ergodic Markov Chains

Let (Xi) and (B, ‖ ·‖) be the Markov chain and the complex Banach space of C-valued functions

on X introduced in Section 2.2. Recall that we call (Xi)i∈N∗ B-geometrically ergodic, if the

corresponding Markov operator P on B satisfies

(10.A) ‖Pnf − (νf) 1X ‖B ≤ κ‖f‖Bθn for some κ > 0, θ ∈ [0, 1), and all f ∈ B.

Let m be a constant in [1,∞]. We use the following three assumptions on the space B, which

were introduced in Section 2.2.

(10.B) 1X ∈ B, |f | and f ∈ B for all f ∈ B, and the mappings f 7→ f(x) are continuous on B
for every x ∈ X .

(10.C) B is continuously included in Lm(ν), i.e. B ⊂ Lm(µ) and there is a K > 0 such that

‖f‖m ≤ K‖f‖B for all f ∈ B.

(10.D) there exist some C > 0 and ` ∈ N∗ such that, if f ∈ B and g ∈ B are bounded by 1,

then fg ∈ B and ‖fg‖B ≤ C max{‖f‖B, ‖g‖B}`.

We use the bracketing numbers computed in Chapter 4 to obtain a control of the size of F .

Since F is composed of real-valued functions, we can restrict to the class BR of real-valued

functions in the space B to obtain the bracketings for F .1 Our conditions on the Markov

chain (in particular condition (10.A)) enable us to deal with bracketing numbers allowing an

exponential growth of the B-norm of the bracket functions as the ‖ · ‖s-size of the bracket goes

to zero. This leads the following entropy condition.

For some s ∈ [1,∞] and G ⊂ BR,

(10.E) there exist some C > 0, r > −1, and γ > 1 such that∫ 1

0
εr sup

ε≤δ≤1
N2
(
δ, exp

(
Cδ
− 1
γ
)
,F ,G,Ls(ν)

)
dε <∞.

1Note that (BR, ‖ · ‖B) is a real Banach space.
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10. SECLTs for Markov Chains and Dynamical Systems with a Spectral Gap

As we saw in Section 2.2 (Lemma 2.2), the assumptions (10.A), (10.B), (10.C), and (10.D)

imply that (Xi)i∈N is multiple mixing w.r.t. BR = {f ∈ B : f(X ) ⊂ R} with d0 = 0,

s = m/(m− 1). In order to apply Theorem 3.2, we need that sequential finite-dimensional CLT

holds under BR.

The next section establishes a sequential finite-dimensional CLT for B-observables of a

B-geometrically ergodic Markov chain.

10.2. A Sequential Finite-Dimensional CLT for Real-Valued

B-Observables

It is known, that under certain regularity condition on the perturbation of the Markov Operator

P , observables of real-valued functions of B-geometrically ergodic Markov chains satisfy a

finite-dimensional CLT (cf. Hennion and Hervé (2001)). Paralleling the approach of Hennion

and Hervé (2001), here we show that there is also an sequential finite-dimensional CLT available

for such observables.

For a measurable real-valued function f on X and a real number t ∈ [0, 1], we introduce the

notation

Sn(f, t) :=

[nt]∑
i=1

f(Xi).

Further, let C ⊂ B be a space of measurable functions from X to R. Using Fourier kernels, we

introduce for a function f : X −→ R and a real number t ∈ R the perturbed operators given by

Pf,tϕ = P (eitfϕ) =

∫
X
eitf(y)ϕ(y)P (·, dy).

We introduce the following regularity assumption on the perturbed operators of P :

(10.F) for all f ∈ C, for t in a neighbourhood If of 0 we have that Pf,t ∈ L(B) and further

that the mapping If −→ L(B), t 7→ Pf,t is two times continuous differentiable on If

with derivative in t = 0 given by

( ∂k
∂tk

Pf,t

)
t=0

ϕ = P
(
(if)kϕ

)
k ∈ {1, 2}.

If B is a Banach algebra and if further C is a subset of B, then for every f ∈ C, the mapping

t 7→ Pf,t is analytic and therefore condition (10.F) is also satisfied (see Lemma A.2 for details).

An example for Markov chains that satisfy condition (10.F) are iterative Lipschitz models as

introduced in Section 2.4.

Proposition 10.1. Let α ∈ (0, 1], β ∈ [0, 1]. If (Xi)i∈N is an iterative Lipschitz model

with values in X and satisfies (2.10) – (2.14), then (10.F) holds with B = Hα,β(X ,C) and

C = Hα(X ,R).

Proof. Let f ∈ Hα(X ,R) and consider the perturbed operator defined by Pf,tϕ = P (eitfϕ).
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Using |eia − eib| ≤ |a − b|, we get that eitf ∈ Hα(X ,C) for all t ∈ R. Thus, for every

ϕ ∈ Hα,β(X ,C) and t ∈ R, by statement (a) of Lemma 2.3, we have eitfϕ ∈ Hα,β(X ,C). Since

P ∈ L(Hα,β(X ,C)), we infer that Pf,t ∈ L(Hα,β(X ,C)) for all t ∈ R. Further, using again

condition (a) of Lemma 2.3, with the same arguments as in Lemma A.2 we see that t 7→ Pf,t

is an analytic function from R to L(Hα,β(X ,C)), given by Pf,tϕ =
∑∞

k=0 P
(
(if)kϕ

)
tk/k!. We

infer that (10.F) holds over the space Hα(X ,R).

We can now state our sequential finite-dimensional CLT for observables of (Xi)i∈N∗ under

(10.A), (10.B), (10.C), and (10.F).

Theorem 10.1 (Sequential Finite-Dimensional CLT). Suppose that for some m ∈ [1,∞],

(10.A), (10.B), and (10.C) hold. Let k be a positive integer and t1, . . . , tk ∈ [0, 1]. Let f1, . . . , fk

be real-valued measurable functions on X such that ν(|fi|2) <∞ and (10.F) holds for the space

C = VectR(f1, . . . , fk), the smallest real vector space containing f1, . . . , fk. Then, we have

1√
n

(
Sn(f1 − νf1, t1), . . . , Sn(fk − νfk, tk)

) d−→ N(0,Σ) as n→∞,

where N(0,Σ) is a centred normal distribution in Rk with covariance matrix Σ = (Σi,j)1≤i,j≤k.

If furthermore f1, . . . , fk ∈ Ls(ν)∩BR with s = m/(m− 1), then the covariance matrix is given

by

Σi,j = min{ti, tj}
{ ∞∑
k=0

Cov
(
fi(X0), fj(Xk)

)
+
∞∑
k=1

Cov
(
fj(X0), fi(Xk)

)}
.

Proof of Theorem 10.1. Here, we partially follow the lines of the proof of Theorem A in

Hennion and Hervé (2001). First let f be a function as in the statement of the theorem. By

the Perturbation Theorem (see Theorem III.8 in Hennion and Hervé (2001)), there exist a

neighbourhood If of 0 and 0 < θ < η < 1 such that for all t ∈ If , there exist operators Πf,t

and Nf,t, and complex numbers λf,t such that

Pf,t = λf,tΠf,t +Nf,t

with

Π2
f,t = Πf,t, Nf,t ◦Πf,t = Πf,t ◦Nf,t = 0, ρ(Nf,t) < θ, |λf,t| ≥ η for all t ∈ If ,

where ρ(Nf,t) := limn→∞ ‖Nn
f,t‖

1/n
L(B). Moreover, λf,0 = 1, Πf,0 = Π, Nf,0 = N and the maps

t 7→ λf,t, t 7→ Πf,t and t 7→ Nf,t have continuous second derivatives on If . We thus have for all

n ≥ 1

Pnf,t = λnf,tΠf,t +Nn
f,t.

Further, if ν(f) = 0 by Lemma IV.4’ and Lemma IV.3 in Hennion and Hervé (2001) the Taylor
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10. SECLTs for Markov Chains and Dynamical Systems with a Spectral Gap

expansion of λf,t as t goes to 0 is given by

λf,t = 1− t2

2
σ2
f + o(t2) (10.1)

with

σ2
f := lim

n→∞

1

n
E
(
Sn(f, 1)2

)
(10.2)

These are the main ingredients to derive a CLT for the process (f(Xi))i≥0. Here we want to

show a finite-dimensional sequential CLT. Without loss of generality we will treat the case

k = 2. By the Cramèr-Wold device, it is sufficient to prove the convergence of the real linear

combinations a1n
− 1

2Sn(f1, t1) + a2n
− 1

2Sn(f2, t2) of any square ν-integrable functions f1, f2 ∈ C
to a normal distribution. Since for t1 < t2, the preceding term is equal to

n−
1
2Sn(a1f1 + a2f2, t1) + n−

1
2

[nt2]∑
i=[nt1]+1

a2f2(Xi)

and C is a real vector space, it is sufficient to show the convergence of all sums of the form

n−
1
2Sn with

Sn(f, g, s) =

[ns]∑
i=1

f(Xi) +

n∑
i=[ns]+1

g(Xi),

where f, g ∈ C, s ∈ (0, 1). So, fix f, g ∈ C, s ∈ (0, 1) and set Sn = Sn(f, g, s). The following

lemma gives us an expression of the corresponding characteristic function.

Lemma 10.1. For every function ϕ ∈ B, t ∈ R, and n ≥ 1,

E
(
eitSnϕ(Xn)

)
= ν

(
P

[ns]
f,t P

n−[ns]
g,t ϕ

)
.

In particular, the characteristic function of n−
1
2Sn is given by

E
(
eitn

− 1
2 Sn
)

= ν

(
P

[ns]

f, t√
n

P
n−[ns]

g, t√
n

1X

)
. (10.3)

Proof of Lemma 10.1. For every k ≥ 1 and every measurable function F : X k−1 → R, we have

E
(
eit(F (X1,...,Xk−1)+f(Xk))ϕ(Xk)

)
= E

(
eitF (X1,...,Xk−1) E

(
eitf(Xk)ϕ(Xk)|Xk−1, . . . , X1

))
= E

(
eitF (X1,...,Xk−1) E

(
eitf(Xk)ϕ(Xk)|Xk−1

))
= E

(
eitF (X1,...,Xk−1)Pf,tϕ(Xk−1)

)
and the same equation with g instead of f . The Lemma can now be proved by induction.
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To study the weak convergence of Sn√
n

, we have to compute the limit of

P
[ns]

f, t√
n

P
n−[ns]

g, t√
n

1X = λ
[ns]

f, t√
n

λ
n−[ns]

g, t√
n

Πf, t√
n

Πg, t√
n

1X +λ
[ns]

f, t√
n

Πf, t√
n
N
n−[ns]

g, t√
n

1 1X

+ λ
n−[ns]

g, t√
n

N
[ns]

f, t√
n

Πg, t√
n

1X +N
[ns]

f, t√
n

N
n−[ns]

g, t√
n

1X .

By (10.1), we infer that

λ
[ns]

f, t√
n

−→ exp
(
− t

2

2
sσ2

f

)
and λ

n−[ns]

g, t√
n

−→ exp
(
− t

2

2
(1− s)σ2

g

)
as n→∞,

where σf and σg are given by (10.2). Further, since ρ(Nf,t) < 1 and ρ(Ng,t) < 1, we have that

‖Nn
f,t‖L(B) → 0 and ‖Nn

g,t‖L(B) → 0 uniformly in t ∈ If ∩ Ig as n→∞. By continuity, we also

have Πf, t√
n

1X → 1X and Πg, t√
n

1X → 1X as n→∞. We therefore obtain

∥∥λ[ns]

f, t√
n

Πf, t√
n
N
n−[ns]

g, t√
n

1X
∥∥
B ≤

∣∣λ[ns]

f, t√
n

∣∣ ∥∥Πf, t√
n

∥∥
L(B)

∥∥Nn−[ns]

g, t√
n

∥∥
L(B)
‖1X ‖B −→ 0,∥∥λn−[ns]

g, t√
n

N
[ns]

f, t√
n

Πg, t√
n

1X
∥∥
B ≤

∣∣λn−[ns]

g, t√
n

∣∣ ∥∥N [ns]

f, t√
n

∥∥
L(B)

∥∥Πg, t√
n

∥∥
L(B)
‖1X ‖B −→ 0,∥∥N [ns]

f, t√
n

N
n−[ns]

g, t√
n

1X
∥∥
B ≤ ‖N

[ns]

f, t√
n

∥∥
L(B)

∥∥Nn−[ns]

g, t√
n

∥∥
L(B)
‖1X ‖B −→ 0,

and

λ
[ns]

f, t√
n

λ
n−[ns]

g, t√
n

Πf, t√
n

Πg, t√
n

1X −→ exp
(
− t

2

2
sσ2

f

)
exp
(
− t

2

2
(1− s)σ2

g

)
1X

as n→∞. Thus we infer

P
[ns]

f, t√
n

P
n−[ns]

g, t√
n

1X −→ exp
(
− t

2

2
(sσ2

f + (1− s)σ2
g)
)

1X as n→∞,

which, using (10.3), gives the weak convergence of n−1/2Sn to a centred normal distribution

with variance given by σf,g,s = sσ2
f + (1− s)σ2

g . By (10.2), we obtain that Theorem 10.1 holds

with the covariance matrix Σ given by

Σi,j = min{ti, tj}
1

2

(
σ2
fi+fj

− σ2
fi
− σ2

fj

)
. (10.4)

Lemma 10.2. Under the conditions (10.A), (10.B), and (10.C) for all f ∈ B and all g ∈ Ls(ν),

with s = m
m−1 , we have

|Cov(g(X0), f(Xk))| ≤ C‖g‖s‖f‖Bθk.

Proof. Applying successively Hölder’s inequality, (10.B), (10.C), and (10.A), we obtain

|Cov(g(X0), f(Xk))| ≤ E
∣∣∣g(X0) E

(
f(Xk)− νf |X0

)∣∣∣
≤ ‖g‖s ‖P kf − (νf) 1X ‖B ≤ C‖g‖s‖f‖Bθk.
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The preceding lemma shows that the series
∑∞

k=0 Cov(f(X0), f(Xk)) converges for f ∈
BR ∩ Ls(ν). Thus, using Kronecker’s Lemma, by (10.2) we obtain

σ2
f = ν(f2) + 2

∑
k≥1

Cov(f(X0), f(Xk)),

which, with (10.4), completes the proof of Theorem 10.1.

As a direct application of Proposition 10.1 to Theorem 10.1, we obtain the following corollary.

Corollary 10.1. Assume that the Markov chain (Xi)i∈N∗ is an iterative Lipschitz model with

values in X and satisfies (2.10) – (2.14). Then Theorem 10.1 applies for all α ∈ (0, 1] and every

choice of finitely many functions f1, . . . , fk ∈ Hα(X ,R). Thus a sequential finite-dimensional

CLT holds for Hα(X ,R)-observables of (Xi)i∈N.

10.3. SECLTs for B-geometrically Ergodic Markov Chains

We can now apply Theorem 9.2 to the results of Section 10.1. Assumption 9.I can be veryfied

with the help of Theorem 10.1 and the multiple mixing property can be established using

Lemma 2.2. Moreover, the extra assumptions in Theorem 9.2 concerning the covariance

structure of the limit process are a direct consequence of Theorem 10.1 and Lemma 10.2.

Theorem 10.2 (Sequential Empirical CLT for B-Geometrically Ergodic Markov Chains). Let

F be a ‖ · ‖∞-bounded class of functions from X to R. Assume that for some m ∈ [1,∞] the

Banach space B satisfies (10.A), (10.B), (10.C), and (10.D). If there is a ‖ · ‖∞-bounded subset

G ⊂ BR such that (10.F) holds for C = VectR(G), the smallest real vector space containing

G, and such that (10.E) holds with s = m/(m− 1), then the sequential empirical process Vn

converges in distribution in `∞(F × [0, 1]) to a centred Gaussian process K with covariance

structure given by (9.8).

As a result of Theorem 10.2, in the situation of iterative Lipschitz models we obtain the

following proposition.

Proposition 10.2 (Sequential Empirical CLT for Iterative Lipschitz Models). Let (2.10) –

(2.14) hold and consider a ‖ · ‖∞-bounded class of functions F . Let s ∈ (1, 2) and G be a

‖ · ‖∞-bounded subset of the space Hα(X ,R) for some α < s−1
s such that the entropy condition

(10.E) holds. Then the F-indexed sequential empirical process (Vn(f, t))F×[0,1] associated to

the process (Xi)i≥0 converges in distribution in the space `∞(F × [0, 1]) to a centred Gaussian

process with covariance given by (9.8).

Proof. As a direct consequence of Proposition 2.2, the condition (10.B), (10.C), and (10.D)

are satisfied with B = Hα,β(X ,C). Due to Proposition 2.3, (2.10) – (2.14) yield that (10.A) is

satisfied. Now, by choosing β = (s− 1)/s < 1/2, we have α < β and thus by Proposition 10.1

condition (10.F) holds with m = 1/β and C = Hα(X ,R). Further, for any g ∈ G, we have
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g ∈ Hα,β(X ,C) and ‖g‖Hα,β ≤ ‖g‖Hα . Thus, by (9.9), the condition (10.E) is also satisfies

with respect to the Hα,β(X ,C)-norm.

It should be mentioned that Durieu (2013) established an empirical CLT for B-geometrically

Markov chains given by an iterative Lipschitz model, using similar arguments. Of course,

in this case the sequential finite-dimensional CLT is not needed and it suffices to use a one

dimensional CLT as given by Hennion and Hervé (2001).

10.4. A SECLT for Dynamical Systems with a Spectral Gap

Let us mention that the proof of Theorem 10.2 can be adapted to deal with dynamical

systems using the Perron–Frobenius operator in place of the Markov operator. Recall that

for a measure preserving transformation T of a probability space (X ,A, ν), the corresponding

Perron–Frobenius on L1(ν) is given by

ν(f · Pg) = ν(f ◦ T · g), ∀f ∈ L∞(ν), g ∈ L1(ν).

For a function f on X , we define the perturbed operator Pf,t by Pf,tϕ = P (eitfϕ).

We have the following result, for which the proof parallels the one of Theorem 10.2 (using

Lemma 2.4 instead of Lemma 2.2) and is therefore omitted here.

Theorem 10.3 (Sequential empirical CLT for dynamical systems with a spectral gap). Let

F be a ‖ · ‖∞-bounded class of functions from X to R. Assume that there exist a Banach

space B and an m ∈ [1,∞] such that the conditions (10.A), (10.B), (10.C), and (10.D) hold

with respect to the Perron–Frobenius operator. If there exists a ‖ · ‖∞-bounded subset G ⊂ BR
such that (10.F) holds for the space C = VectR(G) and (10.E) holds for s = m

m−1 , then the

process (Un(f, t))F×[0,1] defined by Un(f, t) = 1√
n

∑[nt]
i=1

(
f ◦ T i − νf

)
converges in distribution

in `∞(F × [0, 1]) to a centred Gaussian process K with covariance structure given by

Cov(K(f, t),K(g, s)) = min{s, t}

( ∞∑
k=0

Cov(f, g ◦ T k) +
∞∑
k=1

Cov(f ◦ T k, g)

)
.
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11. A SECLT for the Ergodic Automorphism of the

Torus

Recall the notation from Chapter 5. In this chapter, we establish a sequential version of

Theorem 5.1. In order to apply Theorem 9.2 we need to establish a sequential finite dimensional

CLT for (T i)i∈N∗ , the iterates of an ergodic automorphism of the d-dimensional torus Td. The

one dimensional CLT is already known due to Leonov (1960) (cf. Le Borgne (1999)). Here we

develop a lemma that extends the finite dimensional CLT to the sequential finite-dimensional

CLT under assumptions similar to the multiple mixing property.

Lemma 11.1. Let (Xi)i∈N∗ be a stationary stochastic process with state space X and marginal

distribution µ. Let B be a complex Banach space of measurable functions X → C and BR be the

subclass of the R-valued functions in B. Suppose that

(i) n−1/2
∑n

i=1(f(Xi)− µf)
d−→ N(0, σ2

f ) for all f ∈ BR,

(ii) for all f ∈ BR and x ∈ R+, we have exp
(
ix(f − µf)

)
∈ B and

sup
n∈N∗

∥∥exp
(
ixn−1/2(f − µf)

)∥∥
B <∞,

(iii) there is a constant θ ∈ (0, 1) and a function C : N∗ −→ R+ with log(C(n)) = o(n) such

that for all ϕ,ψ ∈ B with µψ = µϕ = 0 and ‖ψ‖∞, ‖ϕ‖∞ ≤ 1

∣∣∣∣Cov

( q∏
i=1

ϕ(Xi) ,

q+p+k∏
i=q+1+k

ψ(Xi)

)∣∣∣∣ ≤ C(p+ q) (1 ∨ ‖ϕ‖B)(1 ∨ ‖ψ‖B)θk for all k, p, q ∈ N∗.

Then for all t ∈ [0, 1], f, g ∈ BR

1√
n

( [nt]∑
i=1

(f(Xi)− µf)

)
+

1√
n

( n∑
i=[nt]+1

(g(Xi)− µg)

)
d−→ N(0, tσ2

f + (1− t)σ2
g).

Proof. Without loss of generality, assume that C is increasing and that C(n)→∞ as n→∞.

Let k(n) := [log(C(n))/| log(θ)|] + 1. Then

k(n) = o(n), (11.1)

C(n)θ2k(n) → 0. (11.2)
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By condition (i), (11.1), and Slutzky’s Theorem

1√
n

( [nt]∑
i=[nt]−k(n)+1

(f(Xi)− µf)

)
+

1√
n

([nt]+k(n)∑
i=[nt]+1

(g(Xi)− µg)

)

=

√
k(n)

n

{(
1√
k(n)

[nt]∑
i=[nt]−k(n)+1

(f(Xi)− µf)

)
+

(
1√
k(n)

[nt]+k(n)∑
i=[nt]+1

(g(Xi)− µg)

)}
P−→ 0.

Therefore it is sufficient to show that

Yn :=
1√
n

([nt]−k(n)∑
i=1

(f(Xi)− µf)

)
+

1√
n

( n∑
i=[nt]+k(n)+1

(g(Xi)− µg)

)
d−→ N(0, tσ2

f + (1− t)σ2
g).

Now apply Lévy’s continuity theorem. Denote the characteristic function of a random variable

Y by ΦY . We have

ΦYn(x) = E

[
exp

(
ix√
n

[nt]−k(n)∑
i=1

(f(Xi)− µf)

)
exp

(
ix√
n

n∑
i=[nt]+k(n)+1

(g(Xi)− µg)

)]

= E

[
exp

(
ix√
n

[nt]−k(n)∑
i=1

(f(Xi)− µf)

)]
E

[
exp

(
ix√
n

n∑
i=[nt]+k(n)+1

(g(Xi)− µg)

)]

+ Cov

(
[nt−k(n)]∏
i=1

exp
( ix√

n
(f(Xi)− µf)

)
,

n∏
i=[nt]+k(n)+1

exp
( ix√

n
(g(Xi)− µg)

))
(11.3)

By condition (ii) and (iii) we have

Cov

(
[nt−k(n)]∏
i=1

exp
( ix√

n
(f(Xi)− µf)

)
,

n∏
i=[nt]+k(n)+1

exp
( ix√

n
(g(Xi)− µg)

))

≤ C(n)θ2k(n)
(

1 ∨
∥∥exp

(
ixn−

1
2 (f − µf)

)∥∥
B

)
·
(

1 ∨
∥∥exp

(
ixn−

1
2 (g − µg)

)∥∥
B

)
−→ 0 as n→∞, (11.4)

where we used (11.2) and (ii) in the last step. Further, by stationarity and condition (i)

E

[
exp

(
ix√
n

[nt]−k(n)∑
i=1

(f(Xi)− µf)

)]
−→ ΦN(0,tσ2

f )(x) as n→∞

and

E

[
exp

(
ix√
n

n∑
i=[nt]+k(n)+1

(g(Xi)− µg)

)]
−→ ΦN(0,(1−t)σ2

g)(x) as n→∞.
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With (11.3) and (11.4) this implies

ΦYn(x) −→ ΦN(0,tσ2
f+(1−t)σ2

g)(x) as n→∞,

which, as a consequence of Lévy’s continuity theorem, completes the proof.

For B = Hα(X ,C), assumption (ii) of Lemma 11.1 is satisfied. To see this, let f ∈ G, set

g = f −µf and recall that | exp(iz)− exp(iy)| ≤ |z− y| for all y, z ∈ R. We therefore have that

for x ∈ R+

sup
a,b∈X
a6=b

∣∣exp
(
ixn−

1
2 g(b)

)
− exp

(
ixn−

1
2 g(a)

)∣∣
|b− a|α

≤ sup
a,b∈X
a6=b

∣∣xn− 1
2 g(b)− xn−

1
2 g(a)

∣∣
|b− a|α

≤ xn−
1
2 mα(g)

and further ‖ exp
(
ixn−1/2g

)∥∥
∞ = 1, which implies exp

(
ixg
)
∈ B and

‖ exp
(
ixn−

1
2 g
)
‖Hα ≤ 1 + xn−

1
2 mα(f).

In the case of an ergodic automorphism of the torus, condition (iii) with B = Hα(Td,C) is a

direct consequence of Lemma A.1. As aforementioned, (i) holds due to a result of Leonov (1960)

with BR = Hα(Td,R). Therefore Lemma 11.1 applies and we obtain that Assumption 9.I holds

with C = Hα(Td,R) for any α ∈ (0, 1]. Now, let (Td,B(Td), λ, T ) be the dynamical system of

an ergodic automorphism of the torus as introduced in Section 2.6. Following the arguments

from Chapter 5 and applying Theorem 9.2 we obtain the following result.

Theorem 11.1 (Sequential Empirical CLT for Ergodic Automorphisms of the Torus). Let F
be a uniformly bounded class of functions on R`, ` ∈ N∗, ϕ ∈ Hβ(Td,R`), β ∈ (0, 1], and let

d0 denote the size of the biggest Jordan block of T restricted to its neutral subspace. If the

entropy condition (9.9) holds with µ = λ ◦ ϕ−1 and s = 1 for some uniformly bounded subset G
of Hα(R`,R) with α ∈ (0, 1], r ≥ −1, C > 0 and γ > max{1, d0}, then the empirical process

Vn = (Vn(f))(f,t)∈F×[0,1] given by

Vn(f, t) :=
1√
n

( [nt]∑
i=1

f ◦ ϕ(T i)− λ(f ◦ ϕ)

)

converges in distribution in `∞(F × [0, 1]) to a tight centred Gaussian process K.

Remark 11.1. Note that corresponding remarks to Theorem 5.1, Lemma 5.1 and Corollary 5.1

also hold for the sequential case. In particular, the sequential empirical CLT holds for all

the classes of functions listed in Corollary 5.1. Note, that in the corresponding situation of
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Lemma 5.1, here the covariance structure is given by

Cov
(
K(f, t),K(g, u)

)
= min{t, u}

{ ∞∑
k=0

Cov
(
f(ϕ), g(ϕ(T k))

)
+
∞∑
k=1

Cov
(
f(ϕ(T k)), g(ϕ)

)}
.

Remark 11.2. Dedecker et al. (2013) proved a sequential empirical for the ergodic automorphism

of the torus where they restrict to the indexing class F := {1(−∞,x] : x ∈ R`}. They also

consider a process (ϕ(T i))i∈N∗ for some fixed function ϕ. The assumptions differ from ours in

two points: In their approach, they require that the distribution function F of λ ◦ ϕ−1 in α-

Hölder for some α ∈ (0, 1], where we only demand that ωF(x) ≤ | log(x)|−γ for γ > max{1, d0}
(cf. (i) in Corollary 5.1). Vice versa, we need that ϕ is α-Hölder for some α ∈ (0, 1], while they

only require that F satisfies ωϕ(x) ≤ | log(x)|−a for a specific a > 1 that depends of ` and α (for

instance for ` = α = 1 they require a > 10/3). However, it should be mentioned, that we also

require that F is Hölder1 if we want to identify the covariance structure of the limit process K.

1in this situation, the exponent of the Hölder condition can be arbitrary chosen in (0, 1] and has no influence
on the other conditions (cf. Corollary 5.1).
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12. Statistical Applications of Sequential Empirical

CLTs

As discussed in the introduction, sequential empirical CLTs find application in the study of

change point tests. Here, we consider the generalized setting, where the sequential empirical

process is indexed by a arbitrary uniformly bounded class F of real-valued measurable functions

on the state space of our data. Recall that we provide results for the case that F is the space

of indicators of semi-finite and finite rectangles, bounded ellipsoids, balls of arbitrary metric

and some specific parametric class of monotone functions (cf. Chapter 4).

If we want to test the hypothesis that (Xi)i∈N∗ is stationary with marginal distribution µ

against the alternative that there is a k∗ ∈ N∗ such that (X1, . . . , Xk∗) and (Xk∗+1, . . . , Xn)

are both stationary and have a different marginal distribution, we can use the test statistic

Tn := max
0≤k≤n

sup
f∈F

k

n

(
1− k

n

)√
n
∣∣µk(f)− µk+1,n(f)

∣∣.
Under the hypothesis, the asymptotic behaviour can be derived from the limit distribution of

the sequential empirical process if applicable. We have the following theorem.

Proposition 12.1. If (Xi)i∈N∗ satisfies the sequential empirical CLT with limit distribution

K, then under the null hypothesis H0 we have the convergence

Tn
d−→ sup

f∈F , t∈[0,1]
|K(f, t)− tK(f, 1)|.

To prepare the proof of Proposition 12.1, consider the natural generalization of the process

Rn introduced in Chapter 1. Let (Xi)i∈N be an X -valued stationary process with empirical

measure µn(f) := n−1
∑n

i=1 f(Xi), n ∈ N∗. We set µ0(f) = 0. For j ∈ {1, . . . , n} we define

µj,n(f) := (n− j + 1)−1
∑n

i=j f(Xi) and set µn+1,n(f) := 0. Consider the `∞(F × [0, 1])-valued

process Rn = (Rn(f, t))(f,t)∈F×[0,1] given by

Rn(f, t) :=
√
n

[nt]

n

n− [nt]

n

(
µ[nt](f)− µ[nt]+1,n(f)

)
.

The following lemma gives the asymptotic distribution of Rn.

Lemma 12.1. Assume that (Xi)i∈N satisfies the sequential empirical CLT with indexing class

F and limit process K, that is, Vn
d−→ K in `∞(F × [0, 1]) as n → ∞, where K denotes a

tight centred Gaussian process. Then

Rn
d−→ (K(f, t)− tK(f, 1))(f,t)∈F×[0,1] in `∞(F × [0, 1]) to as n→∞.
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Proof. Let µ denote the distribution function of the Xi. For t ∈ [1/n, 1) we have

µ[nt](f)− µ[nt]+1,n(f)

=
1

[nt]

[nt]∑
i=1

f(Xi)−
1

n− [nt]

n∑
i=[nt]+1

f(Xi)

=
1

[nt]

[nt]∑
i=1

(f(Xi)− µf)− 1

n− [nt]

n∑
i=[nt]+1

(f(Xi)− µf)

=

(
1

[nt]
+

1

n− [nt]

) [nt]∑
i=1

(f(Xi)− µf)− 1

n− [nt]

n∑
i=1

(f(Xi)− µf)

=
1√
n

n

[nt]

n

n− [nt]
Vn(f, t)− 1√

n

1

t

n

n− [nt]
tVn(f, 1). (12.1)

Further, by definition we have Rn(f, 1) = 0 and Rn(f, t) = 0 for t ∈ [0, 1/n). Since also

Vn(f, t) = 0 for t ∈ [0, 1/n), we obtain with (12.1) that

Rn(f, t) = Vn(f, t)− [nt]

n
Vn(f, 1),

= Vn(f, t)− tVn(f, 1) +
nt− [nt]

n
Vn(f, 1) for all t ∈ [0, 1]. (12.2)

Let An denote the F × [0, 1]-indexed processes given by An(f, t) :=
(
(nt − [nt])/n

)
Vn(f, t).

Since supt∈[0,1] |(nt− [nt])/n| → 0 as n→∞, by Slutsky’s Theorem and the sequential empirical

CLT, An converges in distribution (and thus in probability) to zero. Another application of

Slutsky’s theorem and the sequential empirical CLT on (12.2) yields

Rn =
(
Vn(f, t)− tVn(f, 1)

)
(f,t)∈F×[0,1]

+An
d−→
(
K(f, t)− tK(f, 1)

)
(f,t)∈F×[0,1]

.

Here we have applied the continuous mapping theorem in the final step.

Remark 12.1. Note that, in the setting of Theorem 10.2 and Theorem 10.3 and for a wide class

of multiple mixing processes (cf. Theorem 9.2), including ergodic automorphisms of the torus

(see Theorem 11.1), the covariance structure of K is given by (9.8).

Proof of Proposition 12.1. Rn(f, ·) is obviously constant on the intervals
[
k/n, (k + 1)/n

)
,

k = 0, . . . , n−1 and further Rn
(
f, k/n

)
= k/n(1−k/n)

√
n
(
µk(f)−µk+1,n(f)

)
for k = 0, . . . , n.

Thus Tn = supf∈F ,t∈[0,1]Rn(f, t) and we can apply the continuous mapping theorem with

`∞(F × [0, 1]) −→ R, ϕ 7→ sup
f∈F , t∈[0,1]

|ϕ(f, t)|.

110



A. Appendix

A.1. A CLT of Dedecker (1998)

The following proposition corresponds to a particular case of Corollary 1 in Dedecker (1998).

Proposition A.1 (Dedecker (1998)). Let (Yi)i∈N be an ergodic stationary process with E(Y0) =

0 and E(Y 2
0 ) <∞, which is adapted to a filtration (Mi)i∈N. If

∑n
i=0 Y0 E(Yi|M0) converges in

L1, then

1√
n

n∑
i=1

Yi
d−→ N(0, σ2) as n→∞,

where σ2 = Var(Y 2
0 ) + 2

∑∞
i=1 Cov(Y0, Yi) <∞.

A.2. Some Covariance Inequalities

The following proposition corresponds to Proposition 3 in Dehling and Durieu (2011) .

Proposition A.2 (Dehling and Durieu (2011)). There exist C > 0, 0 < θ < 1, for all

m, p ∈ N∗, such that for all bounded α-Hölder functions ϕ (α ∈ (0, 1]) with ‖ϕ‖∞ ≤ 1, for all

k1 ≤ . . . ≤ km ≤ 0 ≤ l1 ≤ . . . ≤ lp, for all n ∈ N,

∣∣∣∣Cov
( m∏
j=1

ϕ ◦ T kj ,
p∏
j=1

ϕ ◦ T lj+n
)∣∣∣∣ ≤ C ‖ϕ‖1 ‖ϕ‖Hα Q(k1, . . . , km)θn

where Q(k1, . . . , km) =
∑m

i=1 |ki|d0 with d0 the size of the biggest Jordan block of T restricted

to its neutral subspace.

Following Lemma 1.3.1. in Le Borgne and Pène (2005), Durieu (2008a) established the

following covariance inequality.

Lemma A.1. Let T be an ergodic automorphism of the d-dimensional torus Td, d ≥ 2, equipped

with the Lebesgue measure. Then there exist constants θ ∈ (0, 1), C > 0, and c ∈ N∗ such that

for all ϕ,ψ ∈ Hα(Td,C) with ‖ϕ‖∞, ‖ψ‖∞ ≤ 1

Cov

( q∏
i=1

ϕ ◦ T i ,
q+k+p∏
i=q+k+1

ψ ◦ T i
)
≤ Cpqc ‖ϕ‖Hα ‖ψ‖Hαθk for all k, p, q ∈ N∗.
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A.3. Lemma A.2

Lemma A.2. Let B be a Banach algebra of functions on a space X and P be a bounded linear

operator on B. If B satisfies (2.B), then for all f ∈ B the mapping af : R −→ L(B) given by

t 7→ Pf,t is analytic and has a representation

af (t) =

∞∑
k=0

(it)k

k!
P(k),

where P(k) is given by P(k)ϕ := P (fkϕ).

Proof. First, we establish pointwise convergence, i.e. convergence of an(t)(ϕ) for every ϕ ∈ B.

By the Banach algebra property,
∑n

k=1(itf)k/k! converges in B to eitf as n→∞ and therefore

Pf,tϕ = P (eitfϕ) = P
( ∞∑
k=0

(it)k

k!
fkϕ

)
.

Recall that a bounded linear operator is always continuous and thus

P
( ∞∑
k=0

(it)k

k!
fkϕ

)
= lim

n→∞
P
( n∑
k=0

(it)k

k!
fkϕ

)
= lim

n→∞

n∑
k=0

(it)k

k!
P(k)ϕ,

which gives us the pointwise convergence.

By condition (2.B), the inequality ‖P(k)‖L(B) ≤ ‖f‖kB‖P‖L(B) holds and thus
∑n

k=0(it)kP(k)/k!

converges in L(B) as n→∞. Convergence in operator norm implies pointwise convergence,

which yields

af (t)(ϕ) = lim
n→∞

n∑
k=0

(it)k

k!
P(k)ϕ =

( ∞∑
k=0

(it)k

k!
P(k)

)
ϕ for all ϕ ∈ B.

A.4. Proof of Theorem 1.1

We first show that ξ(q) converges in distribution to some random variable ξ. We denote by L(q)

the distribution of ξ(q); this is defined since ξ(q) is measurable. Moreover, L(q) is a separable

Borel probability measure on S.

By Theorem 1.12.4 of van der Vaart and Wellner (1996), weak convergence of separable Borel

measures on a metric space S can be metrised by the bounded Lipschitz metric, defined by

dBL1(L1, L2) = sup
f∈BL1

∣∣∣∣∫ f(x)dL1(x)−
∫
f(x)dL2(x)

∣∣∣∣ ,
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for any Borel measures L1, L2 on S. Here, BL1 := {f : S −→ R : ‖f‖BL1 ≤ 1}, where

‖f‖BL1 := max

{
sup
x∈S
|f(x)|, sup

x 6=y∈S

f(x)− f(y)

ρ(x, y)

}
.

In addition, the theorem states that the space of all separable Borel measures on a complete

space is complete with respect to the bounded Lipschitz metric. Thus it suffices to show that

L(q) is a dBL1-Cauchy sequence. We obtain

dBL1

(
L(q), L(r)

)
= sup
f∈BL1

|E f(ξ(q))−E f(ξ(r))|

≤ sup
f∈BL1

{
|E f(ξ(q))−E∗ f(ξ(q)

n )|+ |E∗ f(ξ(q)
n )−E∗ f(ξn)|

+ |E∗ f(ξn)−E∗ f(ξ(r)
n )|+ |E∗ f(ξ(r)

n )−E f(ξ(r))|
}

for all n ∈ N∗. For a Borel measurable separable random element ξ(q) weak convergence

ξ
(q)
n

d−→ ξ(q) as n → ∞ is equivalent to supf∈BL1
|E f(ξ(q)) − E∗ f(ξ

(q)
n )| −→ 0; see van der

Vaart and Wellner (1996, p.73). Hence by (1.10) we obtain

dBL1

(
L(q), L(r)

)
≤ lim inf

n→∞
sup
f∈BL1

|E∗ f(ξ(q)
n )−E∗ f(ξn)|+ |E∗ f(ξn)−E∗ f(ξ(r)

n )|.

Using Lemma 1.2.2 (iii) in van der Vaart and Wellner (1996), we obtain

|E∗ f(ξ(q)
n )−E∗ f(ξn)| ≤ E(|f(ξn)− f(ξ(q)

n )|∗)

and therefore

sup
f∈BL1

|E∗ f(ξ(q)
n )−E∗ f(ξn)| ≤ E

(
ρ(ξn, ξ

(q)
n ) ∧ 2

)∗
=

∫ ∞
0

P∗
(
ρ(ξn, ξ

(q)
n ) ∧ 2 ≥ t

)
dt, (A.1)

where we used the last statement of Lemma 1.2.2 in van der Vaart and Wellner (1996). Now,

let ε > 0 be given. By (1.11), there exists an q0 ∈ N∗ such that for every q ≥ q0 there is some

n0 ∈ N∗ such that for every n ≥ n0 we have P∗
(
ρ(ξn, ξ

(q)
n ) ≥ ε/3

)
≤ ε/3. Therefore

P∗
(
ρ(ξn, ξ

(q)
n ) ∧ 2 ≥ t

)
≤


1, if t < ε

3

ε
3 , if ε

3 ≤ t ≤ 2

0, if 2 < t.

Applying this inequality to (A.1), we obtain

lim inf
n→∞

sup
f∈BL1

|E∗ f(ξ(q)
n )−E∗ f(ξn)| ≤

∫ 2

0

ε

3
+ 1{t< ε

3
} dt = ε
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for all q ≥ q0. Hence for q, r ≥ q0 we have dBL1(L(q), L(r)) ≤ 2ε; i.e. (L(q))q∈N∗ is a dBL1-Cauchy

sequence in a complete metric space.

The remaining part of the proof follows closely the proof of Theorem 4.2 in Billingsley

(1968), replacing the probability measure P by the outer measure P∗ where necessary and

making use of the Portmanteau theorem; see van der Vaart and Wellner (1996), Theorem 1.3.4

(iii), and the sub-additivity of outer measures. From part (i), we already know that there is

some measurable ξ such that ξ(q) d−→ ξ. Let F ⊂ S be closed. Given ε > 0, we define the

ε-neighbourhood Fε := {s ∈ S : infx∈F ρ(s, x) ≤ ε}, and observe that Fε is also closed. Since{
ξn ∈ F} ⊂ {ξ(q)

n ∈ Fε} ∪ {ρ(ξ
(q)
n , ξn) ≥ ε}, we obtain

P∗(ξn ∈ F ) ≤ P∗(ξ(q)
n ∈ Fε) + P∗(ρ(ξ(q)

n , ξn) ≥ ε),

for all q ∈ N∗. By (1.11) we may choose q0 so large that for all q ≥ q0

lim sup
n→∞

P∗(ρ(ξ(q)
n , ξn) ≥ ε) ≤ ε/2.

As ξ(q) d−→ ξ, by the Portmanteau theorem we may choose q1 so large that for all q ≥ q1

P(ξ(q) ∈ Fε) ≤ P(ξ ∈ Fε) + ε/2.

We now fix q ≥ max(q0, q1). By (1.10) we have ξ
(q)
n

d−→ ξ(q) as n→∞. Thus an application of

the Portmanteau theorem yields

lim sup
n→∞

P∗(ξ(q)
n ∈ Fε) ≤ P(ξ(q) ∈ Fε),

lim sup
n→∞

P∗(ξn ∈ F ) ≤ P(ξ ∈ Fε) + ε.

Since this holds for any ε > 0 and limε→0 P(ξ ∈ Fε) = P(ξ ∈ F ), we get

lim sup
n→∞

P∗(ξn ∈ F ) ≤ P(ξ ∈ F ),

for all closed sets F ⊂ S. By a final application of the Portmanteau theorem we infer ξn
d−→ ξ.

A.5. Proof of Lemma 2.3

(a) For f ∈ Hα(X ,C) and g ∈ Hα,β(X,C) we have Nβ(fg) ≤ ‖f‖∞Nβ(g) and

mα,β(fg) ≤ sup
x,y∈X
x 6=y

(
|f(x)| |g(x)− g(y)|

d(x, y)α(1 + d(x, x0)β)

)
+

(
|f(x)− f(y)|
d(x, y)α

|g(y)|
1 + d(x, x0)β

)

≤ ‖f‖∞mα,β(g) + ‖f‖HαNβ(g).

Thus ‖fg‖Hα,β = Nβ(fg) +mα,β(fg) ≤ ‖f‖HαNβ(g) + ‖f‖∞mα,β(g) ≤ ‖f‖Hα‖g‖Hα,β .
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(b) First, we show that (Hα,β(X ,C), ‖ · ‖Hα,β ) is complete. Let fn be a Cauchy sequence in

Hα,β(X ,C). Then Nβ(f − fn) −→ 0 and mα,β(f − fn) −→ 0 as n → ∞. Nβ(f − fn) −→ 0

implies that there is a function f : X −→ C such that fn(x) −→ f(x) as n → ∞ for every

x ∈ X . We have

Nβ(f) = sup
x∈X

lim
n→∞

|fn(x)|
1 + d(x, x0)β

≤ sup
x∈X

lim sup
n→∞

|fn(x)|
1 + d(x, x0)β

≤ lim sup
n→∞

Nβ(f − fn) <∞

and similarly mα,β(f) <∞. This implies that ‖f‖Hα,β <∞ and thus f ∈ Hα,β(X ,C). Further

since fn is a Cauchy sequence, we have

Nβ(f − fn) = sup
x∈X

lim
m→∞

|fm(x)− fn(x)|
1 + d(x, x0)β

≤ lim sup
m→∞

Nβ(fm − fn) ≤ sup
m≥n

Nβ(fm − fn) −→ 0 as n→∞

and similarly mα,β(f − fn) −→ 0 as n → ∞. Therefore fn → f in (Hα,β(X ,C), ‖ · ‖Hα,β ).

The space Hα,β(X ,C) is obviously closed under composition with the modulus or conjugation

functional on C. Finally, the continuity of f 7→ f(x) is a direct consequence of the pointwise

convergence of any sequence fn that converges in (Hα,β(X ,C), ‖ · ‖Hα,β ) and thus (2.B) holds.

(c) The statement is trivial for β = 0. Recall that by assumption, the fist moment of ν exists.

Let β ∈ (0, 1] then |f | ≤ (1 + d(·, x0))βNβ(f) and thus

‖f‖1/β ≤
∥∥1 + d(x, x0)β

∥∥
1/β
Nβ(f) ≤

(
1 +

(
ν(d(·, x0))

)β)
Nβ(f).

(d) Let f, g ∈ L∞(ν). Then

‖fg‖Hα,β ≤ ‖f‖∞Nβ(g) + sup
x∈X
x 6=y

|f(x)| |g(x)− g(y)|
d(x, y)α(1 + d(x, x0))β

+ |g(y)| |f(x)− f(y)|
d(x, y)α(1 + d(x, x0))β

≤ ‖f‖∞Nβ(g) + ‖f‖∞mα,β(g) + ‖g‖∞mα,β(f)

and thus ‖fg‖Hα,β ≤ ‖f‖∞‖g‖Hα,β + ‖g‖∞‖f‖Hα,β .

A.6. Proof of Lemma 4.2

Without loss of generality, assume that x = 0. For v ∈ Rd, let Dv denote the diagonal d×d-

matrix with diagonal entries v1, . . . , vd. We define the operator norm of the d×d-matrix A by

|A|∗ := supy∈Rd\{0} |Ay|/|y|. Observe that |Dv|∗ = maxi=1,...,d |vi|. We can characterize E(0, jm)

and Rd \ E(0, jm + 1
m) by

E

(
0,
j

m

)
=

{
z ∈ Rd :

∣∣∣∣D−1
j
m

z

∣∣∣∣ ≤ 1

}
and Rd \ E

(
0,
j

m
+

1

m

)
=

{
y ∈ Rd :

∣∣∣∣D−1
j
m

+ 1
m

y

∣∣∣∣ > 1

}
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respectively. Thus, for any z ∈ E
(

0, jm

)
and y ∈ Rd \ E

(
0, jm + 1

m

)
,

|y − z| ≥
∣∣∣∣D−1

j
m

+ 1
m

∣∣∣∣−1

∗

∣∣∣∣D−1
j
m

+ 1
m

y −D−1
j
m

+ 1
m

D j
m

D−1
j
m

z

∣∣∣∣
≥
∣∣∣∣D−1

j
m

+ 1
m

∣∣∣∣−1

∗

(∣∣∣∣D−1
j
m

+ 1
m

y

∣∣∣∣− ∣∣∣∣D−1
j
m

+ 1
m

D j
m

∣∣∣∣
∗

∣∣∣∣D−1
j
m

z

∣∣∣∣)
>

∣∣∣∣D−1
j
m

+ 1
m

∣∣∣∣−1

∗

(
1−

∣∣∣∣D−1
j
m

+ 1
m

D j
m

∣∣∣∣
∗

)
= min

i=1,...,d

{
ji
m

+
1

m

}(
1− max

i=1,...,d

{
ji
m

ji
m + 1

m

})
≥ 1

Dm2

since ji ∈ {0, . . . , Dm− 1}.

A.7. Proof of Lemma 4.3

For any ε > 0, set Kε = sup{K > 0 : µ([−K,K]d) ≤ 1 − ε}. We will denote the function

(0, 1)→ R+, ε 7→ Kε by K•. Now, introduce the bracket [L,Uε], given by

L ≡ 0 and Uε := T
[
Rd\[−Kεs/2,Kεs/2]d, [−Kεs ,Kεs ]

d
]
.

Obviously, we have ‖Uε − L‖s ≤ ‖Uε − L‖1/s1 ≤ ε.

To get a bound for the Hölder-norm of Uε, consider the distribution function

G(t) := µ
(
{x ∈ Rd : |x|max ≤ t}

)
on R, where |x|max = max{|xi| : i = 1, . . . , d}. Observe that the pseudo-inverse G−1 of G is

linked to K• by the equality Kε = G−1(1− ε). With geometrical arguments we infer

G(t) =
∑

j∈{−1,1}d
σ(j) F(tj),

where σ(j) :=
∏d
i=1 ji ∈ {−1, 1}. Therefore

ωG(x) = sup
t∈R
{G(t+ x)−G(t)} = sup

t∈R

∑
j∈{−1,1}d

σ(j)
(
F((t+ x)j)− F(tj)

)
≤

∑
j∈{−1,1}d

sup
t∈R

∣∣F((t+ x)j)− F(tj)
∣∣ ≤ ∑

j∈{−1,1}d
ωF(
√
dx)

≤ 2dωF(
√
dx).
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Now by Lemma 4.1 we obtain

‖Uε‖Hα ≤ 1 +
3α

|G−1(1− εs

2 )−G−1(1− εs)|α

≤ 1 + 3α
(

inf

{
x > 0 : ∃t ∈ R such that G(t+ x)−G(t) ≥ εs

2

})−α
≤ 1 + 3α

(
inf

{
x > 0 : ωG(x) ≥ εs

2

})−α
≤ 1 + 3α

(
sup

{
x ≥ 0 : ωF(

√
dx) ≤ εs

2d+1

})−α
= 1 + (3

√
d)α(ω−1

F (2−(d+1)εs))−α,

where we used that ωF is continuous here to replace the infimum by the supremum.

Then [L,Uε] is an (ε, 4
√
d(ω−1

F (2−(d+1)εs))−α,G,Ls(µ))-bracket for sufficiently small ε. Since

[L,Uε] contains any f ∈ F\FKε/2+D, by (4.2) we obtain for all those ε the bound

N
(
ε,max

{
f(ε), 4

√
d(ω−1

F (2−(d+1)εs))−α
}
,F ,G,Ls(µ)

)
≤ C(Kεs/2 +D)pε−q + 1.

Let us finally consider the growth rate of Kεs/2 as ε → 0. By assumption (4.3) and since

| · |max ≤ | · |, we have 1−G(t) ≤ bt−1/β for sufficiently large t. Therefore,

G((b/ε)β) ≥ 1− ε.

By the definition of K•, we therefore obtain that Kεs/2 ≤ (2b/εs)β = Oβ,b(ε
−βs) which proves

the lemma.
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Nomenclature

X∗ the measurable cover function of a real valued random element X, page 9

[ · ] the lower Gauss bracket, page 4

d·e the upper Gauss bracket, page 62

| · | the absolute value, the modulus, or the euclidean norm on Rd

#A the cardinality of a set A

D([−∞,∞]d) the space of multidimensional càdlàg functions on [−∞,∞]d, page 8

d−→ convergence in distribution of a sequence of random elements, page 9

� asymptotically smaller or equal, page 92

‖ · ‖Hα the α-Hölder norm, page 22

‖ · ‖Hα,β the α, β-Lipschitz norm with weight in x0, page 22

‖ · ‖∞ the essential supremum norm w.r.t. the corresponding probability measure, page 17

‖ · ‖s the sth moment of f w.r.t. the corresponding probability measure, page 17

‖ · ‖L(B) the operator norm w.r.t. B, page 21

B a complex Banach space of measurable functions from X to C

BR the real Banach space composed of the real-valued function in B

C a normed vector space of real valued measurable functions on X

CM := {f ∈ C : ‖f‖∞ ≤M} for some M > 0, page 29

δx the Dirac measure given by δx(A) = 1A(x)

δi,m a physical dependence measure, page 63

E∗(X) the outer expectation or outer integral of a real-valued random element X, page 9

F the (multidimensional) distribution function

F−1(t) := sup{x ∈ [−∞,∞] : F (x) ≤ t}

Fn the empirical distribution function, page 65
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Hα(X ,K) the space of bounded α-Hölder continuous functions on X with values in K, page 22

Hα,β(X ,K) the space of weighted Lipschitz functions on X with values in K, page 22

i.i.d. independent and identically distributed

L(B) the space of bounded linear operators from B to B, page 20

`∞(F) the space of uniformly bounded real-valued functions of F

Ls(λ) the Lebesgue space of s-th power integrable complex-valued functions, page 17

L∞(λ) the space of complex-valued measurable functions that are essentially bounded w.r.t.

the corresponding probability measure, page 17

µ a probability distribution, usually the marginal distribution of the stationary process

(Xi)i∈N∗

mα(f) := supx,y∈X ,x 6=y
|f(x)−f(y)|
d(x,y)α , page 22

mα,β(f) := supx,y∈X ,x 6=y
|f(x)−f(y)|

d(x,y)α(1+d(x,x0)β)
, page 22

µf :=
∫
X f dµ

µn(f) := 1
n

∑n
i=1 f(Xi)

N∗ := {1, 2, . . .}

N := {0, 1, 2, . . .}

Nβ(f) := supx,y∈X ,x 6=y
|f(x)−f(y)|

d(x,y)α(1+d(x,x0)β)
, page 22

N(ε,A,F ,G,Ls(µ)) the bracketing number of F w.r.t. G, page 30

N(0,Σ) normal distribution in Rk with mean 0 and covariance matrix Σ

O f(x) = O(g(x)) as x→ x0 if and only if lim supx→x0
|f(x)|
|g(x)| <∞

o f(x) = o(g(x)) as x→ x0 if and only if limx→x0
|f(x)|
|g(x)| = 0

ωF (δ) the modulus of continuity of F given by ωF (δ) = sup{|F (x)− F (y)| : |x− y| ≤ δ}

ω←F (δ) := inf
{
δ > 0 : ωF (δ) ≥ y

}
P∗ the outer probability w.r.t. a probability measure P, page 9

Un the empirical process given by Un(f) :=
√
n
(
µn(f)− µf

)
VectR(f1, . . . , fk) the smallest vector space containing f1, . . . , fk

Vn the sequential empirical process given by Vn(f, t) := [nt]√
n

(
µ[nt](f)− µf

)
, page 85

X an arbitrary measurable space, the state space of the process (Xi)i∈N

(Xi)i∈N a stationary stochastic process with state space X and marginal distribution µ
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Index

‖ · ‖C-control, 66

α-Hölder continuous functions, 22

B-geometrically ergodic Markov chains, 20

bracketing number, 10, 30

convergence in distribution (in S) of non-

measurable random elements, 9

dynamical systems, 25

empirical CLT, 1, 3

for causal functions of i.i.d. processes,

80

for ergodic automorphisms of the torus,

53

for multiple mixing processes, 32

for slowly multiple mixing processes, 68

general version, 31

empirical measure, 1

empirical process, 1, 65

indexed by a class of functions, 3, 29

entropy, 10

ergodic torus automorphisms, 25

linear processes, 80

Lipschitz functions with weights, 22

Markov chains

B-geometrically ergodic M.c., 20

contraction on average, 23

iterative Lipschitz models, 23

measurable cover function, 9

multiple mixing, 2

definition, 17

moment bounds for m.m. processes, 18

outer expectation, 9

outer integral, 9

outer probability, 9

random element, 9

random variable, 9

sequential empirical CLT, 4, 85

for B-geometrically ergodic Markov chains,

102

for ergodic automorphisms of the torus,

107

for iterative Lipschitz models, 102

for multiple mixing processes, 88

general version, 86

sequential empirical process, 4, 85

sequential finite-dimensional CLT

for B-geometrically ergodic processes,

99

iterative Lipschitz models, 102

slowly multiple mixing

definition, 59

moment bounds for s.m.m. process., 60

spectral gap, 20

strong ergodicity, 20

time delay vectors, 81

torus automorphism, 25
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Dehling, H., Durieu, O., Volný, D.: New techniques for empirical processes of dependent data.

Stochastic Process. Appl. 119(10), 3699–3718 (2009)

Dehling, H., Philipp, W.: Empirical process techniques for dependent data. In: Empirical

process techniques for dependent data, pp. 3–113. Birkhäuser Boston, Boston, MA (2002)
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