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Abstract—The asymptotic normality result is obtained for
local Whittle estimators of all model parameters in a general
formulation of multivariate long memory. The result is then
used in devising a global statistical test for the so-called fractal
non-connectivity, and in deriving the asymptotics of LASSO
estimators of parameters in the so-called long-run variance
matrix and its inverse. Some numerical illustrations are also
provided.

I. INTRODUCTION

We focus here on local Whittle estimation of model param-
eters in stationary multivariate short and long memory time
series. This is perhaps the estimation method of choice when
the possibility of multivariate long memory is considered, with
numerous works on the topic over the last several decades (see
[1]–[5], to name but a few). We next introduce the setting, the
local Whittle estimators and other quantities of interest, and
describe our contributions.

Consider a p-dimensional second-order stationary time se-
ries Xn “ pX1,n, . . . , Xp,nq

1, n P Z, with zero mean and
autocovariance matrix function ΓXphq “ EXn`hX

1
n, h P Z.

Suppose that its spectral density fXpλq, λ P p´π, πq, related
to the autocovariance through ΓXphq “

şπ

´π
eihλfXpλqdλ,

satisfies
fXpλq „ λ´DGλ´D, as λÑ 0`, (1)

where „ denotes componentwise asymptotic equivalence,
D “ diagpd1, . . . , dpq with dk P r0, 1{2q, k “ 1, . . . , p,
λ´D “ diagpλ´d1 , . . . , λ´dpq and G “ pgklqk,l“1,...,p is
Hermitian symmetric and positive definite. The case D ” 0
is associated with short memory, while the case dk ą 0 with
long memory of the kth component series Xk,n, n P Z. See
[6], [7] for more details on univariate long and short memory
and [8] for a discussion on multivariate long memory.

The local Whittle estimators p pD, pGq for the model parame-
ters in (1) introduced in [3] are given by

p pD, pGq “ arg min
pD,Gq

`pD,Gq (2)

for the negative log-likelihood

`pD,Gq “
1

m

m
ÿ

j“1

plog |λ´Dj Gλ´Dj | ` trpIXpλjqλ
D
j G

´1λDj qq,

(3)

where | ¨ | and trp¨q denote the determinant and the trace of a
matrix, IXpλq “ 1

2πN p
řN
n“1Xne

´inλqp
řN
n“1Xne

inλq1 is the
periodogram for sample size N and m is the number of Fourier
frequencies λj “ 2πj{N used in estimation. In the bivariate
case p “ 2, the asymptotic normality of the local Whittle
estimators of memory parameters d1, d2 and also of the so-
called phase (that can be expressed in terms of the elements
of G) was established in [3], and that of all model parameters
in [5]. The asymptotic normality results in special cases of
(1) but general p appear in [4], [9]. The main goal of this
work is to provide such results for all model parameters in the
general multivariate formulation (1), as well as to understand
its implications. A special feature of the obtained result is the
nearly explicit and workable form of the limiting covariance
matrix.

Among the parameters of the model (1), we are particularly
interested here in G, also called the long-run variance matrix,
as well as in its precision matrix P “ G´1. Furthermore, it
is of interest to model both of these matrices sparsely. For
the matrix G, a zero element gkl “ r1,kl ` ir2,kl “ 0 can
be thought as representing uncorrelatedness of the component
series Xk,n and Xl,n at low frequencies (or large time lags).
This case is also referred to as fractal non-connectivity of Xk,n

and Xl,n; see [10]–[12]. For the matrix P “ G´1, a zero entry
pkl can be thought as representing partial uncorrelatedness of
the series Xk,n and Xl,n at low frequencies. Unsurprisingly
perhaps, we will therefore also be interested in LASSO-type
estimators of G and P .

The rest of the paper is organized as follows. In Section II,
the asymptotic normality result for the local Whittle estimators
is stated, including a sketch of the proof. Section III is
concerned with testing for fractal non-connectivity. Section
IV deals with asymptotic results for LASSO-type estimators.
Some numerical results appear in Section V. Some of the
technical details are omitted and can be found in the technical
appendix for this article in [13].

II. ASYMPTOTIC NORMALITY RESULTS

We give here the asymptotic normality result for the local
Whittle estimators p pD, pGq in (2) and also sketch its proof.

In order to define the parameter vector of interest, we
introduce the matrix rG “ prgklqk,l“1,...,p, rgkl “ gkk1tk“lu `
r1,kl1tkąlu ` r2,kl1tkălu, where gkl “ r1,kl ` ir2,kl, and the



vector rD “ pd1, . . . , dpq
1. Then, the parameter vector can be

written as
θ “ ppvecp rGqq1, rD1q1. (4)

The respective pairs of matrices rG, G and rD, D can be related
as

vecp rGq “ Lp vecpGq, vecp rDq “ Ep,p2 vecpDq.

The matrix Lp P Cpˆp is defined as

Lp “
1

2
pJp2Ip2 ` J

˚
p2Kpq, (5)

where ˚ denotes the Hermitian conjugate and Jp2 “

diagpvecp rJqq with rJ “ p1tkďlu ` i1tkąluqk,l“1,...,p. The
matrix Kp denotes the commutation matrix, which transforms
vecpMq into vecpM 1q for a square matrix M ; see [14] for
more details on these kinds of operations. The matrix Ep,p2
is defined as

Ep,p2 “ pe1,0pˆp, e2,0pˆp, . . . , epq, (6)

where ei denotes the ith standard basis vector of Rp and 0pˆp
a pˆ p-matrix with all entries equal to zero.

We introduce the multivariate extensions of the assumptions
pC1q1, pC2q, pC3q1 and pC4q in [5], and then state our main
asymptotic normality result. It extends Theorem 2.3 in [5] to
general p.

Assumption 1: The spectral density fX satisfies (1). There
is q P p0, 2s such that λD Ψpλq ´ Q “ Opλqq, as λ Ñ 0`,
where Q P Cpˆp satisfies QQ˚ “ G and Ψpλq is a Cpˆp-
valued function, differentiable in a neighborhood of λ “ 0
such that fXpλq “ ΨpλqΨpλq˚ and λDdΨpλq{dλ “ Opλ´1q,
as λÑ 0`.

Assumption 2: The time series Xn has a linear repre-
sentation Xn “

ř

jPZ Ψj εn´j with
ř

jPZ }Ψj }
2
F ă 8,

where } ¨ }F denotes the Frobenius norm and Ψj “

p2πq´1
şπ

´π
Ψpλqe´ijλdλ. The p-vector series tεjujPZ satisfies

E εj “ 0, Epεjε
1
jq “ Ip, Epεjε

1
iq “ 0pˆp, i ‰ j and has al-

most sure constant first, second, third and fourth moments and
respective cross-moments conditionally on Fj´1 “ σpεi, i ď
j ´ 1q. Also, Ppε1jεj ą νq ď C PpX ą νq for all ν ą 0 and
an Rą0-valued random variable X such that EX ă 8.

Assumption 3: The parameter vector θ in (4) is such that
θ P Θ

rG ˆ Θ
rD with Θ

rG “ pRą0 ˆ Rpqˆpp´1q ˆ Rą0 and
Θ

rD “ r0, 1{2q
p.

Assumption 4: The number of frequencies m satisfies
plogmq2m1`2q{N2q Ñ 0 and plogNqC{m Ñ 0 as N Ñ 8

for any C ă 8, where q P p0, 2s appears in Assumption 1.
Theorem 2.1: Suppose that the above Assumptions 1-4 are

satisfied. Then,
?
m diagpplogpN{mqq´1Ip2 , Ipqppθ ´ θq

d
Ñ N p0, Cq, (7)

as N Ñ8, with

C “

ˆ

LpRZ
´1
G R˚L˚p LpRZ

´1
G

Z´1
G R˚L˚p Z´1

G

˙

, (8)

where ZG “ 2pG d G´1 ` Ipq, d denotes the Hadamard
product and the matrix R is defined as

R “ pvecpGq d vecpY1q, . . . , vecpGq d vecpYpqq

with Yi “ p1ti“ku ` 1ti“luqk,l“1,...,p.

SKETCH OF PROOF: The result (7) can be derived as in [3] and
[5] which considered the case p “ 2. We focus on calculating
the information matrix for all model parameters for arbitrary
dimension p. The negative log-likelihood `pθq “ `pD,Gq of
the model is given in (3). The information matrix is a 2 ˆ 2
block matrix

Ipθq “

ˆ

MG MG,D

M˚
G,D MD

˙

(9)

with

MG,D “ EpD
rGpD rD `qq, MG “MG,G, MD “MD,D,

where DV denotes the derivative matrix with respect to a
vector V . The resulting blocks of (9) can be shown to be
expressed as

MG “ pL
´1
p q

˚ppG´1q1 bG´1qL´1
p ,

MG,D “ ´T1pL
´1
p q

˚pG´1 ‘ pG´1q1qE1p,p2 ,

MD “ T2Ep,p2pG‘G
1qpG´1 ‘ pG´1q1qE1p,p2 ,

where ‘ denotes the Kronecker sum defined as A ‘ B “

pIp bAq ` pB b Ipq, Lp, Ep,p2 are as in (5) and (6), and

T1 “
1

m

m
ÿ

j“1

log λj , T2 “
1

m

m
ÿ

j“1

plog λjq
2. (10)

The block structure of the information matrix (9) leads to the
inverse I´1pθq as
ˆ

M´1
G `M´1

G MG,DS
´1
G,DM

˚
G,DM

´1
G ´M´1

G MG,DS
´1
G,D

´S´1
G,DM

˚
G,DM

´1
G S´1

G,D

˙

,

where the so-called Schur complement is defined as SG,D “
MD ´M

˚
G,DM

´1
G MG,D with

M´1
G “ LppG

1 bGqL˚p .

The Schur complement can be simplified to

SG,D “ pT2 ´ T
2
1 qp1{T2qMD.

Note also the non-obvious relation MD “ T2ZG. The asymp-
totic orders of T1 and T2 in (10) are T1 „ logpm{Nq,
T2 „ plogpm{Nqq2 and T2 ´ T 2

1 “ 1` op1q. These relations
and further simplifications lead to the limiting covariance
matrix C in (8). See [13] for more details. ˝

Remark 2.1: Theorem 2.1 is stated for the local Whittle
estimator of the long-run variance matrix G. However, it can
also be written in terms of the precision matrix P . A perhaps
surprising fact is that the limiting covariance matrix coincides
with (8) when replacing G with P and changing the sign of
the off-diagonal blocks.

Remark 2.2: When p “ 1, the asymptotic variance of the
estimator pd of the memory parameter is 1{4. When p “ 2,



these variances of pd1, pd2 take values in the range p 18 ,
1
4 s; see

Remark 2.1 in [5]. As a consequence of the asymptotic co-
variance matrix Z´1

G in (8) associated with D, the asymptotic
variance pZ´1

G qkk of pdk is expected as

1

4p
ď
“

2pGdG´1 ` Ipq
‰´1

kk
ď

1

4
, k “ 1, . . . , p, (11)

for general p. The upper bound in (11) is a consequence of
Corollary 7.7.4 in [15]. The lower bound is conjectured as
discussed in [13].

Remark 2.3: In [3] and [5], the matrix G in (1) is also
parametrized in terms of polar coordinates. For general p, this
parametrization reads

G “ pωkle
signpk´lqiφklqk,l“1,...,p (12)

with the so-called phase parameter φkl P p´π{2, π{2q and
ωkl P R. In this parametrization, one cannot test for fractal
non-connectivity, since the respective phase parameter φkl is
not identifiable for ωkl “ 0, k ‰ l; see [5] for a related
discussion when p “ 2. Furthermore, in contrast to the
case p “ 2 (see [5]), the phase parameter estimates pφkl are
generally not asymptotically uncorrelated with respect to the
estimators pΩ “ ppωklqk,l“1,...,p and pD. This leads to a 3 ˆ 3
block matrix written in the same manner as (9). It is possible
to derive Theorem 2.1 in terms of the parametrization in (12),
but due to the 3 ˆ 3 block structure, it seems impossible to
get an explicit expression for the limiting covariance matrix.

III. TESTING FOR FRACTAL NON-CONNECTIVITY

As motivated in Section I, we are interested here in testing
for fractal non-connectivity on a global level, that is, the
hypothesis testing problem

H0 : r1,kl “ r2,kl “ 0 for all k ‰ l. (13)

The parameters entering the null hypothesis (13) can be
obtained from rG by eliminating the diagonal elements of G.
Therefore, we introduce the matrix

Eppp´1q,p2 “ p0ppp´1q, V1,0ppp´1q, . . . ,

0ppp´1q, Vp´1,0ppp´1qq

with Vq “ pv1`pq´1qp, . . . , vp`pq´1qpq, where vi denotes the
ith standard basis vector of Rpppp´1qq2 and 0ppp´1q is a ppp´
1q-vector with all entries equal to zero. Then, the vector of
parameters of interest can be written as

ϑ “ Eppp´1q,p2 vecp rGq,

and similarly pϑ for the local Whittle estimators. The next result
is a direct consequence of Theorem 2.1.

Corollary 3.1: Suppose that the above Assumptions 1-4 are
satisfied. Then, under the hypothesis H0 in (13),

?
mppϑ´ ϑq

d
Ñ N p0, C0q, (14)

as N Ñ8, where

C0 “
1

2
Eppp´1q,p2pG b GqE 1ppp´1q,p2 (15)

with G “ diagpg11, . . . , gppq.

Note that C0 is a diagonal matrix and C´1
0 “

2Eppp´1q,p2pG´1bG´1qE 1ppp´1q,p2 . We introduce the test statis-
tic

pξN “ m pϑ1 pC´1
0

pϑ. (16)

Under the hypothesis H0, it satisfies

pξN
d
Ñ χ2pppp´ 1qq,

as N Ñ 8, where χ2pKq denotes the chi-square distribution
with K degrees of freedom. Also, under the alternative H1,
one can show that pξN

p
Ñ 8. When p “ 2, the test statistic

(16) was introduced in [5].
Remark 3.1: As pointed out in Remark 2.1, one can replace

the matrix G with the precision matrix P in the asymptotic
normality result in Theorem 2.1. This then leads to a similar
test for partial uncorrelatedness, written as the hypothesis
testing problem H0 : p1,kl “ p2,kl “ 0 for all k ‰ l, where
pkl “ p1,kl ` ip2,kl.

Remark 3.2: Though the fractal non-connectivity test above
is developed on a global level, a similar test can also be
introduced at a local level, that is, to test r1,kl “ r2,kl “ 0
for fixed k ‰ l. But the resulting covariance matrix would not
have such a simple form as in (14)-(15).

IV. ASYMPTOTIC RESULTS FOR LASSO-TYPE ESTIMATORS

Motivated by Section III concerning fractal non-
connectivity, one might be interested in estimating the
matrix G in (1) (or the corresponding precision matrix
P “ G´1) under a sparsity assumption. Sparse estimation
has been considered by numerous authors, for example,
[16]–[19].

A penalized version of the local Whittle estimation (2) was
proposed in [20] with the focus on its good numerical perfor-
mance. As a consequence of Theorem 2.1, we will establish
here theoretically the asymptotic properties of the penalized
estimators. The penalized estimators pGL and pPL “ pG´1

L of
[20] are given by

pGrL “ arg min
Gr

`L,rp pD,Gq, for r “ ´1, 1,

where pD is the local Whittle estimator,

`L,rpD,Gq “
1

m

m
ÿ

j“1

log |λ´Dj Gλ´Dj |

` trp pGpDqG´1q ` ρN }G
r}1,off

(17)

with a penalty parameter ρN ą 0,

pGpDq “
1

m

m
ÿ

j“1

λDj IXpλjqλ
D
j (18)

and the l1-norm } ¨ }1,off excluding the diagonal elements.
For fixed pD, pGL coincides with estimators used in estimating
covariance matrices sparsely; see [19]. On the other hand, pPL
coincides with the graphical LASSO estimator; see [18].



The next result gives an asymptotic normality result for pGL
and pPL in the “fixed p, large N” asymptotics.

Theorem 4.1: Suppose that the above Assumptions 1-4
are satisfied and

?
νρN Ñ ρ0 ě 0, as N Ñ 8 for

ν “ m{plogpN{mqq2. Then,
?
νp pGrL ´G

rq
d
Ñ arg min

U“U˚

VrpUq, for r “ ´1, 1, (19)

as N Ñ8, where

VrpUq “
1

2
trpUGUGq ` trpUNq `RpU,Grq

and for U “ puklqk,l“1,...,p and V “ pvklqk,l“1,...,p,

RpU, V q “ ρ0
ÿ

k‰l

psignpvklqukl1tvkl‰0u ` |ukl|1tvkl“0uq.

The p ˆ p random matrix N is such that vecpNq follows
N p0, RZ´1

G R˚q.

SKETCH OF PROOF: The result in (19) can be derived as in
[17], [21]. The proof requires an asymptotic result for pGp pDq
with pGpDq as in (18). Note that the optimization problem (2)
is equivalent to

pD “ arg min
D

1

m

m
ÿ

j“1

log |λ´Dj
pGpDqλ´Dj |

with pGpDq as in (18); see Remark 2.9 in [5]. For this reason,
Theorem 2.1 gives
?
mplogpN{mqq´1 vecp pGp pDq ´Gq

d
Ñ N p0, RZ´1

G R˚q.
(20)

Then, the result follows by adapting the proof of Theorem 1
in [17]. ˝

Remark 4.1: The asymptotic normality result in (20) can
also be used to derive the oracle properties in [22] for an adap-
tive LASSO-type estimator. The oracle properties state that
the estimator identifies the sparsity structure asymptotically
correct. An adaptive LASSO estimator adjusts the penalization
in (17) by weights depending on the data. In contrast to
Theorem 4.1, it requires a consistent pre-estimator for the
respective matrix of interest G or P .

V. DATA STUDY

Our numerical study assesses the performance of the fractal
non-connectivity test introduced in Section III. A numerical
study concerning the LASSO-type estimators of Section IV
can be found in [20]. For p “ 2, the local Whittle estimation
on synthetic and real data is examined in [5].

For the fractal non-connectivity test, we shall examine its
empirical sizes and powers on the following time series. For
the size calculations, we use a fractally non-connected series
with the spectral density fXpλq “ pfX,klpλqqk,l“1,...,p given
by, for k ă l,

fX,kkpλq “
σkk
2π
|1´ e´iλ|´2dk ,

fX,klpλq “
σkl
2π
p1´ e´iλq´δkp1´ eiλq´δl ,

(21)

Number of frequencies m
N0.35 N0.4 N0.45 N0.5 N0.55 N0.65 N0.7

size 0.089 0.089 0.149 0.228 0.433 0.755 0.958
power 0.497 0.673 0.879 0.976 0.998 1 1

TABLE I
SIZES AND POWERS FOR THE FRACTAL NON-CONNECTIVITY TEST.

where 0 ă δk ă dk ă 1{2, k “ 1, . . . , p, and σkl ‰ 0,
σkk ą 0. For fractally connected model, we take the same
spectral density as in (21) but with δk “ dk. The autocovari-
ance functions for these series can be computed explicitly and
the Gaussian series can be generated exactly following [23].
For the simulation study, we take p “ 5, d “ pd1, . . . , d5q “
p0.1, 0.2, 0.25, 0.3, 0.4q, δk “ pδ1, . . . , δ5q “ 0.1d, σkk “ 1,
σkl P r0.05, 0.5s and the sample size N “ 1000. For the exact
values of σkl used in the simulation, see [13].

Table I presents the empirical sizes and powers of the fractal
non-connectivity test as functions of the tuning parameters
m in the local Whittle estimation. As can be seen from the
table, the test is even slightly oversized for smaller numbers
of frequencies m.

To clarify larger than nominal empirical sizes, we fix the
number of frequencies to m “ N0.45 and consider pairwise
testing. It turns out that the test is very much effected by off-
diagonal values of σkl. Applying the test to each possible pair
pXk,n, Xl,nq, k, l “ 1, . . . , 5, one may observe that the test
performs well for pairs related to smaller off-diagonal elements
σkl. However, for higher values such as σ13 “ 0.5, the pair
pX1,n, X3,nq yields the empirical size of 0.227.

One may ask further how the pairwise tests interplay. For
this, we consider the empirical probabilities for rejecting a
pairwise hypothesis given another pairwise hypothesis has
already been rejected. This study reveals that rejecting the
pairwise hypothesis, which corresponds to the maximal off-
diagonal value σ13 “ 0.5, increases the probability of rejecting
the other pairwise hypotheses. This gets reflected in the larger
sizes in Table I. See [13] for more details.

VI. CONCLUSIONS

In this work, we established the asymptotic normality result
for the local Whittle estimators for general dimension p and
formulation of short/long memory. The results were applied in
connection to fractal non-connectivity and sparse estimation.

As possible future directions, a model which allows for
fractional cointegration could be studied through the lens of
this work, a suitable set of local Whittle plots to examine
in practice could be decided upon (in the spirit of analogous
suggestions in [5] when p “ 2), the high-dimensional setting
of p,N Ñ8 simultaneously could be studied, etc.

ACKNOWLEDGMENT

This work was carried out during a stay of the first author
in the Department of Statistics and Operation Research at the
University of North Carolina, Chapel Hill. The first author
thanks the department for its hospitality, and also the DFG
(RTG 2131) for financial support. The second author was
supported in part by the NSF grant DMS-1712966.



REFERENCES

[1] M. Ø. Nielsen, “Local Whittle analysis of stationary fractional cointe-
gration and the implied realized volatility relation,” Journal of Business
& Economic Statistics, vol. 25, no. 4, pp. 427–446, 2007.

[2] M. Ø. Nielsen and K. Shimotsu, “Determining the cointegrating rank in
nonstationary fractional systems by the exact local Whittle approach,”
Journal of Econometrics, vol. 141, no. 2, pp. 574–596, 2007.

[3] P. M. Robinson, “Multiple local Whittle estimation in stationary sys-
tems,” The Annals of Statistics, vol. 36, no. 5, pp. 2508–2530, 10 2008.

[4] F. S. Nielsen, “Local Whittle estimation of multi-variate fractionally
integrated processes,” Journal of Time Series Analysis, vol. 32, no. 3,
pp. 317–335, 2011.

[5] C. Baek, S. Kechagias, and V. Pipiras, “Asymptotics of bivariate local
Whittle estimators with applications to fractal connectivity,” Preprint,
2019. Available at http://pipiras.web.unc.edu.

[6] J. Beran, Y. Feng, S. Ghosh, and R. Kulik, Long-Memory Processes:
Probabilistic Properties and Statistical Methods. Springer-Verlag Berlin
Heidelberg, 2013.

[7] V. Pipiras and M. Taqqu, Long-Range Dependence and Self-Similarity,
ser. Cambridge Series in Statistical and Probabilistic Mathematics.
Cambridge University Press, 2017.

[8] S. Kechagias and V. Pipiras, “Definitions and representations of mul-
tivariate long-range dependent time series,” Journal of Time Series
Analysis, vol. 36, no. 1, pp. 1–25, 2015.

[9] K. Shimotsu, “Gaussian semiparametric estimation of multivariate frac-
tionally integrated processes,” Journal of Econometrics, vol. 137, no. 2,
pp. 277–310, 2007.

[10] S. Achard, D. S. Bassett, A. Meyer-Lindenberg, and E. Bullmore,
“Fractal connectivity of long-memory networks,” Physical Review E,
vol. 77, p. 036104, 2008.

[11] H. Wendt, A. Scherrer, P. Abry, and S. Achard, “Testing fractal
connectivity in multivariate long memory processes,” in 2009 IEEE
International Conference on Acoustics, Speech and Signal Processing,
2009, pp. 2913–2916.

[12] H. Wendt, G. Didier, S. Combrexelle, and P. Abry, “Multivariate
Hadamard self-similarity: testing fractal connectivity,” Physica D, vol.
356–357, pp. 1–36, 2017.
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